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Abstract—In Wireless multimedia sensor networks (WMSNs), two
graphs, communication network graph and vision graph, can be
established. The camera nodes connected in the vision graph share
overlapped field of views (FOVs) and they depend on the densely
deployed relay nodes in the communication network graph to com-
municate with each other. Given a uniformly deployed camera sensor
network with relay nodes, the problem is to find the number of hops
for the vision-graph-neighbor-searching messages to construct the
vision graph in an energy efficient way. In this paper, mathematical
models are developed to analyze the FOV overlap of the camera nodes
and the multi-hop communications of WSNs in two dimensional,
which are utilized to analyze the optimal hop number. In addition,
simulations are conducted to verify our models.

I. INTRODUCTION

Recently, the advances in low cost CMOS imaging sensors have
made wireless multimedia sensor networks (WMSNs) possible
[1][5]. In WVSNs, multiple camera sensors are deployed to moni-
tor an area. Potential applications of WMSN include surveillance,
traffic tracking, wildlife monitoring and battle-field monitoring.

The challenges faced by scalar wireless sensor networks, such
as energy constraints, limited processing capabilities, unreliability
and low accuracy of obtained data, are only exacerbated in WMSN.
To improve the sensing quality, a certain level of collaboration
among sensor nodes are required. In [1], collaborative multimedia
in-network processing is suggested, which can utilize the com-
putational capacity of sensors as well as reduce communication
cost and energy consumption. In [2], scalar sensors are exploited
to help camera nodes detect events in WMSNs. More directly,
camera sensors can collaborate with each other to accomplish a
task. This is achieved by exploiting the overlapped field-of-views
of the camera sensors.

In WMSN, each camera sensor has its own directional sensing
range, known as the field-of-view (FOV), and cameras may have
overlapped FOVs, which means if an event occurs in this over-
lapped area, several cameras may capture this event in different
perspectives. These camera nodes form a vision graph [4], in which
an edge between two cameras means they share an overlapped
FOV and the two cameras are called vision graph neighbors. Some
research exploits the characteristics of the overlapped FOVs in
collaboration of camera sensor nodes. In [6], routing paths are
established based on the overlapped FOVs of camera nodes. In [3]
and [8], overlapped FOV is exploited to define correlation among
camera nodes and this correlation is used for cooperative video
processing. Meanwhile, in [4], the images of the overlapped FOVs
have been explored to calibrate the camera nodes.

To construct vision graphs in WMSN, two methods are widely
used in literature: the cameras nodes know their locations and

directions a priori [3], or reference objects are used for camera
nodes to calculate overlapped FOVs [7][8]. However, in these
works, simple flooding is employed to exchange information
among camera nodes. It is well known that for large scale
WSNs, flooding is impractical in terms of communication cost
and network congestion. In this paper, we propose a limited-
hop-number multi-hop communication for constructing the vision
graph in WMSNs. Given a uniformly deployed camera sensor
network with relay nodes, we are interested in finding the hop
number for the vision-graph-neighbor-searching messages (hello
message) in order to construct the vision graph in an energy
efficient way.

Mathematical models are developed to analyze the probability
of constructing the vision graph for different message lifetime
(maximum hop number). This is achieved by developing a prob-
abilistic model of overlapped FOV for different distance and the
probabilistic model of propagation distance for different message
life time. In [9], the authors have proposed a method to analyze the
probability distribution of multi-hop communications in WSNs.
However, only one dimensional topology is considered and the
channel is assumed to be perfect. In this paper, we propose
a recursive method to analyze the multi-hop communications
of WMSNs in two dimensional topologies. Moreover, a more
practical channel model is adopted to capture the connectivity
probability. In addition, simulations are conducted to verify our
models.

To our knowledge, this is the first paper to address the com-
munication problem of constructing vision graph in WMSNs. Our
main contributions are:

• The probabilistic model of two cameras having overlapped
FOV with respect to their distance;

• The 2-D multi-hop communication model that maps maxi-
mum hop number to connectivity;

• The mathematical model to calculate the needed maximum
hop number to construct the vision graph for a given WSMN.

The remainder of this paper is organized as follows: The proba-
bilistic models for overlapped FOV, multi-hop communication and
vision graph construction are developed in Section II. Simulations
and Numerical analysis of those models is provided in Section III.
Furthermore, the conclusions are drawn in Section IV.

II. SYSTEM MODEL

We consider applications, in which the camera sensors are
randomly deployed. To connect these camera sensors, some other
relay nodes are also randomly deployed among them by Poisson
random process. The overview of the system is shown in Fig. 1.
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Fig. 1: The system overview.

In this figure, the two cameras are vision graph neighbors since
their FOVs are overlapped. Other relay nodes are provided to help
these two camera nodes communicate with each other.

Denote the probability of constructing the vision graph pv, our
goal is to relate this probability to the maximum lifetime of the
hello message. pv is given as

pv(n) =

∫∞
0

pvnc(l, n) dl∫∞
0

pvn(l) dl
, (1)

where pvnc(l, n) is the probability of successfully connected vision
graph neighbors given distance l and maximum hop number n
and pvn(l) is the probability of vision graph neighbors given
distance l. pvn(l) is related to the FOV of the camera and it
is developed in Section II-A, while pvnc(l, n) is related to the
multi-hop communication of sensors, whose model is provided in
Section II-B. In Section II-C, those two models are utilized to
develop the model for vision graph construction.

A. Overlapped Field of View

We model the FOV of a camera as a fan sector in 2D plane, as
shown in Fig. 1. It is defined by a tuple (rv, α), where rv is the
FOV radius, which determines the maximum distance the camera
can observe, and α is the visual angle, which depicts the width of
the FOV. Two camera nodes are defined as vision graph neighbors
if and only if their FOVs overlap.

This overlap model is shown in Fig. 2. It is observed that
given the distance l of two cameras, when these two cameras are
at some specific directions, they will have overlapped FOV and
become vision graph neighbors. Assume that the direction of the
camera is uniformly distributed, the probability that two cameras
are vision graph neighbors is equal to the portion of directions
at which they have overlapped FOV. When fixing the direction of
the first camera at angle θ1, there exists a range [θ2min, θ2max],
such that when the direction of the second camera is in this range,
these two cameras have overlapped FOV. As θ1 changes, the range
changes too. With the ranges of θ1 and θ2 in which the two camera
nodes can have overlapped FOV at distance l, the probability that
these two cameras can have overlapped FOV at distance l, which
is denote as po(l), is the integral of the ranges divided by the
maximum range. Thus,

po(l) =
1

2π2

∑
i

∫ ψi+1

ψi

(θ2max − θ2min) dθ1 . (2)
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Fig. 2: The camera overlap model.

In Table I, the ranges of θ1 and θ2, in which these two camera
nodes have overlapped FOV for different distance, l, are listed.
For a given l, the range of θ1 is divided into categories, and in
each category, the range of θ2 can be expressed by the value of θ1.
Note in the tables, the range of θ1 is only considered as in range
[0, π]. For the range [π, 2π], it is a mirror of [0, π]. Also note that
the camera visual angle α impacts the conditional probability and
in three different cases ([0, π4 ], [

π
4 ,

π
3 ], [

π
3 ,

π
2 ]), the expressions are

different. Here, we assume the visual angle of the camera α is in
the range of [π4 ,

π
3 ]. The variables a–f in the tables are shown in

the following.

a = cos−1 l

2rv
(3)

b = tan−1 rv sin (θ1 − α)

l − rv cos (θ1 − α)
(4)

c = sin−1 rv
l

(5)

d = cos−1{[l tan2(θ1 − α)

+
√

r2v + r2v tan
2(θ1 − α)− l2tan2(θ1 − α)]

/rv(1 + tan2(θ1 − α))} (6)

e = cos−1{[l tan2(θ1 − α)

−
√

r2v + r2v tan
2(θ1 − α)− l2tan2(θ1 − α)]

/rv(1 + tan2(θ1 − α))} (7)

f = cos−1{[l tan2(θ1 + α)

+
√

r2v + r2v tan
2(θ1 + α)− l2tan2(θ1 + α)]

/rv(1 + tan2(θ1 + α))} (8)

As expected, it is noticed from Table I that when the two
cameras are close to each other, the ranges in which they can be
vision graph neighbors are larger, which implies the probability
that they are vision graph neighbors is greater.

B. Multi-hop Communication

In this section, we develop a model to analyze multi-hop
communication of two camera nodes in wireless sensor networks.
In the analysis, the distance of camera node A and B is denoted as
l and the density of the relay nodes is λ. In addition, Log-normal
shadowing model is employed to represent the channel.

In our model, Cn
l represents the event that two nodes at

distance l can communicate within n hops, while C̄n
l represents the

opposite. The probability of event Cnl is denoted as pcn(l) and the
probability of event C̄nl is qcn(l). In addition, Pcn(l) is employed



√
2rv < l ≤ 2rv

θ1 range θ2 range
[0, α− cos−1 l

2rv
] [π − a− α, π + a+ α]

[α− cos−1 l
2rv

, α] [π − a− α, π − b+ α]

[α, cos−1 l
2rv

+ α] [π − a− α, π − d+ α]

rv < l ≤
√
2rv

θ1 range θ2 range
[0, α− cos−1 rv

l
] [−c+ π − α, c+ π + α]

[α− cos−1 rv
l
, α] [−c+ π − α, π − b+ α]

[α, cos−1 rv
l

+ α] [−c+ π − α, π − d+ α]

[cos−1 rv
l

+ α, cos−1 l
2rv

+ α] [π − b− α, π − d+ α]

[cos−1 l
2rv

+ α, sin−1 rv
l

+ α] [π − e− α, π − d+ α]

−2rv cos(2α) < l ≤ r
θ1 range θ2 range
[0, α] [0, 2π]

[α, cos−1 l
2rv

+ α] [π + b− α, π + α]

[cos−1 l
2rv

+ α, π − α] [π − e− α, π + α]

[π − α, α+ π
2
] [π − e− α, f + π + α]

[α+ π
2
, π] [π − d− α, f + π + α]

0 < l ≤ −2rv cos(2α)
θ1 range θ2 range
[0, α] [0, 2π]

[α, π − α] [π − b− α, π + α]

[π − α, cos−1 l
2rv

+ α] [π − b− α, f + π + α]

[cos−1 l
2rv

+ α, α+ π
2
] [π − e− α, f + π + α]

[α+ π
2
, π] [π − d− α, f + π + α]

TABLE I: The possible ranges of θ1 and θ2 to have overlapped FOV for different
distance l.

to denote the probability that two nodes can communicate at
distance l with up to n hops.

Adopting the shadowing channel model, the signal noise ratio
(SNR), ϕ, in dB is expressed as

ϕ(Xσ, l) = Pt − PL(l0) + 10η log10

(
l

l0

)
+Xσ − Pn , (9)

where Pt is the transmission power, PL(d0) is the attenuation
at the reference distance l0, Xσ is the shadowing effect random
variable and Pn is noise floor.

The symbol error rate, ps(Xσ, l), ps(Xσ, l) is calculated by

ps(Xσ, l) = Q (β2 (ϕ(Xσ, l)− β1)) , (10)

where β1 and β2 are two parameters obtained by experiments [11].
Note that other error rate models can be used in our scheme. For
example, a means to calculated the error rate for MicaZ mote is
developed in [10]. For one hop communication, the probability
that two nodes can communicate is:

pc1(l) = p
{
C1
l

}
=

∫ ∞

−∞
(1− pb(N, l))

L
fXσ (Xσ) dXσ , (11)

where L is the packet length in symbols, fXσ (Xσ) is the PDF of
the shadowing effect modeled by a log-normal random variable.

For the one hop situation, the probability that two nodes can
communicate within up to 1 hop is given simply by

Pc1(l) = pc1(l) . (12)

When the hop number is greater than 2, we develop our model
as follows. The event that node A has a n-hop communication
path to node B equals to that there is node x at position (ρx, θx),
which has a 1-hop path to A a (n−1)-hop communication path to
node B. The model for this problem is shown in Fig. 3. Assume

the location of the intermediate node, x, is (ρx, θx), where ρx is
the distance of x and B, and θx is the angle of x with respect to
vector B⃗A. Thus, the distance of x and A can be expressed as

ρxA =
√
(l − ρx cos θx)2 + (ρx sin θx)2 . (13)

A Bl
x

x
x

Ax

x

x

Fig. 3: The multi-hop model when the hop number is greater than 2.

Given Poisson process density λ, the probability that at position
(ρx, θx) there is a node is

pe(ρx, θx) = 1− e−λρx∆ρx∆θx

≈ λρx∆ρx∆θx .
(14)

The approximation holds when the area ρx∆ρx∆θx → 0. The
ranges of ρx and θx are

0 < ρx ≤ ∞ and
0 ≤ θx ≤ 2π (15)

The probability of 1-hop communication between x and A is
pc1(ρxA), where ρxA is the distance from A to x. Recursively, the
probability that node x has a (n− 1)-hop communication path to
node B is pc(n−1)(ρx). Therefore,

pcn(l) = 1−∏
ρx

∏
θx

(
1− (λρx ·∆ρx ·∆θx) pc1(ρxA)pc(n−1)(ρx)

)
.

(16)

In (16), the term inside the product defines the probability that
there is no intermediate node at (ρx, θx) which satisfies the
requirements. Since the relay nodes are deployed independently,
the product over ρx and θx is the probability that there is no
intermediate node at the whole planar. Finally, subtracting that
probability from 1 is the probability that those two nodes can
have a n-hop communication.

Also, the probability that two nodes at distance l can commu-
nicate in up to n hops is

Pcn(l) = p
{
C1
l

}
+ p

{
C̄1
l , C

2
l

}
+ · · ·

+p
{
C̄1
l , C̄

2
l , . . . , C̄

(n−1)
l , Cnl

}
.

(17)

The first term in (17) is the probability of communication in 1
hop, the second term is the probability that the two camera nodes
cannot communicate in 1 hop but can communication in 2 hops.
Generally, the nth term is the probability that the two camera
nodes cannot communicate within up to (n − 1) hops but can
communicate in n hops. The sum is the probability that the two



nodes can communicate within up to n hops. Since given distance,
l, C̄1

l ,. . . ,C̄n
l and C1

l ,. . . ,Cnl are independent, we have

Pcn(l) = p
{
C1
l

}
+ p

{
C̄1
l

}
p
{
C2
l

}
+ · · ·

+ p
{
C̄1
l

}
· · · p

{
C̄

(n−1)
l

}
p {Cn

l }

= pc1(l) + qc1(l)pc2(l) + · · ·+

(
n−1∏
i=1

qci(l)

)
pcn(l) .

(18)

C. Vision Graph Construction

The short range communication character of WSNs causes a
camera node’s vision graph neighbors may be several hops away.
On the other hand, two closely located camera nodes may not be
vision graph neighbors. Given a uniformly deployed camera sensor
network with relay sensors, we try to find the optimal hop number
for the hello messages in order to construct the vision graph.

Assume the camera node deployment is a Poisson point process
and denote the camera node density as κ. Given the distance l,
the probability that a camera node has vision graph neighbors at
distance l is

pvn(l) =
(
1− e−κAµ

)
po(l)

≈ κAµpo(l) ,
(19)

where po(l) is the probability that two cameras have overlapped
FOV when the distance is l, which is provided in Section II-A, and
Aµ is the size of an infinitely small circle area, which is expressed
as

A(µ) = 2πl dl → 0 . (20)

The paths to some far away vision graph neighbors may not be
established because of the limitation of the message hop number.
Thus, we consider the probability of constructing the vision graph
as the ratio of the connected vision graph neighbors against all
vision graph neighbors. Given a camera node A, the probability
that there are camera nodes at distance l which are vision graph
neighbors of A and they can communicate within n-hops is

pvnc(l, n) = pvn(l)Pcn(l) , (21)

where pvn(l) is given in (19) and Pcn is given in (18).
The probability of constructing the vision graph using n-hop

communication is

pv(n) =

∫∞
0

pvnc(l, n) dl∫∞
0

pvn(l) dl

=

∫∞
0

2πκlpo(l)Pcn(l) dl∫∞
0

2πκlpo(l) dl

=

∫∞
0

po(l)Pcn(l)l dl∫∞
0

po(l)l dl
,

(22)

which can be further simplified by considering the fact that when
the distance of two cameras is greater than twice the FOV range
rv , their FOVs do not overlap. Hence, it is impossible that they are
vision graph neighbors. Therefor, the upper limit of the integral
can be rewritten to 2rv , thus,

pv(n) =

∫ 2rv
0

po(l)Pcn(l)l dl∫ 2rv
0

po(l)l dl
. (23)

TABLE II: Parameter list.

Parameter Value
rv 10 m
Pt 0 dBm
d0 1 m

PLd0 55.4 dBm
η 4.7
σ 3.2
Pn −95.23 dBm
λ 0.2
β1 2.3851
β2 0.9794
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Fig. 4: The comparison of the theoretical analysis and the simulation results for
constructing the vision graph

III. NUMERICAL ANALYSIS

In this section, numerical analysis of the system model is
performed using Matlab. We first use TOSSIM simulation to
verify our model in Section III-A, after which the camera FOV
overlap model, the multi-hop communication model as well as the
model for constructing vision graph in WMSNs are analyzed in
Section III-B. The parameters used in the analysis are listed in
Table II.

A. Model Verification

To verify the models, we have simulated the WMSNs using
TOSSIM. In the simulations, 1000 network topologies are gener-
ated by Poisson process, and the size of the field is 50 m × 50 m. In
each topology, two cameras nodes are setted with random distance
and random direction. The vision angle of each camera is 5π

18 .
Note all the camera pairs in the 1000 topologies are vision graph
neighbors. The other parameters are set the same as in Table II. In
Fig. 4, the theoretical and the simulation results of the probability
of constructing the vision graph are shown.

It is observed from Fig. 4 that the mathematical models capture
the characteristics of the FOV overlap and the multi-hop commu-
nications. For our settings, instead of unlimited flooding, 5-hop
broadcast is sufficient to construct the vision graph. In other words,
when deploying the WMSN, the camera nodes need to broadcast
a hello message with maximum hop number of 5 to find the vision
graph neighbors.

B. Model Analysis

In this section, the three models are analyzed. In Fig. 5, the
probability of camera FOV overlap over distance is shown for
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Fig. 5: The probability of FOV overlap.
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Fig. 6: The coverage probability of multi-hop communication.

different camera vision angles. It is observed that when the camera
vision angle is larger, the probability that the two cameras have
overlapped FOVs is greater. At the distance of 5 m, if the camera
vision angle is π

3 , it is 12% more likely to have a vision graph
neighbor than camera vision angle of π

4 . Also, the decrease of the
probability over distance is not constant. Around distance of 10 m,
there is a sharp drop, which means most vision graph neighbors
will be in a close distance.

The probability of connectivity for multi-hop communication
is depicted in Fig. 6. Note in this figure, the hop numbers are
the maximum allowed hop numbers. It is shown that if the 1-hop
coverage is r, the coverage for n-hop is a little more than nr.
For example, at 90% connectivity, the coverage of 1-hop is 4.57
m, however, the coverage of 3-hop is 14.73 m and the overage of
5-hop is 26.39 m. Because the maximum distance of two vision
graph neighbors in our setting is 20 m, we would assume the
needed hop number is 4.

The probability of constructing the vision graph as a function
of maximum hop numbers is shown in Fig. 7 for different camera
vision angles. It is expected that because when the camera vision
angle is greater, the two cameras are more likely to be vision graph
neighbors, thus given a maximum hop number, the probability of
constructing the vision graph is lower. However, the analysis shows
the decrease of the probability is not significant. In fact, when the
maximum hop number is 2, where the difference is most notable,
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Fig. 7: The coverage probability of multi-hop communication.

the probability of constructing the vision graph for camera vision
angle of π

4 is 52.08%, and for camera vision angle of π
3 , the

probability is 48.28%.

IV. CONCLUSIONS

In this paper, we address the problem of constructing vision
graph in WMSNs. The mathematical model for camera FOV
overlap is developed to analyze the probability of vision graph
neighbor over distance. Meanwhile, multi-hop communication
model with channel model in consideration is developed to analyze
the probability of multi-hop coverage. Simulations are established
to verify these models, which shows the mathematical models
capture the characteristics of the FOV overlap and the multi-hop
communications. For our settings, instead of unlimited flooding,
5-hop broadcast is sufficient to construct the vision graph.
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