
Simulating and Testing Mobile Wireless Sensor Networks

David J. Anthony †, William P. Bennett †, Mehmet C. Vuran †, Matthew B. Dwyer †,
Sebastian Elbaum †, Felipe Chavez-Ramirez ‡
†Department of Computer Science and Engineering
University of Nebraska-Lincoln, Lincoln, NE 68588

‡Whooping Crane Maintenance Trust, Wood River, NE 68883
†{danthony,wbennett,mcvuran,dwyer,elbaum}@cse.unl.edu

‡fchavez@whoopingcrane.org

ABSTRACT
Developing applications for wireless sensor networks (WSNs)
can provide many challenges. Environmental conditions have
a large impact on the behavior of an application, but it may
not be feasible to replicate the conditions of the deploy-
ment environment while creating the application. Further-
more, long-term deployment of monitoring applications re-
quire extensive pre-deployment analysis of such applications
since the sensors cannot be accessed after their deployment.
Through a combination of simulation and software engineer-
ing practices, it is possible to rigorously test and validate the
software for WSNs. In this paper, several methods for simu-
lating distributed mobile WSNs and testing the software are
provided. These methods are used in the development of a
WSN that was deployed to track Whooping Cranes during
their year long migration.

Categories and Subject Descriptors
C.2.1 [Computer-Communications Networks]: Network
Architecture and Design—Wireless Communications; D.2.4
[Software Engineering]: Software/Program Verification—
Validation

General Terms
Experimentation, Performance, Verification

Keywords
wireless sensor networks, testing, reliability

1. INTRODUCTION
Developing long-term applications for wireless sensor net-

works (WSNs) poses several challenges. With the improve-
ment of microcontrollers for WSN motes, it is possible to de-
velop sophisticated applications with several operation states
within limited memory space. Moreover, the integration of
higher complexity sensor modules such as GPS units further
complicates the energy consumption profile of a sensor mote,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSWiM’10, October 17–21, 2010, Bodrum, Turkey.
Copyright 2010 ACM 978-1-4503-0274-6/10/10 ...$10.00.

which has traditionally been dominated by communication.
Hence, evaluation and testing of the whole application code
is required rather than communication stack-oriented solu-
tions [2, 16].

Even when a fault is detected, it can be difficult to repro-
duce and debug. The long-term deployment of such applica-
tions may make accessing or communicating with the motes
a challenge, such as in mobile, underwater, or underground
sensor networks [4, 5]. The motes may exhibit faults from
physical damage due to exposure to outdoor elements. The
dynamic communication channels present in deployed WSNs
are difficult to model and can lead to errors that are diffi-
cult to reproduce. These challenges call for simulation and
validation tools that can (1) capture the complex interac-
tions between the environment, the mote hardware, and its
software, (2) provide valuable information about the perfor-
mance metrics of interest, and (3) provide means to validate
the software.

While the mentioned challenges apply to a large class of
emerging WSN applications, in this paper, we focus on sim-
ulation and testing mobile wireless sensor networks. More
specifically, we discuss our solutions for the development
of an application to track migratory birds, i.e., Whooping
Cranes, through their annual migration. Whooping Cranes
are an endangered species of bird that are indigenous to
North America. Collecting information on migration paths
and environmental influences is of high importance to ecol-
ogists working to conserve the remaining bird population.
To gather this information, motes are attached to the birds
to collect sensor readings and transmit them to strategically
placed information sinks.

Developing the Whooping Crane tracking program high-
lights several of the issues in developing WSN applications.
The cranes are inaccessible except for brief windows in Au-
gust and December. Therefore, the motes must be able to
run unattended for almost a full year. In this time, the motes
must cope with increasingly limited power supply. During
their migration, the birds travel from Texas in the United
States to Alberta, Canada. During this migration, part of
the population dies at unpredictables times and locations,
which means motes may never be recovered. The power
constraints and the amount of data to be collected make the
application complex and difficult to debug.

In this paper, we address several challenges for the devel-
opment of the Whooping Crane project using a combination
of simulation and run-time monitoring. The run-time moni-
toring is implemented by weaving in debugging code at com-
pile time and monitoring the application state from within a
simulated deployment. The use of a simulated environment

49

allows for accelerated testing that exposes bugs that would
otherwise manifest slowly.
The contributions of this paper are as follows: First, a sim-

ulation platform is developed to model mobility of whoop-
ing cranes and their effects on mote hardware. Second, a
method and assessment of integrating run-time monitoring
into the WSN development process is presented. Finally,
comprehensive evaluations are presented to assess the effects
of run-time monitoring solutions on simulation speed, com-
plexity, and development costs compared to post-processing
solutions. To the best of our knowledge, this is the first
time run-time monitoring tools have been used in conjunc-
tion with mobile wireless sensor network applications.
The remainder of this paper is organized as follows: In

Section 2, related work on mobile WSNs and verification
techniques for WSNs are presented in detail. In Section 3,
the motivation and background of the project is presented.
The simulation and testing framework is described in Sec-
tion 4. In Section 5, the empirical and simulation results
are presented. Finally, conclusions and future work are dis-
cussed in Section 6.

2. RELATED WORK
Several approaches have been taken to develop mobile

WSNs and testing and validating the correct operation of
embedded systems and wireless sensor networks. In the fol-
lowing, we discuss these existing approaches.

2.1 Mobile WSNs
The recent success of WSN applications has motivated

their usage in monitoring animals. Accordingly, WSNs that
are characterized by the mobility of these animals have been
developed [27]. Since the sensor motes are attached to these
animals for a long duration, developing self-sustained solu-
tions is of importance. As an example, within the Dairy
Industry, animal lameness poses a large concern. To moni-
tor and detect lameness in cattle, in [9], embedded sensors
are implemented to monitor and record the lying patterns
of dairy cows to benefit the study of lameness. An embed-
ded accelerometer is used to measure the orientation of the
hind leg of a dairy animal based on the relative direction
of the gravitational field. A microcontroller with nano-watt
power technology facilitates sensor sampling, data recording
and time stamping, and interfacing with external hardware
systems [9]. However, approaches to validate the developed
application have not been reported.
In [8], a similar prediction system has been developed with

herding cattle. A virtual fencing system is developed to min-
imize the cost of building fences to manage the grazing of
cattle that can cost up to $20,000 per km. All or some of the
cows are outfitted with the system, which has position and
orientation sensors as well as sound and shock systems to
provide feedback to the cattle. Accordingly, virtual fences
can be created, which can be easily moved depending on the
conditions of the fields. A directional sound system is used
to indicate when a cow is approaching the virtual fence. If
the animal does not respond to the sound cue, a small di-
rectional shock is applied. To do this, several algorithms are
developed to model and predict the motions and reactions of
the cattle. Additionally, by identifying leaders of the herd,
the motes are placed only on a small percentage of the total
herd. While the application results in a mobile WSN, the
movements of the cows are limited in terms of both time
and overall area.
In this paper, we are interested in developing long-term

monitoring techniques for migratory birds using sensor motes.
The resulting network is a highly dynamic and mobile net-
work. Since the sensor motes cannot be accessed for at least
8-9 months after deployment, effective evaluation and vali-
dation techniques are necessary to measure the performance
and robustness of the solutions.

2.2 Testing and Verifying WSNs
Even though testing and validating WSNs is in its infancy,

recently, there have been several approaches developed. Sev-
eral attempts have been made to run the mote software in-
side of a simulator and create emulated environmental phe-
nomena to test the application [25]. In [20], static code
analysis is utilized to guarantee program correctness. Run-
time monitoring of motes has been attempted by running
mote software inside of a simulator or on a mote [18, 23, 21,
17]. These approaches suffered from long execution times
from exhaustively checking the program execution space, or
missed potential faults by simulating an ideal mote environ-
ment.

To test the Crane Sensing application, two testing ap-
proaches are taken in this paper: (1) Log file analysis and (2)
Aspect-oriented programming. Log file analysis separates
program execution processes from fault detection methods.
In this testing method, the program is modified to output
data to some storage mechanism so that it can be analyzed
by a separate process without interrupting the execution of
the original program [6]. The analyzer program is a state
machine that uses the outputs of the original application as
inputs. The analyzer program decides that the application
was correct if its state machine accepts the input, otherwise
it rejects it.

As shown in [6], log file analysis can be a powerful tool to
test software against formal specifications, but it does have
some drawbacks. Developing the analyzer and guaranteeing
its correctness can be difficult. The size of the of generated
log files can also pose problems as shown in [26], where even
relatively simple Java programs could produce logs contain-
ing several million lines.

Aspect oriented programming is designed to aid in the de-
velopment and testing of programs by making it easier to ad-
dress the cross-cutting concerns of a program. Cross-cutting
concerns are properties of a system that are developed sepa-
rately from each other, but must work together correctly in
order for a program to function correctly [19]. To deal with
these problems, functions called “aspects” are written sepa-
rately from the target application. These aspects can moni-
tor or even change the program behavior where cross-cutting
concerns arise. Areas of code involved with the cross-cutting
concerns are specified by a developer and then the aspects
are “weaved” into the program at compile or run-time at
these locations.

The AspeCt-oriented C Compiler (ACC) [13] brings as-
pect oriented programming support to the C language. ACC
allows for compile-time weaving of aspects to monitor prop-
erties of the system at run-time. These aspects can cleanly
capture many complex system properties. Unfortunately,
run-time monitoring has been shown to inflict a severe per-
formance penalty as demonstrated by [7]. To overcome this,
several approaches have been proposed that reduce the num-
ber of states that must be analyzed by the run-time monitors
[11, 18]. ACC has been used to build our mote application
for a simulator to conduct run-time monitoring and prop-
erty checking. The simulator uses data derived from prior
crane tracking experiments to provide a realistic model and

50

focus the debugging efforts on likely scenarios. To the best
of our knowledge, this is the first effort to integrate ACC
with WSN application development.
The evaluation and validation techniques generally rely

on extensive simulation platforms. In this paper, we utilize
TOSSIM, which simulates WSNs comprised of motes run-
ning TinyOS [16]. It is possible to run applications devel-
oped for TinyOS inside of TOSSIM with few or no modifica-
tions. TOSSIM simulates the network performance using a
discrete event model. It offers high performance by compil-
ing mote applications directly to the simulator’s hardware
platform. It further improves performance by omitting some
underlying hardware details and behaviors.
In the crane tracking application, the primary interest is

testing the higher level functionality of the system, so los-
ing some information on the lower layers of the radio and
hardware platform is acceptable. To this end, TOSSIM al-
lows for the rapid simulation of many different deployment
scenarios.

3. MOTIVATION AND BACKGROUND
In this section, we provide a background on the whoop-

ing crane migration and discuss the motivation for utilizing
mobile WSNs to track them.

3.1 Whooping Cranes
Whooping Cranes are an endangered bird species that is

indigenous to North America. The population of the cranes
has declined to approximately 300, primarily due to habitat
loss. The only remaining natural nesting grounds are the
Aransas National Wildlife Refuge in Texas and the Wood
Buffalo National Park in Alberta. The birds migrate from
Texas to Alberta beginning in March, and make their re-
turn trip beginning in October. This migration process is of
extreme interest to ecologists working to preserve the crane
population because it accounts for a significant percentage
of the bird deaths every year.
The environmental factors contributing to the bird deaths

are largely unknown. The migration is an approximately
4,000 kilometer journey that stretches from southern Texas
in the United States to Alberta, Canada. This large area
means discovering where a crane has died is a rare event.
Tracking the birds is difficult, not only because of the size of
the geographic area, but because of the bird flight character-
istics. The cranes tend to travel in sets of two or three and
rarely congregate together at intermediate stopping points.
Observing large numbers of the birds thus requires a large set
of resources. The environmental factors that influence their
decisions on nesting grounds, flight durations, and flight
paths are not well understood.
In addition to migration environmental data, ecologists

desire information on flight behaviors. It is known that the
birds use a very economical method of flying that involves
riding thermal updrafts in large circular motions to gain
altitude, and then glide for several kilometers in the desired
direction of travel until another updraft is encountered [14].
The cranes fly during the day and may rest for several days
or weeks at intermediate locations. Most of the resting areas
are opportunistically chosen, but there are some areas that
are visited every year by groups of cranes.

3.2 Tracking Whooping Cranes
Prior efforts have been made to track the cranes and

provide observations on their behavior and environmental
conditions. The original efforts focused on attaching radio

transmitters with a range of several kilometers to cranes
and then following them in an airplane over the course of
a migration [14]. Empirical observations were made on the
environmental conditions and flight behaviors. More recent
efforts have placed a tracking unit with a satellite transmit-
ter and GPS receiver on the cranes. This allows for a more
accurate and continuous set of observations to be made.

These tracking methods have significant drawbacks. Fol-
lowing the birds in an airplane is time-consuming and too
expensive for large scale tracking efforts. The collected ob-
servations sometimes lack precision, which limit their scien-
tific value. Also, the trackers sometimes lose contact with
the birds for hours or days, which produce large holes in the
dataset [14]. The use of satellite transmitters and GPS pro-
vides for better quality data, but these devices are too bulky
and expensive to be deployed on a large scale. The current
automated recorders are limited to providing information
gathered from the GPS, and have no additional sensors for
measuring other environmental data.

3.3 Mobile WSNs for Whooping Crane Mon-
itoring

Wireless sensor networks (WSNs) have been proposed to
overcome the shortcomings in these data collection meth-
ods. WSNs can be customized with sensor packages tailored
to the needs of the ecologists. By foregoing the use of ex-
pensive satellite transmitters in favor of shorter range, more
commonly available components, the cost of the tracking de-
vices can be brought down to more reasonable levels. The
use of low power network solutions in the WSNs can extend
the lifetime of the recording devices and enable the motes
to communicate with each other, which leads to greater re-
dundancy and robustness.

Using WSNs for monitoring Whooping Cranes faces three
primary challenges. First, the average adult male Whooping
Crane weighs around 7 kg, which means the motes must be
extremely light weight. These weight restrictions preclude
the use of any energy recovery mechanisms in the mote. Sec-
ond, because the cranes travel in such a spread out manner,
the communication opportunities between the cranes during
the migration are limited. Finally, there are limited oppor-
tunities to retrieve information from the cranes. The cranes
are only physically accessible in Texas and there is a small
window of opportunity to establish radio contact with the
birds in Canada.

3.3.1 Hardware
The first version of the sensor platform for tracking the

cranes is constructed from off-the-shelf components from
Crossbow Technologies. The mote consists of two main com-
ponents. The first is an IRIS mote which contains the pro-
cessor, radio, and flash memory. The second is a MTS-420
sensor board that contains the sensors and external GPS
antenna.

The IRIS mote is a communication and processing module
designed for wireless sensor networks. It is built around an
Atmel ATmega1281 microcontroller with an IEEE 802.15.4
radio for networking. It offers a low 8µA power consumption
in sleep mode. The IRIS contains flash memory for storing
sensor measurements and an expansion port for connecting
to a sensor board that contains a variety of sensors [1].

The MTS-420 sensor board is mated to the IRIS to provide
the desired sensor data. The MTS-420 contains the sensors
used to gather information on the cranes. These sensors are
a GPS receiver, temperature, humidity, barometric pressure,

51

���������

	�
��

��������	
���������

���������	

	��

	�
��

������������������

��

������

������

������������������

������������������

���

��	��

�	���� !

�"�#� $

%&#
� '

(��)�
��*�	&+�)�

�)"�,�

 $

�&�,

�-

��.,�

 /

�)�,

 /

Figure 1: Migration process

and light sensor [1]. The use of these sensors allows ecolo-
gists to track the flight patterns of the cranes. Additionally,
information on the flight characteristics and environmental
conditions influencing migration patterns can be gathered
through this sensor board.

3.3.2 Software
The crane tracking application is a non-trivial application

that has a control flow that is dependent on both temporal
and power constraints. The application has several operat-
ing modes that correspond to different periods in the crane’s
lifecycle. The modes utilize different resources to collect in-
formation that is of interest to ecologists. The different oper-
ating modes exhibit complex behaviors as they manage sam-
pling different sensors and handling the system’s resources
appropriately.

At the highest level, the application changes operating
modes depending on the stage of the migration the crane
is in. The state diagram of the crane sensing application is
shown in Fig. 1. The dates that determine the transitions
between the states were developed by using observational
data collected by ecologists during prior migrations. Ini-
tially, the motes start at a high sampling rate mode that
takes GPS fixes every day and samples the other sensors at
regular intervals throughout the day. The sensor stays in
this mode during the time in which the cranes have been
observed migration from Texas to Canada. Once enough
time passes that the birds are assumed to be at their final
roosting ground, they go into a power saving mode where
the GPS is infrequently sampled. The motes exit this state
midway through their Canada stay for a chance to communi-
cate with ecologists that are conducting surveys of the nest-
ing grounds. After this communication window ends, the
motes once again enter deep sleep. The motes once again
enter a high sampling rate state when they could potentially
begin migrating and finish in a communicating state when
they should be at their nesting grounds in Texas where ecol-
ogists can once again reach them. The transitions between
the states and the operation of the sensors depends not only
on time, but the power available to the mote.
The tracking program for the motes was built using Mote-

Works, which is a derivative of TinyOS 1.1 created by Cross-

Radio Non−GPS Sensors GPS
0

20

40

60

80

100

C
u

rr
e

n
t

U
s
e

d
 (

m
A

)

Figure 2: Power consumption of different mote com-
ponents

bow Technology [1]. For the purposes of simulating the code
under TOSSIM, it was recompiled using the TinyOS 1.2
branch of the operating system because MoteWorks does
not support TOSSIM.

The complexity of the crane tracking application adds to
the difficulties in testing it. The mote utilizes many different
sensors and components for monitoring the state of the envi-
ronment that consume a great deal of power. In Fig. 2, the
power consumption of three main components in the sensor
board is shown in terms of the current used in mA. It can
be observed that non-GPS sensors consume power equiv-
alent to processing power and communication consumes 4
times higher power than processing. This tradeoff between
communication and computation is well known [22] and is
exploited for in-network processing solutions. However, it
can also be observed in Fig. 2 that high profile sensors such
as a GPS sensor, which is essential for this particular sensing
application, consumes significantly higher power compared
to other components. Furthermore, GPS operation gener-
ally lasts in the orders of seconds compared to milliseconds
that is required for a typical communication. These signif-
icant differences result in a non-trivial energy consumption
profile and requires the whole application code to be evalu-
ated instead of only the communication stack. To improve
energy efficiency, these components must be turned off when
not in use or the motes will not be able to last for the entirety
of the crane migration cycle.

4. SIMULATION AND TESTING PLATFORM
In this section, the whooping crane monitoring network

(WCMN) simulation platform is explained in detail. First,
the simulation platform and its components are explained in
Section 4.1. This platform consists of several modules that
model the migration path, GPS sensor performance, and
mote hardware. These tools are used by running the ap-
plication inside of TOSSIM. The execution of the TOSSIM
simulator was guided by simulated sensor inputs created by
another module that is based on prior tracking data. In Sec-
tion 4.2, two validation approaches are described for testing
and validating the WCMN software, where both log file anal-
ysis and run-time monitoring are utilized.

4.1 Simulation Platform
As discussed in [18], it is not feasible to exhaustively visit

all possible states a WSN may be in because of the size of
space makes run times prohibitively long. To best utilize the

52

CONVERSION
KML

SOCKET

ENTITY-DUMP

DAT-
FILE

RANDOM

Whooper and Mote

Path Generator
GPS Sensor Error and

Energy

Simulator

SIM Manager Google EARTH

Figure 3: Independent modules of the simulator

given debugging time, a simulator was written that models
the flight paths of cranes.
The data simulator is developed using data from prior

crane tracking attempts [14]. Using this data, it is possi-
ble to generate likely flight paths of the cranes with coarse
granularity. Additionally, the simulator models the time it
takes to acquire a GPS fix for each sample. This is of vital
importance, since our experiments indicate that the power
consumed by the GPS is one of the largest factors in the
mote lifetime, as shown in Fig. 2. The Time To First Fix
(TTFF) is the amount of time it takes the GPS to determine
its location after power on. This time varies from 30-210 sec-
onds, and thus the power consumed by the GPS has a large
variance. Other sensors exhibit a much more deterministic
behavior and use less power, so their effect on the system is
easier to determine and less important.
The simulator is developed with the python programming

language, which utilizes Tython, a scripting language that
augments TOSSIM and provides hooks for outside appli-
cations and scripts [10]. Using Tython and the developed
simulation module together provides run-time inputs for the
TOSSIM simulations.

The data simulator is developed using multiple modules,
this allows for easy extension and reduces dependence be-
tween unique entities in the simulator. In Fig. 3 the modules
of the simulator are shown.
Sim Manager module is the control point of the simula-

tor and allows for manipulation of simulator input data and
parameters. These parameters include the average daily dis-
tance and headings used by a Whooping Crane during mi-
gration and the average time it takes the GPS device to
acquire a GPS fix. It also includes support to produce mul-
tiple replications of the simulation. Google Earth module is
used to provide a display of the simulated paths and its cor-
related GPS sensor error for illustration purposes. Simulator
module generates paths that the crane would take based on
the input data and parameters. Additionally, there exists a
module that simulates the errors of the GPS sensor device.
Generated Paths module contains and controls multiple in-
stances of the Whooper module to generates paths of each
crane. This module also uses the underlying modules with
each Whooper instance to times when individual cranes en-
counter each other during the simulation of the paths. GPS
Sensor Error and Energy module contains and controls mul-

tiple instances of the Mote modules. The mote modules use
the data generated by the Generated Paths module to ap-
ply accuracy error. This module uses inputs provided by the
simulator module and the Generated Paths module bundled
with underlying modules to apply accuracy error, fix rate,
TTFF, and energy consumed during the migration period.

Whooper module is instantiated multiple times to repre-
sent each crane during the simulation. The whoopers gen-
erate paths that they travel over the specified period. This
path is generated using random distance and bearing val-
ues provided by the module that instantiated the whooper.
Mote module is also instantiated multiple times to repre-
sent each mote that is attached to each crane. Each mote is
mapped to each simulated whooper.

Within each whooper and mote module, random module
provides the parent modules with independent random vari-
ate streams needed for simulation and prevents correlation
between simulated data. Conversion module provides data
formatting functionality so that the parent modules can per-
form valid simulations. Entity-Dump module provides the
parent module with multiple ways to output information
about the simulator. DAT-FILE module supplies the user
with output from data structures and variables of the parent
module for post processing and analysis. KML module this
module provides KML output of the simulation. The data
created by this module is fed into Google Earth to show the
simulation over the duration of time provided by the sim-
ulator module. Socket module provides the use of sockets
to supply hooks into the program for real-time simulation
values. In the future, this is intended to be used by python
for dynamic simulation and testing of future software.

4.1.1 Input Data and Parameters
Input data and parameters are used to provide realis-

tic outputs of the data simulation to be used as realistic
inputs for TOSSIM. The input data and parameters that
are needed for realistic output of the simulator include a
distribution of distance and heading values, distribution of
TTFF, duration of the migration, number of cranes to sim-
ulate, mortality rate, initial position, GPS accuracy error,
the GPS fix rate and a battery model. To improve the per-
formance metrics of the simulation, empirical data is used.
The parameters and inputs can be easily modified to adhere
to improved data and modification requirements.

Prior to this study, ecologists have collected data for previ-
ous crane tracking attempts. Accordingly, the average crane
travels 71.2 miles a day with a deviation of 48.7 miles and
has an average bearing of −27 degrees with a deviation of
22.5 degrees. Since the provided data has been collected
using existing monitoring techniques, limited sample points
exist. To compensate for this, without loss of generality, we
assume the distribution of both headings and degrees come
from a normal distribution, with a mean distance 71.2 miles
and variance of 48.7 miles; a mean heading of −27 degrees
and a variance of 22.5 degrees. Additionally, the ecologists
provided the location that the captured whoopers would be
released, resulting in the initial position. The prior studies
performed by ecologists also provide that 6%-8% of the birds
die during each migration. This statistic is also included in
the simulation.

To model the distribution of the first fix times, several ex-
periments were performed. Specific to the crane project, the
GPS device will operate in the worst case TTFF in a mode
commonly known as cold-start. The GPS is assumed to al-
ways be performing a cold-start because the limited battery

53

prevents the GPS from being frequently used and the cranes
can travel long distances in between GPS uses. This means
the GPS will have limited information about the satellites
in view every time it turns on, and will take a longer time
to search for signals and compute a position fix. In our sys-
tem the GPS device is enabled once per day. Therefore, the
device cannot take advantage of location approximation and
caching advantages of the GPS sensor. This results in the
worst case TTFF. TTFF experiments were performed to an-
alyze the off-the-shelf GPS sensor [3]. Accordingly, the aver-
age time it takes the sensor to acquire a fix is approximately
111s. This time deviates about 46 seconds throughout the
tests performed. Using the TTFF experiment results, the
data simulator generates realistic TTFF times. This dura-
tion is also used to compute the energy used by this device
during the migration period. According to [23], the average
accuracy of GPS sensors varies from device to device, but
the average error is found to be 21.2m to 76.9m. For realistic
simulation results, we use these bounds to define the range
of error in the data simulator.
Since GPS performance varies from device to device, the

need for analysis with a variable fix rate is important. Com-
bining the known TTFF duration from prior results and try-
ing multiple fix rates for a valid fix, the simulation platform
is used to find the expected energy usage for each platform.
In the application, we allow the GPS to be enabled over a
5 minute period. If a higher quality GPS sensor can ac-
quire a first fix within a shorter amount of time, the lifetime
can be improved. Since newer and better devices are more
expensive, it is important to understand the difference in
energy cost between devices. Accordingly, simulations are
performed by varying the GPS fix rate to explore the costs-
benefits of energy associated with acquiring a higher number
of fixes at a higher rate.
Prior tracking attempts and patterns observed by ecolo-

gists studying whooping cranes have led to an understanding
of time required for the migration from Aransas to Wood
Buffalo is approximately 3 to 4 weeks [24]. For the worst
case scenario, the duration provided to the simulator in-
cludes a 42 day migration period. Moreover, the number
of cranes that can be monitored during a single migration
is limited to 60 due to budget constraints, the intrusiveness
of the devices, the possibility of the devices changing the
cranes’ behavior, and the complexity of trapping the birds.

4.1.2 Simulation Platform Architecture
The simulation platform is composed of two independent

models. The first model consists of simulation of migration
paths. Since high granular location information for Whoop-
ing Crane migration is not available, such a simulation is
required. The generated paths serve as representation of
the whooping cranes. The second model consists of the sim-
ulation of the GPS sensor characteristics. Realistic output
of the data simulator is based entirely on the empirical data
provided as input to each model. The second model relies on
the paths generated by the first model and with additional
inputs needed to generate realistic results.
Migration path model (MPM): MPM provides a stochas-

tic crane path, based on a set of inputs that includes the
number of days to simulate, number of cranes to simulate,
and the µ (mean) and γ (standard deviation) of both the
distances and headings from the provided empirical data.
The MPM will create an instance of a whooper class, that
contains a RandomLocationEntity class. This class contains
the random number stream used to generate random head-

ings and distances, and also a method to provide the MPM
with the position for the requested step. The step for the
results provided in this paper occurs every day for 42 days.
The MPM creates multiple instances of the whooper class
according to the specified number of cranes to simulate in a
single migration. The random streams are adjusted during
initialization to remove random number overlap. The gen-
erated paths created by MPM will be used as input for the
simulation of GPS device error module.

GPS device error model (GEM): GEM provides error and
energy consumption characteristics of the device during mi-
gration. Input used by GEM include MPM path, fix prob-
ability, percentage of deaths that occur, GPS device oper-
ational current, error distance µ and γ desired to simulate,
and the µ and γ of TTFF. The GEM creates multiple in-
stances of a mote class, based on the number of cranes, that
represents the GPS devices. Each mote class includes an
instance of RandomErrorEntity class. This class contains
the random number stream used to generate random data
based on the provided inputs. The GEM uses the same step
as the previous model and adjusts the random streams in
the same manner. The performance metrics that the GEM
provides for each mote instance includes the rate at which
the GPS acquires a fix, the number of fixes acquired during
the time period, the number of cranes that died on their as-
sociated day of mortality, and the set of adjusted GPS fixes
with applied error. All performance metrics are based on
the provided inputs to the simulator as explained in Section
4.1.1.

4.2 Validation Platform
Using the data from the simulator it is possible to con-

struct inputs for TOSSIM to model likely behaviors of the
mote during a migration. This allows testing the software
in an efficient manner. In addition to the simulated data,
some random inputs are supplied to the program to uncover
unlikely scenarios that are not observed in empirically gath-
ered data, or conditions that are unlikely to happen. For
example, it is unlikely that the voltage will fall to an ex-
tremely low level in the first days of operation. Hence, this
would not be captured by the simulated data, but treating
the voltage as a random variable can test this case.

Two different approaches are employed for software test-
ing. The first uses log file analysis to check the motes be-
havior by using a simulator and manually inserted debugging
statements. The second approach incorporates ACC in the
simulator build process to conduct run-time monitoring of
system properties. A richer set of properties are checked to
validate the system software. The results and a comparison
of the two techniques are discussed in Section 5

4.2.1 Log File Analysis
Log file analysis is used as a basis for measuring the effec-

tiveness and complexity of using aspects for run-time mon-
itoring. The log file analysis method uses debugging state-
ments that are manually inserted to the program. These
debugging statements output symbols that correspond to
the mode the program is in, i.e. sleeping, sampling GPS,
communicating, etc as shown in Fig. 1. The program is run
in TOSSIM for several years of simulated time. The output
of the simulation is recorded in log files. These log files are
then post-processed using the following procedure.

Regular expressions are developed from the finite state
machines that represent the ideal program execution behav-
ior. A program then parses the output of the simulation and

54

Compile Original
Application(ncc)

Preprocess
Generated C
Code (gcc)

Weave Aspects Recompile for
TOSSIM
(ncc)

(ACC)

Figure 4: Compilation process with aspects

compares the state changes in the simulation to the allowed
states that are represented by the regular expressions. If the
output of the simulation matches the patterns in the regular
expressions, the program is assumed to have performed only
legal operations and passes the test. If the output of the
simulation does not match the regular expressions, it fails
and a fault is reported.

4.2.2 ACC
ACC is incorporated into the build process of the appli-

cation to provide run-time monitoring. Aspects describing
different properties of the system are written and woven
into a simulator executable. This process allows the sys-
tem properties to be monitored at run-time, as opposed to
log file analysis which is conducted after the program exe-
cution. When erroneous behavior is detected it is possible
to not only report the violation, but to give information of
the state of the system when the violation happens. This
constrasts with the log file analysis, where only the violation
is reported.
To weave aspects, the compilation process for the motes

has to be altered as shown in Fig. 4. The original appli-
cation is written in nesC, which is a dialect of C [12]. The
nesC application is compiled using ncc which is an exten-
sion of gcc that compiles nesC code for TinyOS. As part
of its compilation process, ncc produces a C file containing
all of the application code. This application source code is
then processed using gcc to make it conform to ACC speci-
fications. This transformed source code is then passed into
ACC, where aspects written in C are woven into the source
file. This final source file is then passed back into ncc to
produce the final simulator executable. To the best of our
knowledge, this is the first time ACC has been used in con-
junction with wireless sensor networks.
To test the system, seven aspects are defined to moni-

tor different properties. The properties are focused around
preserving energy and checking the order of system events.
Others are written to illustrate the power of the aspects and
their capabilities. These aspects are shown below.

• timers fired tracks when all systems timers are fired.

• voltage sensor checks that the voltage level is checked
before sampling non-GPS sensors.

• no stalls ensures the mote does not spend too much
time in any particular state.

• gps off monitors when the GPS is turned on and off
to make sure it is never left on after it is done being
used.

• state change is equivalent to the log file analysis that
was performed. It makes sure the system follows a
valid set of state transitions.

• trace generated an execution trace of the entire pro-
gram.

• voltage gps made sure the system power level was checked
before turning on the GPS.

5. RESULTS
To test the impact of aspects on application behavior,

each aspect is woven into the application at compile time
into the TOSSIM Framework that can be run on a PC [16].
A TOSSIM application simulates TinyOS and its execution
at its lowest level. This provides high fidelity simulation of
TinyOS applications, but lacks real environment simulation
[16]. The simulator did not possess the capability to simulate
the variable voltage levels of the mote power sources and the
sensor inputs. To adapt to this limitation, new models are
developed that provide realistic voltages and GPS sensor
inputs that can modify the state of the application.

The simulations are performed for a longer period of exe-
cution time (3 years) than that motes are expected to run in
the field. This provided extensive coverage of different ex-
ecution scenarios very quickly, resulting in the unmodified
application taking only 15 minutes to run and using only
0.03s of CPU time.

The results of each simulation provide a comparison of
performance between the original application and each indi-
vidual aspect. The performance metrics of the simulations
include CPU time of the simulation, size of the executable,
the output generated from each simulation, and faults that
existed in the application.

5.1 Simulation Results
The simulation was performed for 100 replications using

the input parameters discussed in Section 4.1.1. The num-
ber of cranes is set to 60 and the simulation uses the step
of once a day over the longest expected duration of 42 days.
The mean and standard deviation of path distance in each
day are selected from prior crane paths, where these values
are found as 71.2 miles and 48.2 miles, respectively. Simi-
larly, the mean of the heading is found to be −27 degrees
with a standard deviation of 22.5 degrees. For the GPS sen-
sor, maximum error of 76.9 m is used to represent the worst
case scenario and the mean and deviation of TTFF are set
as 111s and 42.9s according to empirical experiments. For
the migration, the initial location is selected as the Aransas
National Wildlife Refuge (28.2336191,-96.9002659) and the
final location is chosen based on the location of the Wood
Buffalo Wildlife Refuge (59.390833, -112.986389). Percent
mortality is chosen from the previous crane study as 6%.
The GPS fix rate is varied from 10% to 90% and 100 repli-
cations are performed for each data point. Finally, the mini-
mum distance for communication is selected as 5 miles based
on the assumption that cranes will likely interact with each
other if the area is small enough.

To ensure the simulator is working properly, it is impor-
tant to test the generated data against the available empir-
ical data. To test the reliability of the generated paths, we
applied a chi squared goodness of fit test to our generated
data set, to compare it to a normal distribution. The re-
sulting test in MATLAB concluded the generated data is in
fact fit for the simulator.

55

10% 20% 30% 40% 50% 60% 70% 80% 90%
100

200

300
P

o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 (

m
A

−
h
r)

Fix Rate (Percent)
10% 20% 30% 40% 50% 60% 70% 80% 90%

920

940

960

L
if
e
 T

im
e
 (

D
a
y
s
)

Power Consumption

Life Time

(a)

0 2 4 6 8 10 12 14 16
0

5

10

15

20

of Encounters

#
 o

f
D

a
y
s

(b)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
0

5

10

15

20

Day

N
u

m
b

e
r

o
f

E
n

c
o

u
n

te
rs

(c)

Figure 5: (a) TTFF and lifetime as a function of the GPS fix rate, (b) Histogram and (c) number of encounters
during one migration (60 cranes, 42 days).

After the MPM simulation completes, the generated paths
are then used as inputs for the GEM simulation. Outputs to
be evaluated include percentage of deaths that occur, GPS
device operational current, and the mean and variance of
TTFF. Each of these outputs are generated for 100 repli-
cations and also for an adjusted GPS fix rate, increment-
ing by 10% for 9 iterations. The average number of deaths
(4.09) and average distance error (57m) were constant for
each replication. This is due to the fact that the number of
cranes will not increase or decrease because of a performance
increase of a GPS device. The error distance correctly falls
within the bounds reported in [15].
In Fig. 5(a), the average TTFF duration and the corre-

sponding estimated lifetime is shown as a function of the
GPS fix rate. For every fix that is not acquired, the timeout
duration, i.e., 300s is reached. For every invalid GPS fix the
system will accumulate a 300 second penalty against energy.
This can be seen in the variation of 16 days of operation in
the lifetime as the GPS fix rate changes. The lifetime of
the application can be significantly impacted by the GPS
fix rate. This motivates the importance of higher accuracy
GPS sensors on motes.
We are also interested in the number of cranes that would

encounter another crane during the migration. This is ac-
complished by computing the distance between each combi-
nation of cranes for each day of the migration. Since cranes
generally roam around their layover points up to 5 miles, we
assume if the cranes land within a 5 mile distance, a com-
munication chance occurs. This analysis is performed on a
random simulation selected out of 100 replications, that had
a fix rate probability of 1/2. Since their exists no correla-
tion between the ability to achieve a GPS fix and the ability
to communicate, this process is considered to be valid for
analysis purposes.
The results are shown in Fig. 5(b) and Fig. 5(c), where

the histogram for encounters with the same bird and the
number of encounters in a day are shown, respectively. It is
interesting to note that there is non-negligible chance that a
mote has multiple opportunities to encounter another partic-
ular mote. Additionally, as shown in Fig. 5(c), the greatest
opportunity to communicate occurs during the earlier part
of the migration and that the window for communication be-
comes random throughout the later part of the migration.
These results motivate the need for probabilistic solutions
that exploit the opportunities to communicate to develop
networking solutions for Whooping Crane monitoring.

5.2 Validation Results
The process of using simulated data for run-time and log

file analysis is effective for finding software defects. The
effectiveness of these techniques must be weighed against
the cost in execution and development time. In this section
these results are shown.

5.2.1 Execution Times
In Table 1, the impacts of aspects on the execution time

and executable size are shown. The results of the execution
time show that run-time monitoring can have an extremely
negative impact on performance. Simple properties such as
checking to make sure the GPS is always turned off once it is
no longer needed can increase the execution time by several
orders of magnitude. Monitoring when the system timers
are fired show the need for focusing the instrumentation on
specific points of the program, rather than attempting to
reconstruct the complete program execution flow.

The simulations that used a higher magnitude of CPU in-
clude timers fired and trace. This result is not surprising
considering the nature of the aspects. The timers fired as-
pect inserts a print statement after every timerFired method
in the application. Since most micro-controllers feature ro-
bust timer systems, the timer fired method is called contin-
uously throughout execution. This leads to large overhead.

The largest consumer of CPU during the simulations is
the trace aspect simulation. Using tracing during a program
execution is extremely helpful for debugging, but consumes
significantly more CPU. This overhead is created from print-
ing out after every call in execution. As shown in Table 1,
the percent increase is magnitudes higher than other aspects.

The impact of certain aspects on the execution time can
sometimes be surprising. Monitoring the state change has
one of the lowest overheads, but has some of the farthest
reaching implications in terms of overall program correct-
ness. On the other hand, the gps off aspect is used in a
much more narrow scope, but incurs a much greater perfor-
mance penalty.

In relation to run-time monitoring of actual embedded de-
vices, the only aspects that would not be feasible to run on
a device are the trace and timers fired aspects. The ad-
ditional overhead from running the aspects on a real mote
could severely deplete the limited battery power. Several of
the heavier aspects could inadvertently affect the correct-
ness of the program as they could prevent the mote from
responding to events in a timely fashion.

5.2.2 Executable Size
Another important performance metric is the impact of

56

Aspect CPU Time(s) CPU % Increase Executable Size (bytes) Size % Increase
Unmodified 0.0327 0 258607 0
timers fired 0.57 1642 283665 9.7
voltage sensor 0.06 83.3 284231 9.9
no stalls 0.0382 16.7 279134 7.9
gps off 0.1009 208.3 281077 8.7
state change 0.0463 41.7 286067 10.6
trace 31069 94933258 721783 179.1
voltage gps 0.0518 58.3 283048 9.5

Table 1: Overhead of aspect in terms of CPU time and executable size.

the aspects on the size of the produced executable. While
this does not impact the functionality of the simulator pro-
cess, if this process is to be used on actual mote hardware
there will be much more severe constraints on the size of the
program that can be used. Single aspects were woven into
the application and the size of the resulting executable was
recorded as shown in Table 1.
The results reveal that the aspects have a very acceptable

impact on the executable size. With the exception of the
trace aspect, all aspects add less than 11% to the size of the
executable. Therefore, if a corresponding change is made to
the hardware build process, it is very likely the program will
still fit in the memory on the mote. It is interesting to note
that even though the aspects may have a small impact on
the size of the system image, this does not directly correlate
to the effect on the execution time. Therefore, caution must
be taken in assuming that infrequently woven aspects will
have a non-trivial effect on performance.

5.2.3 Implementation Cost
One of the largest benefits of using the aspect oriented ap-

proach is the speed in which the property checking could be
implemented by a user. Implementing the four properties us-
ing the off-line analysis took approximately 10 hours. Most
of this time was spent developing and testing the regular
expressions used in the analyzer. The resulting complexity
of the code means that any changes to the execution flow
of the crane tracking application will incur significant costs
from restructuring the analyzer.
In contrast, developing the single aspect that monitored

and checked all of the state changes took less than 4 hours.
The resulting aspect is much easier to maintain than the
off-line analyzer because state machine is more clearly rep-
resented in the aspect.

5.2.4 Violations
The testing revealed several bugs in the application. The

log file analysis and state checking aspect were able to catch
several instances where the mote did not transition to a cor-
rect state or got caught in a state and never transitioned to
a new one. Had these violations been included in the actual
deployment, it would have resulted in the motes running
out of power in days or weeks and failing to complete their
mission.
The aspect oriented approach revealed additional faults

that did not affect the correctness of the program that the
log file analysis did not detect. For instance, the GPS re-
ceiver was being commanded to turn on when it was already
on. The log file analysis did not catch this error because it
occurred within a discrete state, but the aspect that checked
the GPS power on sequence caught it immediately.
Finally, the use of the simulator to accelerate the mote

testing process proved invaluable. The violations resulting

from incorrect state transitions had a dependency on the
power level of the mote. In general, finding these types of
violations on real hardware can be a time consuming process,
since many tests would be needed to try all possible power
level combinations. It was also possible for the violations to
manifest themselves only after weeks or months of run time,
which is also difficult to test in a controlled fashion on real
hardware.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we develop effective testing and debugging

techniques for wireless sensor networks. These techniques
are used to test a deployed wildlife tracking application.
The power of the run-time analysis and low overhead in-
curred by some aspects makes this a powerful tool in the
process of deploying the software. The use of a simulator to
accelerate the testing process was beneficial because it ex-
posed bugs that are slow to manifest and depend on specific
power conditions.

The results of this work have been encouraging and sug-
gests several avenues for improvement in the future. Cur-
rently all of the testing has been done using TOSSIM. As
mentioned in Section 4, TOSSIM does not fully capture the
behavior of a mote hardware. The developed run-time moni-
toring platform can be adapted to run on a real mote, albeit
with a reduced fault reporting capability. This may still
prove useful in tracking down program faults that appear in
hardware, but not the simulator.

The use of simulated data made it possible to test the ap-
plication in a reasonable amount of time. The time it took
to test the various properties of the system was very reason-
able compared to [18], where exhaustive searches of the pro-
gram’s execution space were attempted. These testing tech-
niques are proving beneficial as the project is beginning to
use custom hardware platforms that require drivers for hard-
ware components that have not been used with TinyOS. The
advanced testing methods will also prove valuable as more
complicated power and sensor management techniques are
explored that can be difficult to debug and verify.

7. REFERENCES
[1] Crossbow technology. http://www.xbow.com.
[2] The network simulator - ns-2.

http://www.isi.edu/nsnam/ns/index.html.
[3] u-blox ANTARIS 4 GPS Module.

http://www.u-blox.com/, Aug. 2010.
[4] I. F. Akyildiz, D. Pompili, and T. Melodia.

Underwater acoustic sensor networks: Research
challenges. Ad Hoc Networks Journal (Elsevier),
3(3):257–279, March 2005.

[5] I. F. Akyildiz and E. P. Stuntebeck. Wireless
underground sensor networks: Research challenges. Ad

57

Hoc Networks Journal (Elsevier), 4:669–686, July
2006.

[6] J. H. Andrews and Y. Zhang. Broad-spectrum studies
of log file analysis. In Proc. ACM ICSE ’00, pages
105–114, Limerick, Ireland, June 2000. ACM.

[7] E. Bodden. J-LO - A tool for runtime-checking
temporal assertions.
http://www.bodden.de/pubs/bodden05jlo.pdf, 2005.
Diploma Thesis, RWTH Aachen University.

[8] N. Correll, M. Schager, and D. Rus. Social Control of
Herd Animals by Integration of Artificially Controlled
Congeners. In Proc. SAB ’08, pages 437–447, Osaka,
Japan, July 2008.

[9] M. Darr and W. Epperson. Application note:
Embedded sensor technology for real time
determination of animal lying time. Comput. Electron.
Agric., 66(1):106–111, 2009.

[10] M. Demmer, P. Levis, A. Joki, E. Brewer, and
D. Culler. Tython: a Dynamic Simulation
Environment for Sensor Networks. Technical Report
UCB/CSD-05-1372, EECS Department, University of
California, Berkeley, 2005.

[11] M. B. Dwyer, A. Kinneer, and S. Elbaum. Adaptive
Online Program Analysis. In Proc. ACM ICSE ’07,
pages 220–229, Minneapolis, MN, May 2007.

[12] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesC language: A holistic approach
to networked embedded systems. In Proc. ACM PLDI
’03, pages 1–11, San Diego, CA, June 2003. ACM.

[13] W. Gong and H.-A. Jacobsen. AspeCt-oriented C
Language Specification. Middleware Systems Research
Group, University of Toronto, Toronto, CA, 0.8
edition, January 2008.

[14] E. Kuyt. Aerial radio-tracking of Whooping Cranes
migrating between Wood Buffalo National Park and
Aransas National Wildlife Refuge, 1981-1984.
Technical report, Canadian Wildlife Service, 1992.

[15] M. Lehtinen, A. Happonen, and J. Ikonen. Accuracy
and time to first fix using consumer-grade GPS
receivers. In Proc. IEEE SoftCom ’08, pages 334 –340,
Dubrovnik, Croatia, Sep. 2008.

[16] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim:
Accurate and scalable simulation of entire tinyos
applications. In Proc. of ACM SenSys ’03, pages
126–137, November 2003.

[17] J. Li, Y. Wu, K. Kapitanova, J. A. Stankovic,
K. Whitehouse, and S. H. Son. Run time assurance of
application-level requirements in wireless sensor
networks. In Proc. ACM SenSys ’09, pages 367–368,
Berkeley, CA, Nov. 2009.

[18] P. Li and J. Regehr. T-check: bug finding for sensor
networks. In Proc. IEEE IPSN ’10, pages 174–185,
Stockholm, Sweden, April 2010.

[19] K. Mens, C. V. Lopes, B. Tekinerdogan, and
G. Kiczales. Aspect-Oriented Programming Workshop
Report. In Proc. AITO ECOOP ’97, pages 483–496,
Jyvaskyla, Finland, June 1998. Springer-Verlag.

[20] N. T. M. Nguyen and M. L. Soffa. Program
representations for testing wireless sensor network
applications. In Proc. DOSTA ’07: Workshop on
Domain specific approaches to software test
automation, pages 20–26, Dubrovnik, Croatia, Sep.
2007.

[21] M. Okola and K. Whitehouse. Unit Testing for
Wireless Sensor Networks. In Proc. Workshop on
Software Engineering for Sensor Network Application,
Cape Town, South Africa, May 2010.

[22] G. J. Pottie and W. J. Kaiser. Wireless integrated
network sensors. Communications of the ACM,
43:51–58, May 2000.

[23] O. Sokolsky, U. Sammapun, J. Regehr, and I. Lee.
Runtime Verification for Wireless Sensor Network
Applications. In B. Finkbeiner, K. Havelund, G. Rosu,
and O. Sokolsky, editors, Proc. Dagstuhl Seminar
07011, number 07011 in Dagstuhl Seminar
Proceedings, Dagstuhl, Germany, August 2008.
Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany.

[24] J. Unrau. Whooping cranes sighted in record numbers.
http://www.theglobeandmail.com/news/technology
/science/article804129.ece, 12 2007. Retrieved
2007-12-17.

[25] M. Woehrle, C. Plessl, J. Beutel, and L. Thiele.
Increasing the reliability of wireless sensor networks
with a distributed testing framework. In Proc. ACM
EmNets ’07, pages 93–97, Cork, Ireland, June 2007.

[26] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and
M. Das. Perracotta: mining temporal API rules from
imperfect traces. In Proc. ACM ICSE ’06, pages
282–291, Shanghai, China, May 2006.

[27] P. Zhang, C. Sadler, S. Lyon, and M. Martonosi.
Hardware design experiences in ZebraNet. In Proc.
ACM SenSys ’04, Baltimore, MD, Nov. 2004.

58

