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Abstract—Energy and bandwidth are limited resources in wire-
less sensor networks, and communication consumes significant
amount of energy. When wireless vision sensors are used to cap-
ture and transfer image and video data, the problems of limited
energy and bandwidth become even more pronounced. Thus,
message traffic should be decreased to reduce the communication
cost. In many applications, the interest is to detect composite
and semantically higher-level events based on information from
multiple sensors. Rather than sending all the information to the
sinks and performing composite event detection at the sinks or
control-center, it is much more efficient to push the detection of
semantically high-level events within the network, and perform
composite event detection in a peer-to-peer and energy-efficient
manner across embedded smart cameras. In this paper, three
different operation scenarios are analyzed for a wireless vision
sensor network. A detailed quantitative comparison of these
operation scenarios are presented in terms of energy consumption
and latency. This quantitative analysis provides the motivation
for, and emphasizes (1) the importance of performing high-level
local processing and decision making at the embedded sensor
level and (2) need for peer-to-peer communication solutions for
wireless multimedia sensor networks.

I. INTRODUCTION

Energy and bandwidth are limited resources in wireless
sensor networks. When wireless vision sensors are used to
capture and transfer image and video data, the problems of
limited energy and limited bandwidth become even more pro-
nounced, since the amount of data to be handled is much larger
compared to scalar sensors [1]. In addition, communication
consumes significant energy. Frequent transfer of large-sized
data requires more power and incurs more communication
delay. In many systems, communication is 100 to 1000 times
more expensive in energy than computation [6]. Thus, our goal
is to reduce the communication cost by decreasing the amount
of message traffic.

In many applications, the interest is to detect composite and
semantically higher-level events based on information from
multiple sensors. In existing multimedia sensor network setups
[2], each primitive event detected by multimedia nodes are
sent to a sink, most probably in a multi-hop manner. Accord-
ingly, the sink or a control center combines information from
multiple sensors to make higher-level decisions. In addition,
local aggregation can be performed at aggregation points along
the path between multiple sensors and the sink. However,
event superposition that includes information from spatially

distant sensors can only be performed at the sink. In case
these composite events are not required to the end user, this
creates highly redundant message traffic, consumes a lot of
energy, and may overload sink nodes. In addition to the sensor
sensing the primitive event, sensors on the multi-hop route also
consume energy. Hence, our goal is to push the detection of
semantically high-level events within the network, and perform
composite event detection in a peer-to-peer (P2P) manner
across the heterogeneous and embedded sensors. Accordingly,
message traffic, and thus the overall energy consumption of
the network will be significantly decreased.

In this paper, we analyze three different operation scenar-
ios for a heterogeneous sensor network consisting of scalar
sensors (for motion detection) and embedded smart cameras
(Fig. 1). In the first setup, a scalar sensor wakes up the camera
mote when it detects motion in the scene. Then, the camera
captures a frame, and then, transmits the whole image frame
in a multi-hop manner to a sink node. In the second setup,
cameras perform local processing and send the images to
the sink only if a primitive event is detected. Finally, in the
third setup, cameras perform local processing, one camera
communicates with another one in a P2P manner to detect
a composite event, and only when the composite event is
detected, they transmit the interesting portion of a frame to
the sink. All three operation scenarios are described in detail
in Section III. We present a detailed quantitative comparison
of these scenarios in terms of the energy consumption when
the goal is detecting a composite and semantically high-level
event. In addition to providing motivation for and emphasizing
the importance of pushing the high-level decision making to
the sensor level, this analysis gives quantitative results in

Fig. 1. Heterogeneous Wireless Multimedia Sensor Network



terms of savings in energy. We also present a latency analysis
for these operation scenarios. The results highlight the need
for efficient peer-to-peer communication solutions for wireless
multimedia sensor networks (WMSNs).

Using heterogeneous sensors provides energy savings by
keeping the low-power scalar sensors active for monitoring,
and more power-consuming embedded smart cameras in idle
mode until scalar sensors detect an activity. In our testbed,
we use CITRIC motes [3] as our embedded smart cameras.
A TelosB is attached to the camera boards for wireless
communication. The camera board runs with 4 AA batteries,
while the TelosB uses 2 AA batteries. We broadcast trigger
messages from stand alone TelosBs to emulate the waking up
of the cameras by scalar sensors.

II. WIRELESS MULTIMEDIA SENSOR NETWORK

A. Embedded Vision Sensors

The wireless embedded smart camera platform employed
in our experiments is a CITRIC mote [3]. It consists of a
camera board and a wireless mote, and is shown in Fig. 2. The
camera board is composed of a CMOS image sensor, a fixed-
point microprocessor, external memories and other supporting
circuits. The camera is capable of operating at 15 frames per
second (fps) in VGA and lower resolutions. The microproces-
sor PXA270 is a fixed-point processor with a maximum speed
of 624MHz and 256KB of internal SRAM. Besides the internal
memory of the microprocessor, the PXA270 is connected to a
64MB of SDRAM and 16MB of NOR FLASH. An embedded
Linux system runs on the camera board. The embedded Linux
system includes the JPEG compression library, which provides
the advantage of saving the video frames in JPEG format. Each
camera board connects to a wireless mote via a serial port.

Fig. 2. The wireless embedded smart camera platform.

B. TelosB: The Wireless Mote

The wireless mote employed is a TelosB mote from
Crossbow Technology. The TelosB uses a Texas Instru-
ments MSP430 microcontroller and Chipcon CC2420 IEEE
802.15.4-compliant radio [3]. The maximum data rate of the
TelosB is 250kbps.

The TelosB motes are used both as a scalar sensor using
vibration sensors to detect movement in an indoor environment
and are also attached to the CITRIC motes to provide wireless

connectivity between vision sensors and scalar sensors. As
stated above, trigger messages are broadcast from scalar sensor
TelosBs to wake up of the cameras by scalar sensors.

III. OPERATION SCENARIOS FOR EVENT DETECTION

In this section, we describe three different operation sce-
narios for detecting a composite and high-level event. We
consider the event of interest to be a composite event that can
be detected by two vision sensors. Accordingly, the composite
event is detected if (1) a large vehicle is detected entering a
facility through the entrance watched by camera A, and then
(2) the same vehicle is detected as parking in a region defined
in the view of camera B.

In all the operation scenarios, scalar sensors are always
active, and camera sensors are idle to save energy. If/when
motion is detected, a scalar sensor wakes up nearby camera
sensors by broadcasting a trigger message.

A. Scenario 1: No Local Processing

As mentioned previously, in most existing sensor network
setups, individual sensors transfer the captured data to a sink
node and/or control center for further processing. To analyze
the cost attached to this type of operation, we implement the
first scenario, wherein camera sensors do not perform any
local processing. After getting the broadcasted image from
a scalar sensor, the processor activates the camera board and
the sensor warms up. The camera captures a frame and sends
the complete image to a sink node (Fig. 1) by multi-hop
communication. The captured image size is 320×240 and it is
transmitted in gray scale format after JPEG compression. This
scenario serves as a baseline for the following two scenarios.

In this operation scenario, every time an object enters the
facility or every time motion is detected, the scalar sensor will
wake up the camera, and the camera will transmit the whole
frame to the sink node. It should be noted that even though
the interest is detecting large vehicles, this way of operation
will cause an image transfer every time motion is detected,
since no local processing is performed.

B. Scenario 2: Low-level Detection

In this scenario, the embedded camera sensor not only cap-
tures images, but also performs local processing. Specifically,
it performs foreground detection, and then computes the size
of the detected object(s).

As stated above, the event of interest is detecting a large
vehicle entering a facility through the entrance watched by
camera A, and then parking in a region defined on the view
of camera B. In this operation scenario, after the camera
wakes up, it performs background subtraction to detect the
moving object, and then computes its size. If the size of
the detected foreground object is larger than a threshold, the
camera transmits only the portion of the image containing the
object. This way of operation provides savings in two different
ways. First, event messages are not transmitted every time
when motion is detected. Instead, cameras transmit images
only if the size of the detected object satisfies a certain



criteria. Second, the cameras only transmit the portion of the
image containing the object, instead of the whole frame. This
scenario serves as the state-of-the-art in WMSNs.

C. Scenario 3: P2P Composite Event Detection

Cameras perform local processing in this mode as well. If
a composite event is defined as a sequence of primitive events
across multiple camera views, the first camera in this sequence
transmits a message addressed to the next camera when it
detects the first primitive event.

The event of interest described above can be defined as a
sequence of two primitive events. The first primitive event
is detecting the entrance of a large vehicle on the view
of camera A. The second primitive event is detecting that
vehicle parked in the region specified in the view of camera
B. When camera A detects that a large vehicle entered into
the scene, it transmits a message addressed to camera B,
instead of transmitting a portion of the image to a sink.
Compared to second scenario, P2P composite event detection
avoids redundant communication, since the application is not
interested in every large vehicle entering the facility. Instead, a
higher-level composite event is of interest. If camera B detects
the second primitive event, only then an image portion will be
transmitted to a sink.

IV. EXPERIMENTAL RESULTS

In this section, the present the results of detailed analysis
of the energy consumption and latency of the three operation
scenarios described above.

A. Energy Consumption

We measure the energy consumption in each scenario during
different parts of the operation including warming up of the
camera, processing a frame, and transmitting data. We also
measure the energy consumption of the forwarders in multi-
hop communication to obtain the overall energy consumption
caused by each scenario. For all the results presented below,
the communication between a camera sensor and the sink is
performed in two hops.

Figure 3 shows the overall energy consumption of different
operation scenarios. Scenarios 1, 2 and 3 in this figure are
the operation scenarios described in Sections III-A, III-B and
III-C, respectively. In Scenario 1, the camera does not perform
local processing of the frame, but transmits the whole image
frame (320×240) to the sink by two-hop communication. The
total energy consumption for this scenario including the energy
consumption of the forwarding node is 16.67 J. Figure 4 shows
the distribution of the energy consumption among different
components. Since no local processing is performed to make
decisions, and the whole frame is transferred to the sink, the
image data transfer causes the largest energy consumption, i.e.,
58.9%.

In Scenario 2-A, the camera performs local processing to
detect foreground objects and to determine their sizes. Since
the size of the detected object does not satisfy the specified
criteria, the camera does not transmit anything. The overall

Fig. 3. The overall energy consumption for different scenarios.

Fig. 4. The distribution of the consumed energy in the first operation
scenario.

energy consumption of the camera, including the energy
consumption during warming up, frame capturing, foreground
detection and size check, is 6.1 J. In Scenario 2-B, the size
of the detected object satisfies the specified criteria, and the
camera sends only the portion of the image that contains the
object to the sink. The size of this image portion is 50×50. As
seen in Fig. 3, the total energy consumption for this scenario
including the energy consumption of the forwarding node
is 8.19 J, which is significantly less compared to Scenario
1. Figure 5 shows a distribution of the energy consumption
among different components. Compared to Fig. 4, this way
of operation provides a significant decrease in the energy
consumption caused by the image data transfer.

Fig. 5. The distribution of the consumed energy in the second
operation scenario when only a portion of the image is transmitted.

Fig. 6(a) and 6(b) show the operating currents of the camera
board during Scenario 1 and Scenario 2-B, respectively. As



can be seen, when local processing is performed, and the
interesting portion of the image is extracted and transmitted,
the amount of latency, and the energy consumption due to
image data transfer decrease significantly.

In Scenario 3, the camera again performs local processing
to detect foreground objects and to determine their sizes.
If the size of an object satisfies the specified criteria, the
camera sends (in single hop) a small-sized packet to the second
camera, which is responsible for detecting the second part of a
composite event. This packet contains the label information of
the tracked object. Since cameras have partially overlapping
fields of view, they can track objects with consistent labels,
and can determine if the same object is performing the
primitive events in a composite event scenario. The energy
consumption of the camera caused by warming up, frame
capturing, frame processing and data transfer is 6.06 J. Figure
7 shows the distribution of the energy consumption among
different components.

Fig. 7. The distribution of the consumed energy in the third operation
scenario when the first camera sends information about the object to
the second camera.

This analysis provides the motivation for pushing the se-
mantically high-level event detection and decision making to
the sensor level by providing quantitative results. It should
be noted that the amount of the saved energy becomes much
more significant and apparent when we consider the actual
composite events that we are interested in. Consider the event
of interest described above, where we want to detect large
vehicles entering a facility through the entrance watched by
camera A, and then parking in a region defined on the view
of camera B. Assume that during a day, 10% of the objects
(people, cars, trucks, bikes) entering the facility are large
vehicles. Also assume that only 10% of the large vehicles
entering the facility actually park in the restricted region
defined on the view of camera B.

Let N be the number of objects entering the facility.
In Scenario 1, the camera A will wake up, and transmit
the complete image to the sink N times. Thus, its energy
consumption will be approximately N × 16.24 J. The for-
warder’s energy consumption will be N × 0.43 J. In Scenario
2, camera A will wake up N times, but N×9

10 many times
it will not transmit anything, since the size of the object
will not be large enough (assuming the object detection and
size check does not fail). It will transmit only the portion

of the image containing the object N
10 times. The energy

consumption of camera A in this case will be approximately
6.1×N×9

10 + 8.1×N
10 ≃ 6.3 × N . In Scenario 3, camera A will

wake up N times, and will send a message packet to camera
B, N

10 many times. Thus, the energy consumption of camera
A will be 6.1×N×9

10 + 6.06×N
10 ≃ 6.09 × N . Camera B will

transmit an image only N/100 times.
Thus compared to Scenario 1, Scenario 2 and Scenario 3

provide 61.21% and 62.5% savings, respectively, in the energy
consumption of camera A. In addition, Scenario 1 involves an
image transfer N times. In Scenario 2, an image portion is
transferred N/10 times, and in scenario 3 an image portion is
transferred only N/100 times.

B. Latency

We also measured latency introduced during these different
operation scenarios. It should be noted that in all latency mea-
surements, the measured time intervals include the warming-
up time of the camera sensor, which is around 5 sec.

For the first scenario described in Section III-A, we mea-
sured the time interval from camera waking up to a sink
node receiving the complete image. The distance between
the camera sensor and the sink node is 12 meters, and
communication is performed in two hops. The file size for the
whole image is 9.5 kB. After camera wakes up, it captures a
frame, compresses it, and sends the whole frame to the sink
node. We performed this experiment five times, and took the
average of all measurements. The average time obtained is
11.85 sec.

For the second scenario described in Section III-B, we mea-
sured two different latencies. In the first case, camera wakes
up, performs foreground object detection, and determines the
size of the detected object. If the size of the object is not large
enough, the camera does not transmit anything. We measured
the time interval between camera waking up and determining if
the size of the object satisfies the criteria. This was repeated
five times. The average measured time interval is 5.36 sec.
If the camera determines that the size of the detected object
satisfies the specified criteria, then it transmits only the portion
of the frame containing the object. For this case, we measured
the time interval starting from camera waking up, including
processing of the frame, and ending when the sink receives
the transmitted portion of the image completely. Again, the
distance between the camera and the sink is 12 meters, and
communication is performed in two hops. The size of the
image portion that is transmitted is 50× 50, and the file size
is 1.8 kB. The average measured latency for this case is 6.24
sec.

In the third scenario described in Section III-C, camera
A performs foreground object detection, and determines the
size of the detected object. If detected object is large enough,
camera A sends a message addressed to camera B containing
the label of the detected object. The average measured time
from camera A waking up to camera B receiving the message
packet is 5.51 sec. Camera A and camera B communicate in



Fig. 6. Operating current of the camera board when transmitting (a) the whole frame, (b) only the portion of the image containing the
detected object.

Fig. 8. The latencies of different components of operation for
different scenarios.

single-hop and the average measured latency for communica-
tion between them is 0.33 sec.

Figure 8 shows the amount of time it takes to complete
warming up, processing and communication for all three
scenarios.

V. CONCLUSIONS

In this paper, we presented and analyzed three different
operation scenarios for a wireless multimedia sensor network.
In the first scenario, a scalar sensor wakes up the camera mote
when it detects motion in the scene. The camera captures a
frame, but does not perform any local processing of the image.
It transmits the whole image frame in a multi-hop manner to
a sink node. In the second scenario, cameras perform local
processing to detect foreground objects. The camera transmits
only when the size of the detected object satisfies a specified
criteria (for instance to detect large vehicles). In addition, the
camera does not transmit the whole frame, but only transmits

the portion containing the object. In the third scenario, after
performing local processing of the image, one camera commu-
nicates with another one in a P2P manner to detect a composite
event, and only when the composite event is detected, they
will transmit the interesting portion of a frame to the sink.
We presented a detailed quantitative comparison of these three
scenarios in terms of the energy consumption and latency when
the goal is detecting a composite and semantically high-level
event. In addition to providing motivation for and emphasizing
the importance of pushing the high-level decision making to
the sensor level, this analysis gives quantitative results in terms
of savings in energy.
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