Algorithms: An Introduction

‘Algorithm’ is a distortion of Al-Khwarizmi, a Persian mathematician

Section 3.1 of Rosen
Spring 2017
CSCE 235 Introduction to Discrete Structures (Honors)
Course web-page: cse.unl.edu/~cse235h
Questions: Piazza
Outline

• Introduction & definition
• Algorithms categories & types
• Pseudo-code
• Designing an algorithm
 – Example: MAX
• Greedy Algorithms
 – CHANGE
Computer Science is About Problem Solving

- A Problem is specified by
 1. **The givens** (a formulation)
 - A set of objects
 - Relations between them
 2. **The query**
 - The information one wants to extract from the formulation, the question to answer

<table>
<thead>
<tr>
<th>Real World</th>
<th><-></th>
<th>Computing World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objects</td>
<td></td>
<td>data Structures, ADTs, Classes</td>
</tr>
<tr>
<td>Relations</td>
<td></td>
<td>relations & functions (e.g., predicates)</td>
</tr>
<tr>
<td>Actions</td>
<td></td>
<td>algorithms: a sequence of instructions</td>
</tr>
</tbody>
</table>

- **An algorithm** is a method or procedure that solves instances of a problem
Algorithms: Formal Definition

• **Definition**: An algorithm is a sequence of unambiguous instructions for solving a problem.

• Properties of an algorithm
 – **Finite**: the algorithm must eventually terminate
 – **Complete**: Always give a solution when one exists
 – **Correct (sound)**: Always give a correct solution

• For an algorithm to be an acceptable solution to a problem, it must also be **effective**. That is, it must give a solution in a ‘reasonable’ amount of time

• **Efficient**= runs in polynomial time. Thus, **effective**≠ **efficient**

• There can be many algorithms to solve the same problem
Outline

- Introduction & definition
- **Algorithms categories & types**
- Pseudo-code
- Designing an algorithm
 - Example: MAX
- Greedy Algorithms
 - CHANGE
Algorithms: General Techniques

• There are many broad categories of algorithms
 – Deterministic versus Randomized (e.g., Monte Carlo)
 – Exact versus Approximation
 – Sequential/serial versus Parallel, etc.

• Some general styles of algorithms include
 – Brute force (enumerative techniques, exhaustive search)
 – Divide & Conquer
 – Transform & Conquer (reformulation)
 – Greedy Techniques
Outline

• Introduction & definition
• Algorithms categories & types
• **Pseudo-code**
 • Designing an algorithm
 – Example: MAX
• Greedy Algorithms
 – **CHANGE**
Good Pseudo-Code: Example

INTERSECTION

Input: Two finite sets A, B

Output: A finite set C such that $C = A \cap B$

1. $C \leftarrow \emptyset$
2. If $|A| > |B|$ Then $\text{SWAP}(A,B)$
3. For every $x \in A$ Do
4. If $x \in B$ Then $C \leftarrow C \cup \{x\}$
5. End
6. Return C
Algorithms: Pseudo-Code

• Algorithms are usually presented using \textit{pseudo-code}

• Bad pseudo-code
 – Gives too many details or
 – Is too implementation specific (i.e., actual C++ or Java code or giving every step of a sub-process such as set union)

• Good pseudo-code
 – Is a balance between clarity and detail
 – Abstracts the algorithm
 – Makes good use of mathematical notation
 – Is easy to read and
 – Facilitates implementation (reproducible, does not hide away important information)
Writing Pseudo-Code: Advice

- Input/output must properly defined
- All your variables must be properly initialized, introduced
- Variables are instantiated, assigned using \leftarrow
- All ‘commands’ (while, if, repeat, begin, end) boldface \textbf{\textcolor{black}{\textsc{For} \textit{i} \leftarrow 1 \text{ to } n \text{ Do}}}
- All functions in small caps \textsc{\textup{Union}}(s,t) \textcolor{black}{\textsc{\textbf{sc}}}
- All constants in courier: $\texttt{pi} \leftarrow 3.14$ \textcolor{black}{\texttt{tt}}
- All variables in italic: \textit{temperature} $\leftarrow 78$ \textcolor{black}{\textit{mathit{}}}
- LaTeX: Several algorithm formatting packages exist on WWW
Outline

• Introduction & definition
• Algorithms categories & types
• Pseudo-code
• Designing an algorithm
 – Example: **Max**
• Greedy Algorithms
 – **Change**
Designing an Algorithm

• A general approach to designing algorithms is as follows
 – Understanding the problem, **assess its difficulty**
 – Choose an approach (e.g., exact/approximate, deterministic/probabilistic)
 – (Choose appropriate data structures)
 – Choose a strategy
 – Prove
 1. Termination
 2. Completeness
 3. Correctness/soundness
 – Evaluate complexity
 – Implement and test it
 – Compare to other known approach and algorithms
When designing an algorithm, we usually give a formal statement about the problem to solve.

Problem
- **Given**: a set $A=\{a_1,a_2,...,a_n\}$ of integers
- **Question**: find the index i of the maximum integer a_i

A straightforward idea is
- Simply store an initial maximum, say a_1
- Compare the stored maximum to every other integer in A
- Update the stored maximum if a new maximum is ever encountered.
Pseudo-code of Max

MAX

Input: A finite set $A=\{a_1, a_2, \ldots, a_n\}$ of integers

Output: The largest element in the set

1. temp ← a_1
2. For $i = 2$ to n Do
3. If $a_i > temp$
4. Then temp ← a_i
5. End
6. End
7. Return temp
Algorithms: Other Examples

• Check Bubble Sort and Insertion Sort in your textbooks
• ... which you should have seen ad nauseum in CSE 155 and CSE 156
• And which you will see again in CSE 310
• Let us know if you have any questions
Outline

• Introduction & definition
• Algorithms categories & types
• Pseudo-code
• Designing an algorithm
 – Example: MAX
• Greedy Algorithms
 – CHANGE
Greedy Algorithms

• In many problems, we wish to not only find a solution, but to find the best or optimal solution.
• A simple technique that works for some optimization problems is called the greedy technique.
• As the name suggests, we solve a problem by being greedy.
 – Choose what appears now to be the best choice.
 – Choose the most immediate best solution (i.e., think locally).
• Greedy algorithms.
 – Work well on some (simple) problems.
 – Usually they are not guaranteed to produce the best globally optimal solution.
Change-Making Problem

• We want to give change to a customer but we want to minimize the number of total coins we give them

• Problem
 – **Given**: An integer n and a set of coin denominations $(c_1, c_2, ..., c_r)$ with $c_1 > c_2 > ... > c_r$
 – **Query**: Find a set of coins $d_1, d_2, ..., d_k$ such that
 $$\sum_{i=1}^{k} d_i = n$$ and k is minimized
Greedy Algorithm: CHANGE

CHANGE

Input: An integer \(n \) and a set of coin denominations \(\{c_1, c_2, \ldots, c_r\} \) with \(c_1 > c_2 > \ldots > c_r \)

Output: A set of coins \(d_1, d_2, \ldots, d_r \) such that \(\sum_{i=1}^{r} d_i c_i = n \) and \(\sum_{i=1}^{r} d_i \) is minimized

1. For \(i = 1 \) to \(r \) Do
2. \(d_i \leftarrow 0 \)
3. While \(n \geq c_i \) Do
4. \(d_i \leftarrow d_i + 1 \)
5. \(n \leftarrow n - c_i \)
6. End
7. Return \(\{d_i\} \)
CHANGE: Analysis (1)

• Will the algorithm **always** produce an optimal answer?

• Example
 – Consider a coinage system where $c_1=20$, $c_2=15$, $c_3=7$, $c_4=1$
 – We want to give 22 ‘cents’ in change

• What is the output of the algorithm?

• Is it optimal?

• It is not optimal because it would give us two c_4 and one c_1 (3 coins). The optimal change is one c_2 and one c_3 (2 coins)
CHANGE: Analysis (2)

• What about the US currency system: is the algorithm correct in this case?
• Yes, in fact it is. We can prove it by contradiction.
• For simplicity, let us consider
 \[c_1=25, \ c_2=10, \ c_3=5, \ c_4=1 \]
Optimality of \textit{Change} (1)

- Let $C=\{d_1, d_2, \ldots, d_k\}$ be the solution given by the greedy algorithm for some integer n.
- By way of contradiction, assume there is a better solution $C'=\{d_1', d_2', \ldots, d_l'\}$ with $l<k$.
- Consider the case of quarters. Say there are q quarters in C and q' in C'.
 1. If $q'>q$, the greedy algorithm would have used q' by construction. Thus, it is impossible that the greedy uses $q<q'$.
 2. Since the greedy algorithms uses as many quarters as possible, $n=q(25)+r$, where $r<25$. If $q'<q$, then, $n=q'(25)+r'$ where $r' \geq 25$. C' will have to use more smaller coins to make up for the large r'. Thus C' is not the optimal solution.
 3. If $q=q'$, then we continue the argument on the smaller denomination (e.g., dimes). Eventually, we reach a contradiction.

- Thus, $C=C'$ is our optimal solution.
Optimality of CHANGE (2)

• But, how about the previous counterexample? Why (and where) does this proof?
• We need the following lemma:

If \(n \) is a positive integer, then \(n \) cents in change using quarters, dimes, nickels, and pennies using the fewest coins possible:

 – Has at most two dimes
 – Has at most one nickel
 – Has at most four pennies, and
 – Cannot have two dimes and a nickel

The amount of change in dimes, nickels, and pennies cannot exceed 24 cents
Greedy Algorithm: Another Example

- Check the problem of Scenario I, page 25 in the slides IntroductiontoCSE235.ppt
- We discussed then (remember?) a greedy algorithm for accommodating the maximum number of customers. The algorithm
 - terminates, is complete, sound, and satisfies the maximum number of customers (finds an optimal solution)
 - runs in time linear in the number of customers
Summary

• Introduction & definition
• Algorithms categories & types
• Pseudo-code
• Designing an algorithm
 – Example: MAX
• Greedy Algorithms
 – Example: CHANGE