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1 Abstract

Monitoring and tracking wildlife over large geographic areas requires novel hardware platforms in order to
fulfill the unique sensing and communication challenges posed by this task. Existing platforms fall short
in several key areas. To this end, a novel hardware platform,the CraneTracker100, is developed using
off-the-shelf components. This device uses state of the artcommunication and sensing techniques. This
platform uses commercially developed components, and incorporates multiple sensors and communication
mechanisms. The system software utilizes open source components and is based on the popular TinyOS
operating system. This combination of hardware and software enables the low-latency collection of a large
amount of data. This data is accessible through an HTML5 front-end that is powered by a web-service
back-end.
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2 Introduction

The CraneTracker100 is a hardware platform designed to support migratory bird tracking missions. Con-
struction of theCraneTracker100 is motivated by a lack of commercially available platforms that are capable
of collecting the desired type of data on migratory bird behavior, and the capability to maintain communi-
cations over a continental scale.

The two primary goals of the project are to track the migratory paths of cranes and to characterize their
behaviors and movements. Characterization of their movements consists of measuring their motion while
on the ground and in flight. From these measurements, ecologically interesting questions can be answered,
such as how frequently the birds are feeding. Another example of an interesting behavior occurs when the
birds are flying. It is highly desirable to determine whetherthe birds are flying by flapping their wings, or
through gliding. Answering these questions will help determine the food needs of the birds, the suitability
of different habitats, and where the birds are likely to nestat.

Early in the development of the crane tracking project, an MTS-420 sensorboard from Memsic was used
as the base hardware platform in conjunction with an Iris mote [9]. However, early testing revealed that
this platform possessed deficiencies that made it unsuitable for the tracking missions. First and foremost,
the ZigBee radio on the Iris lacked the transmission range tomaintain connectivity while deployed on wild
birds. Second, the sensors were incapable of collecting thedesired data, such as flight characteristics. The
accelerometer on the MTS-420 only operates in two dimensions. This means while the bird is in flight and
the device orientation is unknown, the device is ineffective at characterizing a bird’s motions. The GPS
receiver is an obsolete design that requires a bulky and heavy external antenna that is unsuitable for this
task. Finally, the Iris and MTS-420 are powered through AA batteries, which lack the storage capacity to
power the device throughout the multi-year missions envisioned for this platform.

To remedy these shortcomings, theCraneTracker100 is developed. This new sensor platform includes
better sensing, communication, and power capabilities. The combination of these enhanced capabilities will
make it possible to track migratory birds on a continental scale.

3 Hardware Platform

TheCraneTracker100 was designed with the goal of utilizing commercial, off-the-shelf (COTS) components
to create a platform capable of tracking migratory birds on acontinental scale. COTS components were used
for two reasons. The primary reason was to reduce the cost of the platform by avoiding expensive custom-
designed hardware. The second reason was to minimize the development time of the platform.

The CraneTracker100 design can be decomposed into four subsystems. They are the mote, power,
sensing, and communication systems. A brief description ofthese components and their capabilities will
now be presented. The final result is shown in Fig. 1.

3.1 Mote

A commercial WSN mote provides the basic processing and storage mechanisms for the device. An Iris
mote by Memsic [9] was chosen for this task. The Iris is consists of an Atmel 1281 microcontroller, RF230
radio, and AT-45 flash memory. This combination provides low-energy processing and communications,
with 512kB of non-volatile storage. This mote can be interfaced to a variety of sensorboards through the51
pin connector [1].

This mote was originally chosen during development for use with the MTS-420 [9] sensorboard. While
the MTS-420 was abandoned because of shortcomings with its communication and sensing capabilities, the
Iris was retained. Much of the software developed for the MTS-420 in TinyOS was retained for use with the
CraneTracker100 , which allowed for the rapid development of theCraneTracker100 .
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Figure 1: (a), (b) Top of board, (c) Board bottom

3.2 Power

While most most commercial motes and sensorboards by [9] aredesigned to operate using AA batteries
and3.3V voltage levels, this is insufficient for theCraneTracker100 . First, the GSM modem requires a
nominal3.6V source to operate. Second, NiCad, NiMH, and alkaline batteries lack the required energy
density for this application. Third, these types of batteries have undesirable battery discharge characteristics
as the voltage provided by the batteries rapidly decreases as the battery discharges. To achieve the desired
voltage level and energy density, lithium polymer batteries are used instead.

Lithium polymer batteries complicate the power supply of the system. The single cell lithium polymer
batteries used by the system can supply up to4.2V at peak charge. This voltage level exceeds the maximum
operating level of many of the system’s components, including the microcontroller. Even with a lithium
polymer battery’s energy density, the weight limitations of the mission mean that the battery will not be able
to power the device throughout the entire mission duration.Thus, renewable energy in the form of a flexible
solar panel [2] is included on the device. This solar panel’sspecifications state it is capable of providing
50mA of current at4.8V. The panel’s flexibility enable it to be easily incorporated into many mechanical
designs, and could even be wrapped around a leg-mount devicein the future. Furthermore, lithium polymer
batteries require dedicated charge management mechanismsto prevent over- and under-discharging of the
battery. This protection is provided through a combinationof dedicated integrated circuits [11, 12]. The
final system power supply is shown in Fig. 2.

The power supply is enhanced with the capability to monitor the input voltage and current of the solar
panel, and the battery voltage and discharge current. Thesevalues are monitoring using the ADC ports on
the microcontroller. Since the operating voltage range of the battery and solar panel exceed the regulated
supply voltage, it is necessary to use voltage dividers to reduce the ranges to values that are measurable by the
microcontroller. Op amps designed for current sensing [8] are used to measure the solar panel input current
and battery discharge currents. Combined, these capabilities allow for detailedin-situ energy profiling of the
system. These capabilities are very important to the system, since it is not practical to monitor the system
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using external equipment in the field.
Fig. 2 shows the switches [10] used to control the power to theindividual components. These switches

are operated via general purpose IO lines on the microcontroller. These switches consume very little energy,
and help limit the energy consumption of the system by selectively enabling and disabling components. The
switches also provide a fail-safe method of turning off a component in case it is malfunctioning.
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Figure 2: Power Supply and Communication Interfaces

3.3 Sensors

TheCraneTracker100 is designed to accurately monitor and track migratory birdsat all stages of their life.
In order to do this, a sophisticated set of sensors was added to theCraneTracker100 . The first of these
devices is a GPS receiver [5]. The second is a solid state compass [7]. In addition, the GSM can also
measure certain environmental data. A summary of the sensors is given in Table 1.

The GPS sensor communicates to the host microcontroller over UART lines using the NMEA 0183
protocol. This is a widely used protocol that is also employed by the MTS-420. This commonality enabled
the platform to re-use much of the code developed for the MTS-420, but enhanced to understand more
NMEA 0183 sentences. This particular receiver incorporates a patch antenna into the same physical package
as the receiver, which makes it very compact. Empirical tests have also shown that the receiver is very
sensitive, and quickly acquires fixes when deployed on wild birds.
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The GPS measures several important aspects of crane behavior. Most importantly, it provides the loca-
tion of a bird. This knowledge can enhance conservation efforts by identifying critical areas of habitat for
the birds. The GPS is also capable of measuring the speed of the bird. This information is used to describe
the flight characteristics. Further characterization of the flight is given by the altitude provided by the GPS.
Finally, the GPS can measure the course over ground of the bird, which can be used to determine where the
bird is traveling.

To augment the data collection, the HMC6343 solid state compass is used to collect information on the
birds’ movement and flight characteristics [7]. The HMC6343collects three dimensional pitch, roll, and
heading information. In addition, the compass incorporates a three dimensional accelerometer that is used
for characterizing the birds’ movements. Finally, the compass includes a temperature sensor for estimating
the ambient air temperature. The HMC6343 is connected to themicrocontroller through I2C lines. The
commands that can be sent to and received by the compass are defined in its datasheet.

The GE865 GSM module also functions as a sensor in this design[13]. When it sends information,
the ID of the cellular tower it is associated with is sent along with the other information. The location
of the tower can then be used to identify the area in which the information was transmitted from. While
this location information is not nearly as accurate as the data obtained via the GPS, it can still be used as
a redundant source of location information in case the GPS receiver is damaged or is otherwise unable to
obtain its location.

Device Interface Communication Protocol Data

GPS UART NMEA 0183 Location, Altitude, Speed, Course Over Ground
Compass I2C Defined in datasheet Heading, Pitch, Roll, 3D Acceleration, Temperature

GSM UART AT Commands Location

Table 1: Sensor Capabilities

3.4 Communications

The ZigBee compatible radio on the Iris is not capable of meeting the mission requirements by itself. The
cranes cover too large of a geographic area, and are too unpredictable in their flight paths, for ZigBee
communications to be maintained. Thus, a GE865 GSM module [13] is used to maintain connectivity
when the birds have traveled outside of areas covered by ZigBee basestations. The GE865 interfaces to the
microcontroller through UART lines. The module can be controlled using the standardized AT command
set. The specific commands that the unit supports are defined in the module’s datasheet. An SMA connector
is used to attach the module to an external antenna.

4 Device Software

4.1 TinyOS

TinyOS is a free and open source operating system designed for wireless sensor networks (WSN). TinyOS
and applications that it execute are programmed with nesC programming language. TinyOS is used exten-
sively for an embedded operating system by researchers and industry.

nesC is a dialect of the C programming language. The languagewas designed specifically for TinyOS
and is component based and event driven. Additionally, it ishighly optimized for memory constrained
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devices. Interaction between components is controlled through interfaces. These interfaces act as a spec-
ification that describe the behaviors of the component. Withthis method implementation details of these
components are hidden from external components.

4.1.1 Contributions

To facilitate the development of the tracking platform, some additions to the TinyOS operating system are
made. These changes include the I2C hardware implementation for Atmel 128X/246X chips and standard
library time implementation.

I
2C, also known as two-wire interface (TWI), is used by integrated circuit manufacturers to commu-

nicate with peripheral devices. For the CraneTracker platform, TWI is used to communicate with the
HMC-6343 compass. The default TinyOS TWI implementation isimplemented in software and utilizes
bit banging. This approach was unable to meet the timing requirements of the compass. This problem made
the communication between the compass and microcontrollerunreliable. To fix this problem, a hardware
driven approach was used in a new driver. This driver can be used on both the MicaZ and Iris motes.

TinyOS also lacks many of the basic data and time manipulation functions that are available on other
platforms. This system makes heavy use of timing information from the GPS to schedule events at specific
intervals, and to support system monitoring. Therefore, a set of functions were created to convert GPS time
to the standard Unix representation [4]. In addition to this, the portions of TinyOS that handle the hardware
timer firings were changed to maintain a free running clock. This clock is used track how long the system
has been operating. This clock is synchronized to the correct world time through the GPS when a fix is
acquired.

4.2 Device Drivers

The new sensors and communication devices of this platform required the development of new drivers. In
the following section, we will discuss the details of these drivers.

4.2.1 GSM Driver

Support the GSM module posed several challenges. First, thecommunication between the host processor
and GSM is stateful. Communication between these two must becarefully arbitrated, and error conditions
must be detected and gracefully handled. To support application development, the details of associating
with the cellular network and sending SMS messages are abstracted behind carefully defined interfaces.
The details of the GSM control are then hidden from the higherlevel application layers. This architecture is
shown in Fig. 3.

Power to the modem is controlled through a digital switch. This switch is controlled through the general
purpose IO lines of the microntroller. After the GSM is powered on, a sequence of commands is sent to
assess the state of the GSM and control its operation. These commands are sent to the device over the
UART interface supplied by TinyOS. These commands are in theform of standard AT commands [3]. The
GsmUartHandler receives the response from the modem, and checks for valid messages. These messages
are passed to the GSMDriver module that interprets the responses. Components that use the GSMDriver
module are notified of important information, such as network state changes and the status of message
transmissions.

The driver also implements fault tolerant features. These features include a watchdog timer that removes
power from the GSM module in case it becomes unresponsive, orenters a faulty state the system is unable to
recover from. This feature prevents unnecessary power frombeing wasted when faults occur. GSMDriver
also checks the message passed from GsmUartHandler for any error messages. In the case of device or
transmission errors, the GSMDriver will attempt to resend any messages.
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Figure 3: GSM Driver Component Graph

4.2.2 GPS Driver

The GPS driver of the system is based on the driver provided byMoteWorks for the MTS-420 sensor-
board. The GPS on the MTS-420 uses the NMEA 0183 communication protocol to communicate with
motes over the UART lines. Fortunately, this protocol is widely adopted, and is used by the GPS on the
CraneTracker100 [6]. Although the NMEA 0183 protocol defines many messages, or sentences, that are
used by GPSes to send data, the MoteWorks driver only supports the RMC sentence. This sentences con-
tains location, time, fix validity, and other information. For theCraneTracker100 project, support for the
GGA sentence was implemented. This sentences gives the system the altitude. The driver was also modified
to only report information when a valid fix was obtained, rather than reporting all data and relying on the
higher layers to check for validity. The driver was also extended so that the system time kept by the mote is
synchronized with the correct world time provided by the GPS. The finished architecture is shown in Fig. 4.

Figure 4: Gps Driver Component Graph

4.2.3 HMC6343 Driver

A driver for the HMC6343 compass was developed for TinyOS. This driver supports reading the heading,
pitch, roll, three dimensional acceleration, and temperature from the device. The compass driver utilizes
the contributed TWI implementation for TinyOS. The component graph for the compass driver and TWI is
shown in Fig. 5 and 6, respectively.

The HMC6343 component controls power to the compass device.The component also contains the
process for translating high level requests for data into the I2C commands that the HMC6343 understands.
As with the GSM, the driver implements a watchdog timer. Thiswatchdog timer ensures that faulty states
or communication errors will not result in the device being left on and draining power unnecessarily.
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Figure 5: HMC6343 Driver Component Graph

Figure 6: Communication Layer of Compass Driver Component Graph

The CompassC component provides the high level interfaces to turn the compass on and off, enter and
exit calibration mode, and fetch data from the compass. These high level interfaces hide the details of the
underlying device from higher level software. The component also controls the reporting frequency and
power states the compass can utilize.

4.2.4 Power Monitoring Driver

A high level driver was implemented to support sampling the ADC lines that are connected to the power
monitoring circuitry. In the case of the voltage, the driveralso converts the raw ADC numbers into a
standard voltage reading. This conversion makes developing the higher level software simpler, and hides the
underlying ADC implementation from the high level software. This driver is shown in Fig. 7.

Figure 7: Power Monitoring Driver Component Graph

4.3 Sensing Application

The default program for the sensing platform is the Crane Manager. The crane manager acts as a controller
that utilizes all of the features of the platform into a sensing and reporting application. The Crane Manager
duty-cycles the sensing and reporting operations. In this operation, sensor readings are stored using the
Crane Storage component, and communicated using the crane radio and GSM Manager.
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Figure 8: Crane Manager Component Graph

When the manager activates it will check power levels then sample the available sensors, store the
samples, listen for a base-station beacon, and if unsuccessful will try to use the long-range GSM radio.
Upon completion of these tasks, the Crane Manager will put the device into deep-sleep to conserve energy.

The manager uses power monitoring information to determinethe health of the system. For this, the
Crane Manager uses compile-time thresholds empirically determined through experimentation. In this pro-
cess, the software goes through two software checks motivated to extend the life-time of the mission. First,
upon startup or deep-sleep wake-up, the manager determinesif the voltage is at a critical state. If so, the
device will return to a deep-sleep in hopes for recharge fromthe solar panel. Secondly, upon voltage check,
if the device reads above the safe-voltage to communicate, it attempts to operate in the non-critical mode
performing the tasks described previously. It was decided to only enable the sensing components at the
minimum GSM voltage level, which is 100mV different then theGPS operating voltage.

4.3.1 Crane Storage

Figure 9: Crane Storage Component Graph

All sensor readings are stored in non-volatile memory. The flash memory components provided by
TinyOS, are controlled through the Crane Storage component. The Crane Storage component makes use
of a circular-buffer to sustain readings from mission situations where communication is unavailable for
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multi-month durations. To facilitate this desired longevity, all accounting and storage states are persisted
every commit. Therefore upon energy depletion, storage state can be restored allowing the mote to operate
normally when energy resources are available.

4.3.2 Crane Radio and GSM Manager

High level components are developed to control the operation of the radio and GSM. The Crane Radio
component is shown in Fig. 10. This component handles the details of searching for, and communicating
with, a base station. The component also handles fetching data from the storage component and formatting
it for transmission. If the component is unable to find a base station, it attempts to use the GSM functionality
to send the data. This is done through the GSM Manager component. This component also interfaces to
the storage device to retrieve teh unsent messages. This component is shown in Fig. 11. This component
manages the GSM connection to limit the time the GSM is used, to avoid overdepleting the battery.

Figure 10: Crane Radio Component Graph

Figure 11: GSM Manager Component Graph

11



5 Back-End and Front-End Software

The back-end component of the system is required to enable access to sensor readings and mote statuses. A
front-end is essential to display the information in a meaningful and easy to understand manner. A depiction
of the back-end and front-end of the developed system is shown in Fig. 12. In the system, the back-end
is composed of a gateway decoder, parser, and web-service. Lastly, the front-end is a web-enabled GUI to
access and view collected data to the user.
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SMS Gateway

Zigbee Gateway

Multiple Gateways
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TCP/IP

Gateway Decoder

Parser

Web Services

Back-End Front-End User
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Figure 12: Back-End and Front-End Depiction

5.1 Gateway Decoder and Parser

The gateway decoder manages communication with the SMS gateway service. In addition, it manages
communication with base station motes through TCP/IP. Uponreceiving messages from an endpoint, the
decoder scans data into the appropriate tokens to be handledby the parsing component. The parser analyzes
the tokens generated by the decoder, then builds the corresponding data structure that is transmitted to the
web service to be permanently stored.

5.2 Web Services

The web services enable syntactically correct data to be committed to storage. The web services are ac-
cessible in the form of an REST API. Through these methods, the information can by shared with external
parties and consumed by a front-end to visualize the information received.

5.3 Front-End

A visualization client is developed to display the data received from the motes. A screen shot of the client
is shown in Fig. 13, which consists of three panes. The node selection pane allows the user to select nodes
on the network. The view selection pane enables users to select between different views such as chart view,
GPS view, and export view, the results of which are shown in the selected view container. The chart view
allows the user to select a sensor and display the collected data via a variety of graphs. The GPS view
(selected in Fig. 13 illustrates the location of the mobile nodes. Finally, this information can be exported in
other formats (i.e comma-separated valeus) to be analyzed with other software.
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6 Conclusion

The CraneTracker100 represents a major advancement in tracking migratory birds. Its communication
capabilities are able to maintain connectivity where traditional short range radios used in WSNs fail. The
integrated sensors are able to characterize bird movementsand behaviors, which creates novel research
opportunities for wildlife studies. Multiple communication methods and redundant sensing capabilities
increase the reliability of the system by providing functionality in the face of component failures. These
extensive capabilities come at a reasonable price, as widely available commercial components were used in
the design.

CraneTracker100 will enable future wildlife monitoring missions, and will create novel research oppor-
tunities. These missions will be undertaken in conjunctionwith conservationists working with migratory
birds, and should yield interesting results.
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