Predicate Logic and Quantifies

Sections 1.4, and 1.5 of Rosen
Spring 2017
CSCE 235H Introduction to Discrete Structures (Honors)
Course web-page: cse.unl.edu/~cse235h
All questions: Piazza
LaTeX

• Using the package: \usepackage{amssymb}
 – Set of natural numbers: \mathbb{N}
 – Set of integer numbers: \mathbb{Z}
 – Set of rational numbers: \mathbb{Q}
 – Set of real numbers: \mathbb{R}
 – Set of complex numbers: \mathbb{C}
Outline

• Introduction
• Terminology:
 – Propositional functions; arguments; arity; universe of discourse
• Quantifiers
 – Definition; using, mixing, negating them
• Logic Programming (Prolog)
• Transcribing English to Logic
• More exercises
Introduction

• Consider the statements:
 \[x > 3, \ x = y + 3, \ x + y = z \]

• The symbols >, +, = denote relations between \(x \) and 3, \(x \), \(y \), and 4, and \(x, y \), and \(z \), respectively.

• These relations may hold or not hold depending on the values that \(x, y, \) and \(z \) may take.

• A **predicate** is a property that is affirmed or denied about the subject (in logic, we say ‘**variable**’ or ‘**argument**’) of a statement.

• Consider the statement: ‘\(x \) is greater than 3’
 – ‘\(x \)’ is the subject
 – ‘is greater than 3’ is the predicate.
Propositional Functions (1)

• To write in Predicate Logic ‘x is greater than 3’
 – We introduce a functional symbol for the **predicate** and
 – Put the subject as an **argument** (to the functional symbol): $P(x)$

• Terminology
 – $P(x)$ is a statement
 – P is a predicate or propositional function
 – x as an argument
 – $P($Bob$)$ is a proposition
Propositional Functions (2)

• Examples:
 – Father(x): unary predicate
 – Brother(x,y): binary predicate
 – Sum(x,y,z): ternary predicate
 – P(x,y,z,t): n-ary predicate
Propositional Functions (3)

• **Definition:** A statement of the form \(P(x_1, x_2, \ldots, x_n) \) is the value of the propositional symbol \(P \).

• **Here:** \((x_1, x_2, \ldots, x_n)\) is an \(n \)-tuple and \(P \) is a predicate

• **We can think of a propositional function as a function that**
 – Evaluates to true or false
 – Takes one or more arguments
 – Expresses a predicate involving the argument(s)
 – Becomes a *proposition* when values are assigned to the arguments
Propositional Functions: Example

• Let $Q(x,y,z)$ denote the statement ‘$x^2+y^2=z^2$’
 – What is the truth value of $Q(3,4,5)$?
 $Q(3,4,5)$ is true
 – What is the truth value of $Q(2,2,3)$?
 $Q(2,3,3)$ is false
 – How many values of (x,y,z) make the predicate true?
 There are infinitely many values that make the proposition true, how many right triangles are there?
Universe of Discourse

• Consider the statement ‘x>3’, does it make sense to assign to x the value ‘blue’?
• Intuitively, the universe of discourse is the set of all things we wish to talk about; that is the set of all objects that we can sensibly assign to a variable in a propositional function.
• What would be the universe of discourse for the propositional function below be:
 \[\text{EnrolledCSE235}(x) = \text{‘x is enrolled in CSE235’} \]
Universe of Discourse: Multivariate functions

• Each variable in an n-tuple (i.e., each argument) may have a different universe of discourse

• Consider an n-ary predicate P:
 \[P(r,g,b,c) = \text{‘The rgb-values of the color c is } (r,g,b)’ \]

• Example, what is the truth value of
 – $P(255,0,0,\text{red})$
 – $P(0,0,255,\text{green})$

• What are the universes of discourse of (r,g,b,c)?
Alert

• Propositional Logic (PL)
 – Sentential logic
 – Boolean logic
 – Zero order logic

• First Order Logic (FOL)
 – Predicate logic (PL)
Outline

• Introduction
• Terminology:
 – Propositional functions; arguments; arity; universe of discourse
• Quantifiers
 – Definition; using, mixing, negating them
• Logic Programming (Prolog)
• Transcribing English to Logic
• More exercises
Quantifiers: Introduction

• The statement ‘\(x>3\)’ is not a proposition

• It becomes a proposition
 – When we assign values to the argument: ‘\(4>3\)’ is true, ‘\(2<3\)’ is false,
 or
 – When we quantify the statement

• Two quantifiers
 – Universal quantifier \(\forall\)
 the proposition is true for all possible values in the universe of discourse
 – Existential quantifier \(\exists\)
 the proposition is true for some value(s) in the universe of discourse
Universal Quantifier: Definition

- **Definition:** The universal quantification of a predicate $P(x)$ is the proposition ‘$P(x)$ is true for all values of x in the universe of discourse.’ We use the notation: $\forall x P(x)$, which is read ‘for all x’.
- If the universe of discourse is finite, say $\{n_1, n_2, ..., n_k\}$, then the universal quantifier is simply the conjunction of the propositions over all the elements
 \[\forall x P(x) \iff P(n_1) \land P(n_2) \land ... \land P(n_k) \]
Universal Quantifier: Example 1

• Let
 – $P(x)$: ‘x must take a discrete mathematics course’ and
 – $Q(x)$: ‘x is a CS student.’

• The universe of discourse for both $P(x)$ and $Q(x)$ is all UNL students.

• Express the statements:
 – “Every CS student must take a discrete mathematics course.”
 \[\forall x \ Q(x) \rightarrow P(x) \]
 – “Everybody must take a discrete mathematics course or be a CS student.”
 \[\forall x \ (P(x) \lor Q(x)) \]
 – “Everybody must take a discrete mathematics course and be a CS student.”
 \[\forall x \ (P(x) \land Q(x)) \]

Are these statements true or false at UNL?
Universal Quantifier: Example 2

• Express in FOL the statement
 ‘for every x and every y, $x+y>10$’

• Answer:
 1. Let $P(x,y)$ be the statement $x+y>10$
 2. Where the universe of discourse for x, y is the set of integers
 3. The statement is: $\forall x \forall y \ P(x,y)$

• Shorthand: $\forall x, y \ P(x,y)$
Existential Quantifier: Definition

- **Definition**: The existential quantification of a predicate $P(x)$ is the proposition ‘There exists a value x in the universe of discourse such that $P(x)$ is true’
 - Notation: $\exists x \ P(x)$
 - Reads: ‘there exists x’

- If the universe of discourse is finite, say $\{n_1,n_2,\ldots,n_k\}$, then the existential quantifier is simply the disjunction of the propositions over all the elements

 $$\exists x \ P(x) \iff P(n_1) \lor P(n_2) \lor \ldots \lor P(n_k)$$
Existential Quantifier: Example 1

• Let $P(x,y)$ denote the statement ‘$x+y=5$’
• What does the expression $\exists x \exists y P(x,y)$ mean?
• Which universe(s) of discourse make it true?
Existential Quantifier: Example 2

- Express formally the statement
 ‘there exists a real solution to \(ax^2 + bx - c = 0 \)’

- Answer:
 1. Let \(P(x) \) be the statement \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)
 2. Where the universe of discourse for \(x \) is the set of real numbers. Note here that \(a, b, c \) are fixed constants.
 3. The statement can be expressed as \(\exists x \ P(x) \)

- What is the truth value of \(\exists x \ P(x) \), where UoD is \(\mathbb{R} \)?
 - It is false. When \(b^2 < 4ac \), there are no real number \(x \) that can satisfy the predicate

- What can we do so that \(\exists x \ P(x) \) is true?
 - Change the universe of discourse to the complex numbers, \(\mathbb{C} \)
Quantifiers: Truth values

- In general, when are quantified statements true or false?

<table>
<thead>
<tr>
<th>Statement</th>
<th>True when...</th>
<th>False when...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall x \ P(x)$</td>
<td>$P(x)$ is true for every x</td>
<td>There is an x for which $P(x)$ is false</td>
</tr>
<tr>
<td>$\exists x \ P(x)$</td>
<td>There is an x for which $P(x)$ is true</td>
<td>$P(x)$ is false for every x</td>
</tr>
</tbody>
</table>
Mixing quantifiers (1)

- Existential and universal quantifiers can be used together to quantify a propositional predicate. For example:

\[\forall x \exists y \ P(x,y) \]

is perfectly valid

- Alert:
 - The quantifiers must be read from left to right
 - The order of the quantifiers is important
 - \[\forall x \exists y \ P(x,y) \] is not equivalent to \[\exists y \forall x \ P(x,y) \]
Mixing quantifiers (2)

• Consider
 – $\forall x \exists y \text{ Loves}(x,y)$: Everybody loves somebody
 – $\exists y \forall x \text{ Loves}(x,y)$: There is someone loved by everyone

• The two expressions do not mean the same thing

• $(\exists y \forall x \text{ Loves}(x,y)) \rightarrow (\forall x \exists y \text{ Loves}(x,y))$
 but the converse does not hold

• However, you can commute similar quantifiers
 – $\forall x \forall y P(x,y)$ is equivalent to $\forall y \forall x P(x,y)$ (thus, $\forall x, y P(x,y)$)
 – $\exists x \exists y P(x,y)$ is equivalent to $\exists y \exists x P(x,y)$ (thus $\exists x, y P(x,y)$)
Mixing Quantifiers: Truth values

<table>
<thead>
<tr>
<th>Statement</th>
<th>True when...</th>
<th>False when...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall x \forall y , P(x,y)$</td>
<td>$P(x,y)$ is true for every pair x,y</td>
<td>There is at least one pair x,y for which $P(x,y)$ is false</td>
</tr>
<tr>
<td>$\forall x \exists y , P(x,y)$</td>
<td>For every x, there is a y for which $P(x,y)$ is true</td>
<td>There is an x for which $P(x,y)$ is false for every y</td>
</tr>
<tr>
<td>$\exists x \forall y , P(x,y)$</td>
<td>There is an x for which $P(x,y)$ is true for every y</td>
<td>For every x, there is a y for which $P(x,y)$ is false</td>
</tr>
<tr>
<td>$\exists x \exists y , P(x,y)$</td>
<td>There is at least one pair x,y for which $P(x,y)$ is true</td>
<td>$P(x,y)$ is false for every pair x,y</td>
</tr>
</tbody>
</table>
Mixing Quantifiers: Example (1)

• Express, in predicate logic, the statement that there is an infinite number of integers

• Answer:

1. Let $P(x,y)$ be the statement that $x < y$
2. Let the universe of discourse be the integers, \mathbb{Z}
3. The statement can be expressed by the following

 $\forall x \exists y P(x,y)$
Mixing Quantifiers: Example (2)

• Express the *commutative law of addition* for R

• We want to express that for every pair of reals, x, y, the following holds: $x+y = y+x$

• Answer:
 1. Let $P(x, y)$ be the statement that $x+y$
 2. Let the universe of discourse be the reals, R
 3. The statement can be expressed by the following

\[\forall x \forall y (P(x, y) \iff P(y, x)) \]

Alternatively, \(\forall x \forall y (x+y = y+x) \)
Mixing Quantifiers: Example (3)

• Express the multiplicative law for nonzero reals $R \setminus \{0\}$ (i.e., every nonzero real has an inverse)
• We want to express that for every real number x, there exists a real number y such that $xy=1$
• Answer:

$$\forall x \exists y (xy = 1)$$
Mixing Quantifiers: Example (4)
false mathematical statement

- Does commutativity for subtraction hold over the reals?
- That is: does $x-y = y-x$ for all pairs x, y in \mathbb{R}?
- Express using quantifiers

$$\forall x \ \forall y \ (x-y = y-x)$$
Mixing Quantifiers: Example (5)

• Express the statement as a logical expression:
 – “There is a number \(x \) such that
 – when it is added to any number, the result is that number and
 – if it is multiplied by any number, the result is \(x \)”

• Answer:
 • Let \(P(x,y) \) be the expression “\(x+y=y \)”
 • Let \(Q(x,y) \) be the expression “\(xy=x \)”
 • The universe of discourse is \(N,Z,R,Q \) (but not \(Z^+ \))
 • Then the expression is:
 \[
 \exists x \ \forall y \ P(x,y) \land Q(x,y)
 \]
 Alternatively: \[
 \exists x \ \forall y \ (x+y=y) \land (xy = x)
 \]
Outline

• Introduction
• Terminology:
 – Propositional functions; arguments; arity; universe of discourse
• **Quantifiers**
 – Definition; using, mixing, **biding, negating them**
• Logic Programming (Prolog)
• Transcribing English to Logic
• More exercises
Binding Variables

• When a quantifier is used on a variable x, we say that x is bound
• If no quantifier is used on a variable in a predicate statement, the variable is called free
• Examples
 – In $\exists x \forall y P(x,y)$, both x and y are bound
 – In $\forall x P(x,y)$, x is bound but y is free
• A statement is called a well-formed formula, when all variables are properly quantified
Binding Variables: Scope

• The set of all variables bound by a common quantifier is called the scope of the quantifier.
• For example, in the expression $\exists x, y \forall z P(x, y, z, c)$
 – What is the scope of existential quantifier?
 – What is the scope of universal quantifier?
 – What are the bound variables?
 – What are the free variables?
 – Is the expression a well-formed formula?
Negation

- We can use negation with quantified expressions as we used them with propositions
- **Lemma**: Let $P(x)$ be a predicate. Then the followings hold:

\[
\neg (\forall x \ P(x)) \equiv \exists x \ \neg P(x)
\]

\[
\neg (\exists x \ P(x)) \equiv \forall x \ \neg P(x)
\]

- This is essentially the quantified version of De Morgan’s Law (when the universe of discourse is finite, this is exactly De Morgan’s Law)
Negation: Truth

Truth Values of Negated Quantifiers

<table>
<thead>
<tr>
<th>Statement</th>
<th>True when...</th>
<th>False when...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\neg \exists x \ P(x) \equiv \forall x \ \neg P(x)$</td>
<td>$P(x)$ is false for every x</td>
<td>There is an x for which $P(x)$ is true</td>
</tr>
<tr>
<td>$\neg \forall x \ P(x) \equiv \exists x \ \neg P(x)$</td>
<td>There is an x for which $P(x)$ is false</td>
<td>$P(x)$ is true for every x</td>
</tr>
</tbody>
</table>
Negation: Example

- Rewrite the following expression, pushing negation inward:
 \[\neg \forall x (\exists y \forall z P(x,y,z) \land \exists z \forall y P(x,y,z)) \]

- Answer:
 \[\exists x (\forall y \exists z \neg P(x,y,z) \lor \forall z \exists y \neg P(x,y,z)) \]
Outline

• Introduction
• Terminology:
 – Propositional functions; arguments; arity; universe of discourse
• Quantifiers
 – Definition; using, mixing, negating them
• Logic Programming (Prolog)
• Transcribing English to Logic
• More exercises
Prolog (1)

• Prolog (Programming in Logic)
 – is a programming language
 – based on (a restricted form of) Predicate Logic
 (a.k.a. Predicate Calculus and FOL)

• It was developed
 – by the logicians of the Artificial Intelligence community
 – for symbolic reasoning
• Prolog allows the users to express facts and rules
• Facts are propositional functions:
 – student(mia),
 – enrolled(mia,cse235),
 – instructor(patel,cse235), etc.
• Rules are implications with conjunctions:
 teaches(X,Y) :- instructor(X,Z), enrolled(Y,Z)
• Prolog answers queries such as:
 ?enrolled(mia,cse235)
 ?enrolled(X,cse476)
 ?teaches(X,mia)
 by binding variables and doing theorem proving (i.e., applying inference rules) as we will see in Section 1.5
English into Logic

• Logic is more precise than English
• Transcribing English into Logic and vice versa can be tricky
• When writing statements with quantifiers, usually the correct meaning is conveyed with the following combinations:

 Use ∀ with ⇒
 \[\forall x \text{ Lion}(x) \Rightarrow \text{Fierce}(x) \]
 Every lion is fierce
 \[\forall x \text{ Lion}(x) \land \text{Fierce}(x) \]
 Everyone is a lion and everyone is fierce

 Use ∃ with ∧
 \[\exists x \text{ Lion}(x) \land \text{Vegan}(x) \]
 Holds when you have at least one vegan lion
 \[\exists x \text{ Lion}(x) \Rightarrow \text{Vegan}(x) \]
 Holds when you have vegan people in the universe of discourse (even though there is no vegan lion in the universe of discourse)
More Exercises (1)

• Let $P(x,y)$ denote ‘x is a factor of y’ where
 – $x \in \{1,2,3,...\}$ and $y \in \{2,3,4,...\}$

• Let $Q(x,y)$ denote:
 – $\forall x, y \ [P(x,y) \rightarrow (x=y) \lor (x=1)]$

• Question: When is $Q(x,y)$ true?
Alert...

• Some students wonder if:
 \[\forall x,y \ P(x,y) \equiv (\forall x \ P(x,y)) \land (\forall y \ P(x,y)) \]

• This is certainly not true.
 – In the left-hand side, both \(x,y\) are bound.
 – In the right-hand side,
 • In the first predicate, \(x\) is bound and \(y\) is free
 • In the second predicate, \(y\) is bound and \(x\) is free
 • Thus, the left-hand side is a proposition, but the right-hand side is not. They cannot be equivalent

• All variables that occur in a propositional function must be bound to turn it into a proposition