Asymptotics

Section 3.2 of Rosen
Spring 2017
CSCE 235H Introduction to Discrete Structures (Honors)
Course web-page: cse.unl.edu/~cse235h
Questions: Piazza
Outline

• Introduction
• Asymptotic
 – Definitions (Big O, Omega, Theta), properties
• Proof techniques
 – 3 examples, trick for polynomials of degree 2,
 – Limit method (l’Hôpital Rule), 2 examples
• Limit Properties
• Efficiency classes
• Conclusions
Introduction (1)

• We are interested only in the Order of Growth of an algorithm’s complexity
• How well does the algorithm perform as the size of the input grows: $n \rightarrow \infty$
• We have seen how to mathematically evaluate the cost functions of algorithms with respect to
 – their input size n and
 – their elementary operations
• However, it suffices to simply measure a cost function’s asymptotic behavior
Introduction (2): Magnitude Graph

FIGURE 3 A Display of the Growth of Functions Commonly Used in Big-O Estimates.
Introduction (3)

• In practice, specific hardware, implementation, languages, etc. greatly affect how the algorithm behave

• Our goal is to study and analyze the behavior of algorithms in and of themselves, independently of such factors

• For example
 – An algorithm that executes its elementary operation $10n$ times is better than one that executes it $0.005n^2$ times
 – Also, algorithms that have running time n^2 and $2000n^2$ are considered asymptotically equivalent
Outline

• Introduction
• **Asymptotic**
 – Definitions (Big-O, Omega, Theta), properties
• Proof techniques
• Limit Properties
• Efficiency classes
• Conclusions
Big-O Definition

• **Definition**: Let f and g be two functions $f, g: \mathbb{N} \rightarrow \mathbb{R}^+$. We say that

$$f(n) \in O(g(n))$$

(read: f is Big-O of g) if there exists a constant $c \in \mathbb{R}^+$ and an $n_0 \in \mathbb{N}$ such that for every integer $n \geq n_0$ we have

$$f(n) \leq cg(n)$$

• Big-O is actually Omicron, but it suffices to write “O”

 Intuition: f is asymptotically less than or equal to g

• Big-O gives an asymptotic upper bound \mathcal{O}
Big-Omega Definition

- **Definition**: Let f and g be two functions $f,g: N \rightarrow R^+$. We say that

 \[f(n) \in \Omega(g(n)) \]

 (read: f is Big-Omega of g) if there exists a constant $c \in R^+$ and an $n_0 \in N$ such that for every integer $n \geq n_0$ we have

 \[f(n) \geq cg(n) \]

- **Intuition**: f is asymptotically greater than or equal to g

- **Big-Omega gives an asymptotic lower bound**
Big-Theta Definition

- **Definition**: Let \(f \) and \(g \) be two functions \(f, g: \mathbb{N} \rightarrow \mathbb{R}^+ \). We say that

\[
f(n) \in \Theta(g(n))
\]

(read: \(f \) is Big-Omega of \(g \)) if there exists a constant \(c_1, c_2 \in \mathbb{R}^+ \) and an \(n_0 \in \mathbb{N} \) such that for every integer \(n \geq n_0 \) we have

\[
c_1 g(n) \leq f(n) \leq c_2 g(n)
\]

- Intuition: \(f \) is asymptotically equal to \(g \)
- \(f \) is bounded above and below by \(g \)
- Big-Theta gives an asymptotic equivalence \(\Theta() \)
Asymptotic Properties (1)

- **Theorem**: For \(f_1(n) \in O(g_1(n)) \) and \(f_2(n) \in O(g_2(n)) \), we have
 \[
 f_1(n) + f_2(n) \in O(\max\{g_1(n), g_2(n)\})
 \]

- This property implies that we can ignore lower order terms. In particular, for any polynomial with degree \(k \) such as
 \[
 p(n) = an^k + bn^{k-1} + cn^{k-2} + ...,
 \]
 \[
 p(n) \in O(n^k)
 \]
 More accurately, \(p(n) \in \Theta(n^k) \)

- In addition, this theorem gives us a justification for ignoring constant coefficients. That is for any function \(f(n) \) and a positive constant \(c \)
 \[
 cf(n) \in \Theta(f(n))
 \]
Asymptotic Properties (2)

• Some obvious properties also follow from the definitions

• **Corollary**: For positive functions $f(n)$ and $g(n)$ the following hold:
 - $f(n) \in \Theta(g(n)) \iff f(n) \in O(g(n)) \land f(n) \in \Omega(g(n))$
 - $f(n) \in O(g(n)) \iff g(n) \in \Omega(f(n))$

The proof is obvious and left as an exercise
Outline

• Introduction
• Asymptotic
 – Definitions (big O, Omega, Theta), properties
• Proof techniques
 – 3 examples, trick for polynomials of degree 2,
 – Limit method (l’Hôpital Rule), 2 examples
• Limit Properties
• Efficiency classes
• Conclusions
Asymptotic Proof Techniques

• Proving an asymptotic relationship between two given function $f(n)$ and $g(n)$ can be done intuitively for most of the functions you will encounter; all polynomials for example
• However, this does not suffice as a formal proof
• To prove a relationship of the form $f(n) \in \Delta(g(n))$, where Δ is O, Ω, or Θ, can be done using the definitions, that is
 – Find a value for c (or c_1 and c_2)
 – Find a value for n_0

(But the above is not the only way.)
Asymptotic Proof Techniques: Example A

Example: Let $f(n) = 21n^2 + n$ and $g(n) = n^3$

- Our intuition should tell us that $f(n) \in O(g(n))$
- Simply using the definition confirms this:
 \[21n^2 + n \leq cn^3 \]
 holds for say $c=3$ and for all $n \geq n_0 = 8$
- So we found a pair $c=3$ and $n_0=8$ that satisfy the conditions required by the definition QED
- In fact, an infinite number of pairs can satisfy this equation
Asymptotic Proof Techniques: Example B (1)

- **Example**: Let \(f(n) = n^2 + n \) and \(g(n) = n^3 \). Find a tight bound of the form
 \[
 f(n) \in \Delta(g(n))
 \]
- Our intuition tells us that \(f(n) \in O(g(n)) \)
- Let’s prove it formally
Example B: Proof

• If $n \geq 1$ it is clear that
 1. $n \leq n^3$ and
 2. $n^2 \leq n^3$

• Therefore, we have, as 1. and 2.:

 \[n^2 + n \leq n^3 + n^3 = 2n^3 \]

• Thus, for $n_0 = 1$ and $c = 2$, by the definition of Big-O we have that $f(n) = n^2 + n \in O(g(n^3))$
Asymptotic Proof Techniques: Example C (1)

- **Example**: Let $f(n) = n^3 + 4n^2$ and $g(n) = n^2$. Find a tight bound of the form

 $$f(n) \in \Delta(g(n))$$

- Here, our intuition tells us that $f(n) \in \Omega(g(n))$

- Let’s prove it formally
Example C: Proof

• For $n \geq 1$, we have $n^2 \leq n^3$

• For $n \geq 0$, we have $n^3 \leq n^3 + 4n^2$

• Thus $n \geq 1$, we have $n^2 \leq n^3 \leq n^3 + 4n^2$

• Thus, by the definition of Big-Ω, for $n_0 = 1$ and $c = 1$ we have that $f(n) = n^3 + 4n^2 \in \Omega(g(n^2))$
Asymptotic Proof Techniques: Trick for polynomials of degree 2

- If you have a polynomial of degree 2 such as
 \[an^2 + bn + c \]
 you can prove that it is \(\Theta(n^2) \) using the following values

1. \(c_1 = a/4 \)
2. \(c_2 = 7a/4 \)
3. \(n_0 = 2 \max(|b|/a, \sqrt{|c|}/a) \)
Outline

• Introduction
• Asymptotic
 – Definitions (big O, Omega, Theta), properties
• **Proof techniques**
 – 3 examples, trick for polynomials of degree 2,
 – Limit method (l’Hôpital Rule), 2 examples
• Limit Properties
• Efficiency classes
• Conclusions
Limit Method: Motivation

- Now try this one:
 \[f(n) = n^{50} + 12n^3 \log^4 n - 1243n^{12} + 245n^6 \log n + 12 \log^3 n - \log n \]
 \[g(n) = 12n^{50} + 24 \log^{14} n^{43} - \log n/n^5 + 12 \]

- Using the formal definitions can be very tedious especially one has very complex functions

- It is much better to use the Limit Method, which uses concepts from Calculus
Limit Method: The Process

• Say we have functions \(f(n) \) and \(g(n) \). We set up a limit quotient between \(f \) and \(g \) as follows

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases}
0 & \text{Then } f(n) \in O(g(n)) \\
\infty & \text{Then } f(n) \in \Omega(g(n)) \\
c > 0 & \text{Then } f(n) \in \Theta(g(n))
\end{cases}
\]

• The above can be proven using calculus, but for our purposes, the limit method is sufficient for showing asymptotic inclusions

• Always try to look for algebraic simplifications first

• If \(f \) and \(g \) both diverge or converge on zero or infinity, then you need to apply the l’Hôpital Rule
(Guillaume de) L’Hôpital Rule

• Theorem (L’Hôpital Rule):
 – Let \(f \) and \(g \) be two functions,
 – if the limit between the quotient \(f(n)/g(n) \) exists,
 – Then, it is equal to the limit of the derivative of
 the numerator and the denominator

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}
\]
Useful Identities & Derivatives

• Some useful derivatives that you should memorize
 – \((n^k)' = k \, n^{k-1}\)
 – \((\log_b (n))' = 1/(n \, \ln(b))\)
 – \((f_1(n)f_2(n))' = f_1' (n)f_2(n)+f_1(n)f_2' (n) \quad (product \ rule)\)
 – \((\log_b(f(n))' = f' (n)/(f(n) \, \ln b)\)
 – \((c^n)' = \ln(c)c^n \quad \leftarrow \text{careful!}\)

• Log identities
 – Change of base formula: \(\log_b(n) = \log_c(n)/\log_c(b)\)
 – \(\log(n^k) = k \log(n)\)
 – \(\log(ab) = \log(a) + \log(b)\)
L’Hôpital Rule: Justification (1)

• Why do we have to use L’Hôpital’s Rule?
• Consider the following function
 \[f(x) = \frac{\sin x}{x} \]
 • Clearly \(\sin 0 = 0 \). So you may say that when \(x \to 0 \), \(f(x) \to 0 \)
 • However, the denominator is also \(\to 0 \), so you may say that \(f(x) \to \infty \)
• Both are wrong
L’Hôpital Rule: Justification (2)

- Observe the graph of $f(x) = (\sin x)/x = \text{sinc } x$
L’Hôpital Rule: Justification (3)

- Clearly, though \(f(x) \) is undefined at \(x=0 \), the limit still exists.
- Applying the L’Hôpital Rule gives us the correct answer:
 \[
 \lim_{x \to 0} \left(\frac{\sin x}{x} \right) = \lim_{x \to 0} \left(\frac{\sin x}{x}' / x' \right) = \frac{\cos x}{1} = 1
 \]
Limit Method: Example 1

• Example: Let $f(n) = 2^n$, $g(n) = 3^n$. Determine a tight inclusion of the form $f(n) \in \Delta(g(n))$

• What is your intuition in this case? Which function grows quicker?
Limit Method: Example 1—Proof A

• Proof using limits
• We set up our limit:
 \[\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{2^n}{3^n} \]
• Using L’Hôpital Rule gets you no where
 \[\lim_{n \to \infty} \frac{2^n}{3^n} = \lim_{n \to \infty} \frac{(2^n)'}{(3^n)'} = \lim_{n \to \infty} \frac{(\ln 2)(2^n)}{(\ln 3)(3^n)} \]
• Both the numerator and denominator still diverge. We’ll have to use an algebraic simplification
Limit Method: Example 1—Proof B

• Using algebra

\[\lim_{n \to \infty} \frac{2^n}{3^n} = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n \]

• Now we use the following Theorem w/o proof

\[\lim_{n \to \infty} \alpha^n = \begin{cases}
0 & \text{if } \alpha < 1 \\
1 & \text{if } \alpha = 1 \\
\infty & \text{if } \alpha > 1
\end{cases} \]

• Therefore we conclude that the \(\lim_{n \to \infty} \left(\frac{2}{3}\right)^n \) converges to zero thus \(2^n \in O(3^n) \)
Limit Method: Example 2 (1)

• Example: Let $f(n) = \log_2 n$, $g(n) = \log_3 n^2$. Determine a tight inclusion of the form $f(n) \in \Delta(g(n))$.

• What is your intuition in this case?
Limit Method: Example 2 (2)

• We prove using limits
• We set up out limit
 \[\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\log_2 n}{\log_3 n^2} = \lim_{n \to \infty} \frac{\log_2 n}{2\log_3 n} \]
• Here we use the change of base formula for logarithms: \(\log_x n = \frac{\log_y n}{\log_y x} \)
• Thus: \(\log_3 n = \frac{\log_2 n}{\log_2 3} \)
Limit Method: Example 2 (3)

• Computing our limit:

\[\lim_{n \to \infty} \frac{\log_2 n}{2 \log_3 n} = \lim_{n \to \infty} \frac{\log_2 n \log_2 3}{2 \log_2 n} \]

\[= \lim_{n \to \infty} \frac{\log_2 3}{2} \]

\[= \frac{\log_2 3}{2} \approx 0.7924, \text{ which is a positive constant} \]

• So we conclude that \(f(n) \in \Theta(g(n)) \)
Outline

• Introduction
• Asymptotic
 – Definitions (big O, Omega, Theta), properties
• Proof techniques
 – 3 examples, trick for polynomials of degree 2,
 – Limit method (l’Hôpital Rule), 2 examples
• Limit Properties
• Efficiency classes
• Conclusions
Limit Properties

• A useful property of limits is that the composition of functions is preserved

• Lemma: For the composition \(\circ \) of addition, subtraction, multiplication and division, if the limits exist (that is, they converge), then

\[
\lim_{n \to \infty} f_1(n) \circ \lim_{n \to \infty} f_2(n) = \lim_{n \to \infty} (f_1(n) \circ f_2(n))
\]
Complexity of Algorithms—Table 1, page 226

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>$O(\log (n))$</td>
</tr>
<tr>
<td>Linear</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Polylogarithmic</td>
<td>$O(\log^k (n))$</td>
</tr>
<tr>
<td>Quadratic</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Cubic</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>Polynominal</td>
<td>$O(n^k)$ for any $k>0$</td>
</tr>
<tr>
<td>Exponential</td>
<td>$O(k^n)$, where $k>1$</td>
</tr>
<tr>
<td>Factorial</td>
<td>$O(n!)$</td>
</tr>
</tbody>
</table>
Conclusions

• Evaluating asymptotics is easy, but remember:
 – *Always* look for algebraic simplifications
 – You must *always* give a rigorous proof
 – Using the limit method is (almost) always the best
 – Use L’Hôpital Rule if need be
 – Give as simple *and tight* expressions as possible
Summary

• Introduction
• Asymptotic
 – Definitions (big O, Omega, Theta), properties
• Proof techniques
 – 3 examples, trick for polynomials of degree 2,
 – Limit method (l’Hôpital Rule), 2 examples
• Limit Properties
• Efficiency classes
• Conclusions