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ABSTRACT
Cyber-Physical Systems (CPS) involve communication, computa-
tion, sensing, and actuating through heterogeneous and widely dis-
tributed physical devices and computational components. The close
interactions of these systems with the physical world places events
as the major building blocks for the realization of CPS. Morespecif-
ically, the system components and design principles shouldbe re-
visited with a strictlyevent-basedapproach. In this paper, a concept
lattice-based event model for CPS is introduced. Under thismodel,
a CPS event is uniformly represented by three components:event
type, its internal attributes, and its external attributes. The inter-
nal and external attributes together characterize the type, spatio-
temporal properties of the event as well as the components that ob-
serve it. A set of event composition rules are defined where the CPS
event composition is based on aCPS concept lattice. The result-
ing event model can be used both as anoffline analysis toolas well
as arun-time implementation modeldue to its distributed nature.
A real-life smart home example is used to illustrate the proposed
event model. To this end, a CPS event simulator is implemented to
evaluate the developed event model and compare with the existing
Java implementation of the smart home application. The compari-
son result shows that the event model provides several advantages
in terms of flexibility, QoS support, and complexity. The proposed
event model lay the foundations of event-based system design in
CPS.

Categories and Subject Descriptors
D.4.7 [Organization and Design]: Real-time and embedded sys-
tems
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1. INTRODUCTION
The Cyber-Physical Systems (CPSs) are envisioned as heteroge-

neoussystems of systems, which involve communication, computa-
tion, sensing, and actuating through heterogeneous and widely dis-
tributed physical devices and computation components [17]. The
components of a CPS are connected through wired and wireless
networks in a large scale and orchestrated together as a whole.
Moreover, CPS introduces several challenges for system design:
(1) to support high system flexibility such that the CPS compo-
nents in the system are free to join or leave dynamically, (2)to sup-
port various Quality of Services (QoS) requirements through out
every levelof CPSs. For example, a deadline (i.e., a time-related
QoS requirement) on a control-loop in a CPS indicates that when
an event of interest occurs in the physical world: firstly, ithas to be
sensed and detected by certain CPS components in the cyber world;
secondly, appropriate actuation decisions should be takenby dis-
tributed system components, and lastly, an actuation task needs to
be carried out by an actuator in the physical world, all within a lim-
ited time frame. The timing constraints for each individualcompo-
nent varies because of the non-deterministic system delay for sens-
ing, computation, communication, and actuation, which becomes a
major verification challenge. Due to the close interactionswith the
physical world, such constraints can be addressed through an event-
based approach, i.e., using events as the units in CPS for computa-
tion, communication, and control [30] [31]. In this work, werefer
to the occurrence of interests in a CPS system encompassed bythe
cyber world and the physical world as aCPS event. This paper
extends our previous result on formalizing the event model for the
CPS [31].

Event-based system design has been studied in various areas.
However, existing approaches for event-based design such as data-
centric event modeling used in database applications [22],or
temporal-order-centric event modeling [18, 3] in distributed appli-



cations cannot be directly applied to CPS applications. This is
because in traditional system design, the event models generally
maintain a consistent view about time and space with respectto a
single entity. A CPS, however, is characterized by spatio-temporal
information as well as a distributed set of components that operate
in different reference frames. Moreover, due to its inherent hetero-
geneity and distributed nature, a common frame-of-reference does
not exist in CPS. To address the distributed and open nature of CPS,
in this paper, we define aCPS event model, which incorporates the
spatio-temporal attributes and observer information intothe event
definition.

In addition, events in CPS range from lower-level, physicalsens-
ing and actuating events to higher-level, human/machine under-
standable cyber events. To provide seamless interactions between
heterogeneous components and devices in cyber and physicaldo-
mains, a unified representation ofeventsis defined. Accordingly, a
systematic mechanism is developed to compose CPS events to and
from different levels and across different system boundaries. The
resulting event model can be used both as anoffline analysis tool
as well as arun-time implementation modeldue to its distributed
nature.

The main contributions of the paper are twofold. First, a unified
event structure that represents CPS event instance at different lay-
ers is defined. Accordingly, a CPS event instance consists ofthree
components: event type, its internal and external attributes. To-
gether, they describewhenandwherethe event instance is observed
to occur and its observer. Furthermore, each observer, suchas a
sensor, is also defined as a CPS event, which enables observers to
dynamically join and leave the CPS at run-time. Second, a formal
mechanism is defined for composing CPS events from lower-level
events by applying and extending the theory ofconcept lattice[21,
32]1. To this end, a set of composition functions are introduced to
accommodate the temporal and spatial constraints in event compo-
sition as well.

The rest of the paper is organized as follows: In Section 2, recent
solutions on event modeling in various contexts are reviewed. The
unified CPS event structure is introduced and the related concepts
are described in Section 3. In Section 4, we discuss the concept-
lattice-based CPS event model and event composition. The devel-
oped model is evaluated in Section 5 through a case study, where
a smart home system is implemented through the event model. We
conclude the paper and point out future work in Section 6.

2. RELATED WORK
The concept of events has been investigated in several contexts

both within the cyber domain and the physical domain. For in-
stance, theEvent-Condition-Action (ECA)model is introduced in
[22], in whicheventspecifies the signal that triggers the evaluation
of theconditionand if true, causes anaction to be carried out. In
the ECA model, actions are triggered by independent events.Ex-
tensions to the ECA model [11, 9, 4] introduce a set of event oper-
ators to compose events so that composite events can be described.
SnoopIB [2] further considers event occurrences in the timedo-
main as intervals (interval events), rather than time points (punc-
tual events). The spatial relationships between differentevents are
studied in [1, 7]. The real-time community aims to add timing
constraints to the event-condition-action model. For example, the
Real-Time Logic (RTL)-based event model has been proposed with
point- and interval-based timing constraints in [23, 24, 34], respec-
tively. Timing constraints in RTL-based event models definethe
1Concept lattice(Galois lattice) is a conceptual hierarchical struc-
ture based on binary relation proposed by Rudolf Wille [33, 32].
The theory has been widely used in the fields of software engineer-
ing [20, 28, 29] and data mining [12, 5, 6].

time point-based real-time relationships among the occurrence time
of events.

An event-based approach is adopted to describe interested prop-
erties of a running program [18, 3]. The interested program prop-
erties, such as safety and liveness, are defined as temporal occur-
rence patterns of events. For example, Java-MAC [13, 14] uses
Linear Temporal Logic (LTL) for Java program run-time monitor-
ing, where events occur instantaneously during system execution
and conditions represent information that hold for a duration of
time. The event calculus [15, 25, 8] investigates a logic program
framework for representing and reasoning about events (or actions)
and their effects. Under this framework, time-varying properties
(true or false) of the world during certain intervals, called fluents,
are initiated by an occurrence of an action continue to (or not to)
hold until an occurrence of an action which terminates them.

In most of the solutions mentioned above, there is an implicit as-
sumption that the observer of an event is unique and global, which
is the system, or the program. Therefore, to most, the time and spa-
cial information are associated with an event, its observeris nev-
ertheless omitted or is taken as a default ‘system’. In distributed
computing, event observers are different, however, the observers
are interested in the same set of events and the goal is to obtain a
consistent view about the ordering of these events.

In [30], the necessity of adopting event-based approach in CPS
is discussed, however, a formal CPS event model including the se-
mantics of an event and the event composition rules is not consid-
ered in this work. In [31], we introduce the concept ofobservers
and a hierarchical spatio-temporal event model for CPS. Theevent
model uses event attributes, occurrence time and space stamps, and
event observer together to uniquely identify a CPS event instance.
In addition, a set of temporal, spatial and logical operators are de-
fined to support the temporal and spatial event composition.How-
ever, in [31], events are differentiated by four categoriesbased on
the corresponding four different system layers, namely, physical
events, sensor events, cyber-physical events, and cyber events. Fur-
thermore, although event temporal, spatial, and logical composi-
tions are defined in [31], structural representation of observers and
formal treatment of event type compositions are not considered.

In summary, CPS as an emerging concept introduces new chal-
lenges in system design and an event-based approach is necessary
for the realization of CPS [30]. Not only the information carried
in CPS events are far richer than the existing systems (e.g.,the
spatio-temporal and the observer information [31]), but the diver-
sity of CPS events also range from lower-level, physical events to
higher-level, human/machine-understandable cyber events. To the
best of our knowledge, the work presented in the paper is the first
event model that captures the essential information about events in
a distributed environment.

3. CPS EVENT STRUCTURE
In this section, we formally define the CPS event model. More

specifically, the syntax for the CPS event instance is described and
the CPS event extraction functions that extract the internal and ex-
ternal event attributes are introduced. These building blocks for the
CPS event model can be used by heterogeneous components for
event composition in the CPS.

3.1 Representation of a CPS Event Instance
As described in Section 2, representation of a CPS event in-

stance is significantly different from traditional event representa-
tion. More specifically, the spatio-temporal properties ofthe CPS
event as well as the components thatobservethis event should be an
integral component of the event definition. Accordingly, wedefine
a CPS event instance as follows:



Ecps := Γ〈µ, T g,Lg〉@(T ,L,O)
T g, T := [t1, t2]

Lg, L := ((x, y, z), r)
O := Ecps|⊤
[ := (|[
] := )|]

t1, t2, r := ∈ ℜ+

x, y, z := ∈ ℜ

Table 1: CPS Event Syntax

DEFINITION 1 (CPS EVENT INSTANCE). A CPS event instance
is represented by the event type,internalevent attributes, andex-
ternalevent attributes as shown in(1),

Ecps = Γ〈µ, T g ,Lg

︸ ︷︷ ︸

Internal

〉@(T ,L,O
︸ ︷︷ ︸

External

) (1)

where

• Γ represents the type of the event instance.

• Internal attributes:µ represents a finite set of attributes of the
event instance, whileT g andLg represent the time and the
location at which the event is generated.

• External attributes:T andL represent the time and the loca-
tion at which the event is observed to occur, which may differ
from the time and location from which the event is generated.
Finally, O is the observer of the event instance.

The internal attributes of an event are highly application-depen-
dent. For example, (un)certainty associated with the timestamp of
an event can be included as an internal attribute [34]. On theother
hand, the external attributes of an event are application-independent
and represent fixed properties that all CPS events have. We argue
that external attributes are a major difference from traditional event
models.

The temporal attributesT g andT in (1) are given in the form of
a time interval, i.e.,[a, b] (or (a, b], (a, b), [a, b)). Whena = b, the
event is an instant event. It is important to note that all timestamps
represent “real-clock timestamps” instead of “logical-clock times-
tamps,” such as Lamport’s vector clock [16]. This is due to explicit
timing constraints, e.g., “A occurs 5 seconds beforeB”, which are
very common in applications.

The spatial attributesLg andL in (1) are given in the form of
((x, y, z), r), where(x, y, z) is the relative geographical coordi-
nates with respect to the observerO, andr indicates the radius of
the event. A point event is will haver = 0, and a field event will
haver > 0. 2

In summary, (1) describes an event instanceEcps of event typeΓ
with attributesµ observed byO. The event instance is observed to
occur at timeT and locationL with respective to the observer loca-
tion. Then, the event instance is generated at timeT g and location
Lg with respect to the observer.

In addition to cyber-physical events, the observerO is also de-
fined as an event instance with an event typeObs. Accordingly, the
observer event instanceis defined as follows:

DEFINITION 2 (CPS OBSERVEREVENT INSTANCE).

Eobs = Obs 〈g, id, 〈Γs〉, µ′, T g ,Lg〉@(T , L, O⊤) (2)

2Although we use a sphere to represent a 3-dimensional region, it
is straightforward to extend the model to use other forms.
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Figure 1: The acoustic sensor in Example 1

whereg is the set of event generation rules associated with the ob-
server,id is the observer ID,〈Γs〉 is the set of event types that this
observer can generate, andµ′ are the observer event attributes re-
lated to the specific observer. The spatio-temporal attributes of the
observer event instance are the same as in (1), andO⊤ represents
theglobal observer.

The global observer is defined for system analysis purposes,so
that a common frame of reference can be provided. For any specific
CPS system, there is only one global observerO⊤. Its location is
the system origin and the time interval is defined as the system’s
life span. Accordingly, the global observer is defined asO⊤ =
Obs〈[0,∞), ((0, 0, 0), 0)〉@([0,∞), ((0, 0, 0),∞), ⊤), where⊤
denotes the CPS system itself.

Observers dynamically joining or leaving a CPS are represented
as events, which can be reported by any observer, including the
entity joining or leaving. Mobile observers are handled similarly,
though the application needs to determine the granularity of spatial
accuracy required, which will determine the frequency withwhich
location updates must be reported for mobile entities.

Based on the definitions of event instance in (1) and its special
case observer event instance in (2) we defineE to be the set of all
event instances in a CPS system andO to be the set of all CPS
observers, including the global observerO⊤. Obviously,O ⊆ E.
The syntax for the CPS event instanceEcps is given in Table 1.

Example 1.
To better illustrate the event structure and its components, con-

sider an acoustic sensor that observes a CPS event instance as shown
in Fig. 1. More specifically, in Fig. 1(a), an acoustic sensorin-
stalled at global point location((10, 10, 10), 0) (the square dot)
is shown, where a sound event, e.g.,clapping occurs at a global
point location((xr, yr, zr), 0) (the black round dot). When the



acoustic sensor is initialized, itsrelative location is set asLg =
((0, 0, 0), 0), and it observes that aSound event occurs within5
units of its sensing range (the grey round dot).

The timeline of the sensor initialization and event generation
is shown in Fig. 1(b), where the acoustic sensor is initialized at
global point time5s. The acoustic sensor initializes its relative
time as[0,∞) and it starts sampling. Assume that the sensor is
programmed to generate a sound event after each4 samples (the
round dot end lines). As shown in Fig. 1(b), the sound event occurs
at global timeTr. This event is observed asSound event instance
at relative sensor timeT = 8s (global time5 + 8 = 13s) and the
event instance is generated at sensor timeT g = 18s (global time
5 + 18 = 23s). The observed event occurrence time,T , and the
event instance generation time,T g, is 18− 8 = 10s apart because
of the event generation mechanism defined at the acoustic sensor,
i.e., it generates a sound event instance after every4 samples. If the
sampled sound values are greater than a certain threshold, asound
event instance is then generated. Accordingly, the event instance is
generated atT g = 18s and the the event instance occurrence time
is recorded asT = 8s.

Next, we formally represent the acoustic sensor event and the
sound event instance. The acoustic sensor event is represented as
an observer event instance as follows:

S1 = Obs 〈gs1 , s1, 〈Sound〉, [0,∞), ((0, 0, 0), 0)〉@(

[5,∞), ((10, 10, 10), 0), O⊤) (3)

whereObs event type indicates that this event instance is an ob-
server event instance;gs1 , s1, 〈Sound〉 are the observer event at-
tributes describing the event generation rules of the acoustic sensor
(gs1 ), the sensor ID (s1), and the event type the acoustic sensor
can generate (Sound), respectively;[0,∞) and((0, 0, 0), 0) rep-
resent that initial timer and location for the acoustic sensor, respec-
tively; ([5,∞), ((10, 10, 10), 0,O⊤) specifies that the sensor starts
functioning at global time5 and installed at global point location
((10, 10, 10), 0) with respect to a global observerO⊤.

Similarly, the sound event instance that is generated by theacous-
tic sensor is represented as a CPS event instance as follows:

e1 = Sound 〈value1, [18, 18], ((0, 0, 0), 0)〉@(

[8, 8], ((0, 0, 0), 5), S1) (4)

whereSound is the event type,value1 is the event attribute that
characterizes the measured sound strength,[18, 18], ((0, 0, 0), 0)
describes the event instance is generated at time18s and location
((0, 0, 0), 0) relative to the acoustic sensor since it is generated by
the sensor. The sensor also reports that theSound event is ob-
served to occur at sensor time[8, 8] and within((0, 0, 0), 5) units
of its location. Finally,S1 is the observer event instance in (3) and
indicates that the event instancee1 is generated byS1.

By Definition 1, a CPS event instance can be observed by an ob-
server but the precedence order between the observer and theob-
served event instance has to be guaranteed. However, to obtain the
precedence order among event occurrence times, a common refer-
ence is required. Therefore, a group of event extraction functions,
including the globalization function, are defined for the purpose
next.

3.2 CPS Event Extraction Functions
As defined in Section 3.1, each event instance consists of three

types of information, i.e., event type, internal attributes, and ex-
ternal attributes that define when and where an event occurs as
well as the observer associated with this event. Given a CPS event
Ecps = Γ〈µ, T g ,Lg〉@(T ,L,O), the following extraction func-
tions are defined to extract the corresponding information:

Value functionV :E 7→ T×I extracts the event type and its event
attributes from a CPS eventEcps:

V(Ecps) = Γµ (5)

whereT andI are sets of event types and event attributes, respec-
tively.

Temporal functionsT andT g: E 7→ ℜ+ × ℜ+ extract the time
during which the event instance occurs and it is generated as:

T (Ecps) = T = [t1, t2] (6)

T
g(Ecps) = T g = [tg1, t

g
2] (7)

respectively, wheret1, t2, t
g
1, t

g
2 ∈ ℜ+, [ ∈ {(, [}, and] ∈ {), ]}.

Spatial functionsL andLg: E 7→ ℜ × ℜ × ℜ × ℜ+ extract the
location where the event instance occurs and where it is generated
as:

L(Ecps) = L = ((x, y, z), r) (8)

L
g(Ecps) = Lg = ((xg, yg, zg), rg) (9)

respectively, wherex, y, z, xg, yg, zg ∈ ℜ andr, rg ∈ ℜ+.
Observer functionB : E 7→ O extracts the event observer:

B(Ecps) = O (10)

In our model, a CPS event instance is defined based on its ob-
server which itself is also a CPS event instance. There may be
many observers in a CPS system, but the global observerO⊤ is
unique within a system serving as the system’s coordinates and a
wall-clock. To compare two CPS event instances in terms of time
and location attributes or generate composite events from distinct
event instances, the corresponding observers must share the same
references. To this end, aglobalization functionis defined to trans-
form a CPS event, which is initially defined with respect to a local
observer, to an event with respect to the global observer.

DEFINITION 3 (GLOBALIZATION FUNCTION). Given an ob-
server

s =Obs 〈µs, [t
g
s ,∞), ((xg

s , y
g
s , z

g
s ), 0)〉@(

[ts,∞), ((xs, ys, zs), 0), O⊤) (11)

and an event observed bys,

ε =Γ 〈µ, [tg1, t
g
2], ((x

g, yg, zg), rg)〉@(

[t1, t2], ((x, y, z), r), s) (12)

the globalization functionG : E 7→ E is defined by:

G(ε) =Γ 〈µ, [ts + tg1 − tgs , ts + tg2 − tgs ], ((xs + xg − xg
s ,

ys + yg − yg
s , zs + zg − zgs ), r

g)〉@([ts + t1 − tgs ,

ts + t2 − tgs ], ((xs + x− xg
s , ys + y − yg

s ,

zs + z − zgs ), r), O⊤) (13)

The globalization function of the event instancee1 in (4), of Ex-
ample 1, changes its observer fromS1 to the global observerO⊤.
As a result, the event occurrence time and location and generation
time and location are converted to the global observer’s perspec-
tive. According to (13), the globalized event instancee1 is defined
as follows:

G(e1) =Sound 〈value1, [23, 23], ((10, 10, 10), 0)〉@(

[13, 13], ((10, 10, 10), 5), O⊤) (14)

Recall that the global observer is for system analysis purposes.
Moreover, the concept of “global” here is relative: it mightbe
“global” inside one sub-system but becomes “local” for a bigger



system, and vice versa. Therefore, in the system implementation
stage, as long as the event instances in the “globalization function”
share one common reference and are within the allowable system
error range, the event instances can be compared and later com-
posed with respect to their occurrence times and locations.

4. CPS EVENT COMPOSITION
Events in a CPS range from low-level physical events such as

sensory data to higher-level, human/machine-understandable cyber
events. Using only the lower-level physical events in the system
is not only inefficient in terms of system bandwidth, but it isalso
not scalable in distributed systems such as CPS [30]. Therefore,
composite events are required to provide an extra means of interac-
tion and keep communication efficient. In this section, the formal
approach of event composition using the CPS event model is de-
scribed.

Given a CPS and an application, the available types of sensors
and the associated events that can be generated by these sensors
can be determined. For example, a temperature sensor produces an
event typeTemperature and a humidity sensor produces an event
typeHumidity. These event types produce by the sensors are con-
sideredprimitive eventsand are used to compose other higher-level
event types in CPS. Formally, the following notations are defined:

• T is the set of all event types in a CPS. For any specific CPS,
theT is a finite set, i.e.,T = {Γ1,Γ2, ...,Γn}.

• B is the set of primitive event types that the available sensors
in this CPS can produce, i.e.,B = {Γ′

1,Γ
′
2, ...,Γ

′
i} where

B ⊆ T. The setB is also referred to as theprimitive event
type set, which is the foundation to compose other higher-
level event typesT \ B in the CPS.

• I is the set of all event attributes that correspond to the event
type setT in this CPS,I = µ1 ∪ µ2 ∪ ... ∪ µn.

• I
′ is the set of event attributesµ′

i that correspond to the prim-
itive event typesΓ′

i in B in a CPS, i.e.,I′ = µ′
1∪µ′

2∪ ...∪µ′
i

whereI′ ⊆ I. The setI′ is also referred as theprimitive event
attribute set.

Formally, event composition in CPS can be defined as follows:
Consider a set of CPS events instancese1, e2, · · · , en and their
composition as a new CPS event instanceea, which can be con-
sidered as an abstraction from primitive events. More specifically,
givenei = Ti 〈µi, T

g
i ,Lg

i 〉@(Ti, Li, Oi), we define an abstrac-
tion functionA as follows:

Γ 〈µ, T g,Lg〉@(T , L, O) = A(e1, e2, · · · , en) (15)

whereA = {AΓ,Aµ,AT ,AT g ,AL,ALg ,AO} and

Γ = AΓ((µ1, T
g
1 , T1,L

g
1,L1,O1), (µ2, T

g
2 , T2,L

g
2,

L2,O2), · · · , (µn, T
g
n , Tn,L

g
n,Ln,On)) (16)

µ = Aµ(µ1, µ2, · · · , µn) (17)

T = AT (T1, T2, · · · , Tn) (18)

T g = AT g (T g
1 , T g

2 , · · · , T g
n ) (19)

L = AL(L1,L2, · · · ,Ln) (20)

Lg = ALg(Lg
1,L

g
2, · · · ,L

g
n) (21)

O = AO(O1,O2, · · · ,On) (22)

In other words, the composite event,ea, is the union of the event
type composition, event attributes composition, spatio-temporal at-
tributes composition, and the observer composition. Next,we first
define the CPS concept lattice that is used to formally define the
composition functions (16-22) and then, describe each specific com-
position function.

EC := EC∧ EC | EC∨ EğC | ¬ EC | (EC) | EC | atom
atom := V-exp Op V-exp| T-exp Op T-exp|

L-exp Op L-exp| O-exp OpO O-exp
V-exp := algebraic-exp-of(attributes)
T-exp := algebraic-exp-of(begin-time, end-time)
L-exp := algebraic-exp-of(x-value, y-value, z-value, r-value)

Op := ==| > | ≤

Table 2: Syntax for CPS Event Constraint Expression

4.1 CPS Concept Lattice
To structurally define the event type composition in the CPS,

we adopt the theory of concept lattice [32] in the composition of
CPS event types. Concept lattice has been widely used in machine
learning, knowledge discovery, and software engineering,however,
to the best of our knowledge, has not been applied to event compo-
sition and abstraction for CPS applications. The theory of concept
lattice is established upon aformal context, which is defined as fol-
lows:

DEFINITION 4 (FORMAL CONTEXT). a formal context is a
triple (I′,T,M), whereI′ is the primitive event attribute set,T
is the event type set, andM ⊆ I

′ ×T defines the bipartite relation-
ships between primitive event attribute setI

′ and the event type set
T.

A formal context defines the relationship between primitiveevent
attributes inI′ and event types inT. In other words, a formal con-
text defines how the primitive event attributes can be constrained
and form event types inT. For example, if the height of an object
is classified as short, medium, and tall, and the width as narrow,
medium, and wide, the formal context can be defined as
(〈H(eight),W (idth)〉, {hs, hm, ht, wn, wm, ww},M), whereM
is defined as the set







(〈[0′0′′, 4′0′′),W 〉, hs), (〈[4
′0′′, 8′0′′),W 〉, hm),

(〈[8′0′′,+∞),W 〉, ht), (〈H, [0′0′′, 2′0′′)〉, wn),
(〈H, [2′0′′, 4′0′′)〉, wm), (〈H, [4′0′′,+∞)〉, ww)







However, the formal context supports only the constraints over a
single domain (e.g., on theHeight attribute) and binary operations
to combine constraints from different domains (e.g.,hs ∪mw). In-
stead, it can not form relationships across multiple domains (e.g.,
V(hm) == V(ww)). In addition, the spatio-temporal attributes
and the observer information can also be used to compose new
event types. To accommodate greater flexibility, we extend the for-
mal context to compose event types using constraints acrossmulti-
ple domains.

In CPS, some event type compositions may only be permissible
under certain constraints on the event attributes, the spatio-temporal
information, and/or the observer information. Such a composi-
tion is referred to asguarded composition. For a given set of CPS
events,ei, (i = 1, 2, ..., n), and an event constraint expression with
respect to the given event set, the guarded composition has the fol-
lowing structure:

[EC]A(e1, e2, ..., en) (23)

The syntax for CPS event constraint (EC) expression is givenin
Table 2.

With guarded composition, event types can be defined across
event attributes, spatio-temporal attributes over two or more event
instances. LetZ = {T ,L, T g ,Lg,O}, then we define an extend
event attribute setIEC :

IEC = 〈2I × 2Z〉 \ ∅ (24)



whereIEC is the product of the power set of the event attribute
set and the power set of the event instance spatio-temporal and
observer information. Accordingly, we define the extended for-
mal context, which not only includes spatio-temporal and observer
information, but also has the ability to compose event properties
across different domains, as follows:

DEFINITION 5 (EXTENDED FORMAL CONTEXT). The
extended formal context for event composition guard is a triple
(IEC ,T,MEC), whereIEC is defined in(24), T is the event type
set, andMEC ⊆ IEC×T defines the bipartite relationship between
extended event attribute setIEC and the event type setT.

Finally, theCPS formal contextis defined as the union of the formal
context and the extended formal context.

DEFINITION 6 (CPS FORMAL CONTEXT). A CPS formal con-
text is a triple(C,T,M), whereC = I

′ ∪ IEC , T is the event type
set, andM = M ∪MEC .

The CPS formal context allows complex relationships between
event attributes and event types to be defined using either the CPS
formal context itself or the event composition guards. These rela-
tionships are calledCPS conceptsas defined next:

DEFINITION 7 (CPS CONCEPT). Let(C,T,M) be a CPS for-
mal context, then(X,Y ) is called aCPS conceptif

X = {µ ∈ C|∀Γ ∈ T, (µ,Γ) ∈ M} (25)

Y = {Γ ∈ T|∀µ ∈ C, (µ,Γ) ∈ M} (26)

Or ∃gc, s.t.(X, gc, Y ) ∈ MEC (27)

whereX ∈ 2C, Y ∈ 2T andgc is an event composition guard.

For example, the detection of aPerson can be associated with
objects of medium heights and widths, i.e.,〈[4′0′′, 8′0′′),W 〉 ∩
〈H, [2′0′′, 4′0′′)〉 = 〈[4′0′′, 8′0′′), [2′0′′, 4′0′′)〉 of event type
{hm, wm}. We associate event constraints〈[4′0′′, 8′0′′),
[2′0′′, 4′0′′)〉 with typePerson (an alias for{hm, wm}) as a CPS
concept. On the other hand, for an event composition guardgc :
V(H) == V(W ) defined from event type{hm, ww} to an event
typeSquare, the system has a valid relationship between the event
typeSquare and the event types{hm, ww} with the help of event
composition guardgc. Clearly, in the particular example, although
theIEC is a very large set, theMEC is fairly simple since have one
event composition guard defined:

MEC = {(〈hm, ww〉, gc : V(H) == V(W ), Square)}

A CPS formal context and its CPS concepts establish the rela-
tionships between event attributes and their corresponding event
types. Such relationships can be built into a hierarchy to lay the
semantic base for event abstractions. Such a hierarchy is defined as
a CPS concept latticeas follows:

DEFINITION 8 (CPS CONCEPTLATTICE). For a formal con-
text(C,T,M), let (X1, Y1) and(X2, Y2) be two CPS concepts. If
X1 ⊇ X2 andY1 ⊆ Y2 , or there is at least one event composi-
tion guard placed on concept(X1, Y1) to (X2, Y2), then there is a
partial order≺ between(X1, Y1) and(X2, Y2), i.e.,

(X1, Y1) ≺ (X2, Y2) (28)

Such a partial order relation is of a lattice structure and forms the
concept latticeof the formal context(C,T,M).

The CPS concept lattice will always form a partial order between
any two CPS concepts unless the corresponding concepts are the
same.

PersonIn
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PersonInHot PersonInThenHot

RoomHot
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Figure 2: Concept lattice of PersonInHot and
PersonInThenHot

Example 2.
To further illustrate the usage of a CPS concept lattice, andcom-

position guard with a temporal constraint, let us consider an exam-
ple, where two events are considered. A person with height5′9′′

stays in a roomΓ1 µ1 = PersonIn 〈5′9′′,−〉 and the room is
hotΓ2 µ2 = RoomHot 〈−, 80F 〉 where the internal attributes of
event instances are of the form〈H(eight), T (emperature)〉, “−” de-
notes the don’t-care attribute. The composition of the two events is
defined as

Γµ = PersonInHot 〈5′9′′, 80F 〉,

wherePersonInHot is a shorthand notation for the set
{PersonIn,RoomHot}. For internal attributes,〈5′9′′,−〉 ⊇
〈5′9′′, 80F 〉 and〈−, 80F 〉 ⊇ 〈5′9′′, 80F 〉; and for event types,
{PersonIn}, {RoomHot} ⊆ {PersonIn,RoomHot}. There-
fore, according to Definition 8,Γ1 µ1 ≺ Γ µ and Γ2 µ2 ≺
Γ µ in the concept lattice. On the other hand, to define the event
of type PersonInThenHot, we require that the event of type
PersonIn to occur earlier than the event of typeRoomHot, i.e.,
T (PersonIn).t2 ≤ T (RoomHot).t1, whereT is the time ex-
traction function defined in Section 3.2. The resulting CPS concept
lattice is shown in Figure 2.

In summary, different CPS applications have different concept
lattices which define the composition abstraction relationship among
different types of events that are of interest to the applications.
Event compositions based on a given concept lattice allow events
to be transferred cross different components and used by heteroge-
neous devices and components distributed in a CPS.

4.2 Event Type and Event Attribute Compo-
sitions

Given a concept lattice, a set of event instances can be composed
if and only if their corresponding event types are composable in the
concept lattice. Furthermore, the composed type (or the composed
concept) must be the largest lower bound of the composing concept.
Definition 9 gives the formal definition.

DEFINITION 9 (EVENT TYPE COMPOSITION(AΓ)). Given a
set of CPS eventse1, e2, · · · , en, a concept latticeC, and their
event attributes, spatio-temporal attributes, and observers as
(µ1, T

g
1 , T1,L

g
1,L1,O1), (µ2, T

g
2 , T2,L

g
2,L2,O2, · · · ,

(µn, T
g
n , Tn,L

g
n,Ln,On), respectively, then,

Γ =AΓ((µ1, T
g
1 , T1,L

g
1,L1,O1), (µ2, T

g
2 , T2,L

g
2,

L2,O2), · · · , (µn, T
g
n , Tn,L

g
n,Ln,On))

If (µ1, T
g
1 , T1,L

g
1,L1,O1), (µ2, T

g
2 , T2,L

g
2,L2,O2), · · · ,

(µn, T
g
n , Tn,L

g
n,Ln,On) are all immediate predecessor ofΓ in

the given CPS concept latticeC.

Once the event type compositionAΓ succeeds, then the corre-
sponding event attribute compositionAV is defined as follows:

µ = AV(µ1, µ2, · · · , µn)

whereAV can be any valid algebraic functions or set functions.



4.3 Temporal and Spatial Compositions
As explained in Section 3, the temporal and spatial externalat-

tributes of an event are of the form[t1, t2] and((x, y, z), r), which
are essentially1- and3-dimensional convex regions, respectively.
The compositions of time and locations of events can thus be de-
fined as algebraic operations on these convex regions, i.e.,unions,
intersections, complements, symmetric differences, averages, etc.
The choices of operations are application-dependent. One of the
most important issues of time and location compositions, however,
is to guarantee their closeness: the time and location attributes of
composed events should also be of the form[t1, t2] and((x, y, z), r),
respectively. In the following, we illustrate time and location com-
positions using theunionoperation. Using other operations follows
similar principles.

For temporal compositions of the formAT ([t11, t12], . . . ,

[tn1, tn2]) as given in (18)3, the time attribute of the composed
event is defined as

T = [min{t11, . . . , tn1},max{t12, . . . , tn2}]

where[ and] comply with the corresponding boundaries chosen in
min andmax, respectively. In the1-dimensional case,T so de-
fined is the smallest convex region that includes the time attributes
of the composing events. This coincides with the intuition that the
interval time stamp of the composed event should span those of the
earliest and the latest composing events.

For the spatial compositions of the formAL(((x1, y1, z1), r1),
. . . , ((xn, yn, zn), rn)) as given in (20)4, the location attribute of
the composed event is defined as the smallest spherical region that
contains the locations of the composing events. As defined inSec-
tion 3, the global observer’s location is((0, 0, 0),+∞), i.e., a re-
gion centered at the origin and with an infinite radius. As a conse-
quence, the location of any composed event will not reach beyond
the scope of the global observer, thus guaranteeing the closeness of
the composition.

It is worth pointing out that although the temporal and spatial
composition functions,T andL, respectively, may have applica-
tion variations, all choices must ensure that the resultingtime and
location must be continuous and without “holes”. In this paper, for
the ease of numerical discussions presented in Section 5, wecon-
sidersphericallocations andinfinite scope of the global observer.

4.4 Observer Composition
As mentioned in Section 3, observers are treated as events with

respect to a global observerO⊤. Thus, the composition rules de-
scribed for other event types apply to observer events as well. Ac-
cording to Section 4.2, the type of composed observers/events are
sets of basic types. At the same time, as discussed in Section4.3,
the spatio-temporal external attributes of observers alsoexpand as
more observers/events are composed. Eventually, an observer with
a type as the whole event type set and time and location external at-
tributes as the life span and range of the entire system, respectively,
will become the bottom of the concept lattice for compositions.
This observer is theglobal observer, O⊤, as defined in Section 3.
The CPS event composition theory is hence, complete with thead-
dition of the global observer at the bottom of the concept lattice.

5. CASE STUDY: SMART SPACE
In this section, theSmart Space[27], an ongoing CPS smart

home prototype project at the University of Nebraska-Lincoln, is
3the other time compositionAT g follows the same discussion be-
low
4similarly, the other spatial compositionALg follows the same dis-
cussion below

introduced as a case study to illustrate the usage of the proposed
event model. More specifically, the following simple scenario (de-
noted asTarget) in the Smart Spaceis considered:If a person
stays in the living room for more than 2 seconds and the livingroom
is dim, turn on the lights in 5 seconds.The process of how the CPS
concept lattice is formed and events are composed from the lower
to higher levels for this example are shown in a step-by-stepman-
ner. In addition, a CPS Event Simulator that adopts the proposed
event model is implemented. The implementation of the CPS event
model is then compared with the two other traditional approaches
to event detection (one of the approach is used in the original Smart
SpaceJava implementation) in terms of QoS support, localization
error and time duration error.

The goal of theSmart Spaceis to help people with disabilities to
live a better life through a wireless sensor-actor network equipped
smart home environment. In this example, only two types of sen-
sors in the Smart Space are used: (1) the Cricket Localization Sen-
sors (CLS) [26] that measure the range for the target person and
the fixed CLS nodes installed on the ceiling ofSmart Space. (2)
a lighting sensor that measures the strength of light in the living
room. The CLS system keeps track of the real-time location ofthe
target person, and together with real-time lighting strength in the
living room, theSmart Spacedecides whether the target scenario is
detected. Accordingly, the lights are turned on in the living room.

5.1 Development of CPS Concept Lattice
Step 1: First, the primitive event type setB, primitive event

attribute setI′ and the event type setT for the given CPS ap-
plication are determined. Accordingly, the primitive event type
and attribute sets are defined asB = {Range,LtStr} and I′ =
〈Range,LtStr, SeqNum〉, respectively, where the event type
Range is for the Cricket Localization Sensor (CLS),LtStr is for
the light sensor,SeqNum is the sequence number of event in-
stance. To generateLoc event type from theRange event type,
trilateration of at least 3 independentsynchronizedrange measure-
ments are required5. Therefore, the event instance sequence num-
berSeqNum is used transformRange event instances generated
by different CLS nodes to aLoc event instance.

The event type set,T, is application-dependent , where in our
case, the target scenario is formed by3 sub-events: “a person
stays in the living room for more than 2 seconds”, “ the living room
is dim” and “turn on the light”. Accordingly, 4 event types are
created: Target, InRoom2s, RoomDim and LightOn. For
simplicity, assume time difference between generation time of the
eventLightOn and the time at which “turn on the light” event
is generated is negligible. Therefore, event typeTarget is gen-
erated when the5 seconds constraint between the generation time
of LightOn and the occurrence ofInRoom2s andRoomDim
events is met. In addition,InRoom2s is composed ofInRoom
andLoc event types, whereInRoom describes whether the person
is the living room andLoc describes the location of the person. The
Loc andRoomDim event types can be generated from the basic
event typesRange andLtStr, respectively. TheLightOn event
can be generated from the event typesInRoom2s andRoomDim.
Finally, Obs event type exists in every CPS system to register and
update the status for the observers in the system. Therefore, a total
9 event types are defined for this example:

T = {Range,LtStr,Loc, InRoom, InRoom2s,

RoomDim,LightOn, Target,Obs}

Step 2: Next, we develop a formal context(I′,T,M) for the

5due to page limits, for the technical details of CLS, please refer to
[26]



given CPS application. The relationM is given as:

M = {(〈Range, [0, 300)〉, RoomDim)}

where a new event typeRoomDim is generated when the corre-
sponding attribute of basic event typeLtStr is in the range[0, 300).

Step 3: Calculate the extended event attribute setIEC . We have
Z = 〈T g ,Lg, T ,L,O〉 and

IEC = 〈Range,LtStr, SeqNum, T g,Lg, T ,L,O〉

Step 4: Develop an extended formal context(IEC ,T,MEC) and
the corresponding event composition guards. Using theIEC set,
we can define theMEC and the corresponding event composition
guards as follows:

MEC =






(〈Range〉, cg1, Loc), (〈Loc〉, cg2, InRoom),
(〈InRoom〉, cg3, InRoom2s),
(〈InRoom2s,RoomDim〉, cg4, LightOn),
(〈InRoom2s,RoomDim,LightOn〉, cg5, T arget)







where

cg1 = Independent(V(Range).SeqNum) ≥ 3

cg2 = Within(L(Loc), LR) == true

cg3 = Continue(T (InRoom)) ≥ 2s

cg4 = T (InRoom2s).t1 > 0 ∧ V(RoomDim) == true

cg5 = T
g(LightOn).t1 −Max(T (InRoom2s).t1,

T (RoomDim).t1) < 5s

where theIndependent function returns the number of range mea-
surements with the same event instance sequence number,Within
returns true if the input location is within the range of the living
room,LR.

Step 5: Finally, we compute the CPS formal context(C,T,M)
by combining the formal context(I′,T,M) and extended formal
context(IEC ,T,MEC), where

C = 〈Range,LtStr, SeqNum, T g,Lg, T ,L,O〉

andM = M ∪MEC .
The CPS concept lattice for this example is shown in Figure 3(a),

where in the notation〈−,−,−,T g,Lg, T ,L〉 the “−” refers to the
don’t care attributes that would not interfere with the event compo-
sition. The geometric shapes on the left side of the event types are
the sensors / observers which generate these events, pleaserefer to
Section 5.2 and Figure 3(b) for more explanations.

5.2 CPS Event Simulator
To validate the proposed CPS event model, a Tossim [19] based

CPS event simulator (CPSim) is implemented and the Smart Home
example has been simulated on this simulator. The CPSim consists
of two parts as shown in Fig. 3(c): physical event simulation(PES)
and cyber event simulations (CES). The PES is written in Python
and simulates the physical phenomenon of interest. The CES con-
sists of mote code written in nesC [10] and simulates the behaviors
of sensors and observers in the CPS. Inside CES, the simulated
sensors and observers communicate through the Tossim simulated
wireless network. The PES and CES communicate with each other
through the Tossim packet injection interface and the get variable
interface. Based on the mote variables retrieved from Tossim, the
PES will adjust the packet injection content to CES to simulate the
actuation process. As a result, the PES and CES form a complete
control-loop in a CPS. A global time reference and 3-D coordinate
system is used to control the simulation at a macro level, buteach

individual component generates CPS event instances using their lo-
cal time and coordinate system.

The example in Section 5.1 has been simulated. The simula-
tion runs from time0 to 30 seconds. The network topology is a
4m × 4m square grid with a total of 9 nodes installed as shown in
Fig. 3(b). More specifically, 3 CLS sensors, 2 light sensors,and 4
observers with observer IDObLoc, ObInRoom, ObInRoom2s and
ObTarget are installed. The sampling interval for the three CLS
sensors is0.3s, and the sampling interval for the 2 light sensors
is 1s. A 2% random variance has been added to allRange event
attributes to simulate the randomness of the ultrasonic range mea-
surements. As both Figures 3(a) and 3(b) show: the CLS sensors
generateRange events, light sensors generateLtStr and
RoomDim events,Obloc generatesLoc events,ObInRoom gener-
atesInRoom events,ObInRoom2s generatesInRoom2s events,
and finallyObTarget generatesLightOn andTarget events. The
observer event definitions are omitted for space considerations but
follow the convention in (2). The event composition guards are
programmed according to Section 5.1.

The target person walks along a fixed path (the dot-dashed bold
line in Fig. 3(b)) with a constant speedS for each individual simu-
lation. Thus, the target person is physically in the following rooms
based on his walking speedS: during period[0, 2/S), he / she is
in the foyer; during period[2/S, 5.5/S), in the living room; during
period [5.5/S, 9/S), in the bedroom; during period[9/S, 11/S),
in the kitchen; and finally, during period[11/S, 30], in the foyer
again. After 30 seconds, regardless of where he/she is, the simula-
tion is terminated.

In addition, two light switches exist that can turn on/off the lights
in the living room and bedroom. The light strengthPLtStr in the
living room and when the light is turned on or off is given by the
following equation:

PLtStr =

{
rand()/RAND_MAX × 50 + 50 light off
rand()/RAND_MAX × 50 + 350 light on

where300 is the threshold below which the room is determined to
be dim.

Finally, two additional “traditional” approaches are simulated for
event detection in Tossim using the same experimental configura-
tions as the CPS event model implementation. The first approach
is referred as “Event Detection (ED) by counting”, where instead
of using the timestamps of lower level events and generatingevents
based on the explicit timing constraints, the events are defined by
counting the number of received events from the lower level.For
example, the “ED by counting” implementation counts the number
of consecutively receivedInRoom events and when the number
exceeds a predefined threshold, say3, a new eventInRoom2s is
generated. This approach is commonly used in non-real-timesys-
tems where timelines is not a critical issue.

The second approach is referred as “timestamp at App.”, where
observers (applications) do not differentiate between event- occur-
rence time and event-generation time, and directly assign the event-
generation time as the corresponding event-occurrence time. For
example, in the “timestamp at App.” implementation, the occur-
rence timestamp of anInRoom event is assigned based on its
generation timestamp simply because both the lower level events
Range and Loc do not contain occurrence timestamps in their
event bodies for this implementation. This approach is commonly
used in small-scale systems where the event propagation time and
event processing time is negligible compared to the timing con-
straints defined at the higher level.

5.3 Simulation Results
The following three QoS metrics are defined and used for each
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(d) Average SER, TER and STER for CPS
event model
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(e) Average SER, TER and STER for Event
Detection by counting
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(f) Average SER, TER and STER for times-
tamp at Application
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(g) Average localization error
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Figure 3: Smart Space application simulation setup and results

implementation type: event spatial error rate (SER), event tempo-
ral error rate (TER) and event spatio-temporal error rate (STER):

SER(Ecps, LC) =
# of Ecps s.t.L(Ecps) does not satisfyLC

total # ofEcps

whereL(Ecps) is the occurrence location function defined in equa-
tion (8) andLC is the spatial constraint specified by the user. Sim-
ilarly,

TER(Ecps, TC) =
# of Ecps s.t.T (Ecps) does not satisfyTC

total # ofEcps

whereT (Ecps) is the occurrence time extraction function defined
in equation (6) andTC is the temporal constraint specified by the
user. Finally,

STER(Ecps, LC, TC) =

# of Ecps s.t.L(Ecps), T (Ecps) do not satisfyLC andTC
total # ofEcps

whereSTER counts the percentage of time that an event satisfies
neitherTC nor LC at the same time. Clearly, theSER, TER
and STER are metrics that examine how well the target event
Ecps satisfies the user specified spatial, temporal or spatio-temporal
QoS constraints. In the simulations we focus on examining event
InRoom2s (which stands for “staying in a room for at least 2 sec-
onds”) since this event has both spatial and temporal constraints.
The LC is defined as “L(InRoom2s) occurs in the same room
that theInRoom2s event actually occurs” andTC is defined as
“the duration ofT (InRoom2s) is greater or equal to 2 seconds”.

Fig. 3(d), 3(e), 3(f) show the average SER, TER and STER re-
sults for eventInRoom2s when the target person walks at speeds
from 0.1m/s to 1m/s for the three implementations. Each simula-
tion configuration runs for 100 iterations, and the average value for
each metric is plotted. Fig. 3(d) shows that the CPS event model
keeps a constant low SER, TER and STER of less than1.8% for
all cases. Fig. 3(e) shows that the “ED by counting” approach
has TER above6.7% for all cases. This is expected because this



approach does not use explicit timing constraints to generate new
events. Fig. 3(f) shows that the “timestamp at App.” approach has
constant larger SER, TER, and STER than the CPS event model ap-
proach. Another interesting result is that for all three approaches,
the SER and STER are almost always the same for all cases. Thisis
because the spatial error is usually caused by the temporal error in
this application. Fig. 3(g) shows the average localizationerror for
eventInRoom2s. The localization error is the average distance
differences between the reported event occurrence location and the
actual event occurrence location. Localization for the three imple-
mentations is relatively accurate, with the error always less than
6cm, which is to be expected given the low range error noise in-
jected into the system. Fig. 3(h) shows the average time duration of
theInRoom2s event. The time duration error is the average time
difference between the reported event duration and the actual event
duration. We can see that as the person’s walking speed varies,
the event time duration error varies from around 500ms to 50ms.
Again, the CPS event model implementation always has the lowest
average localization error and average time duration errorfor all
cases in both figures.

In summary, compared to the CPS event model implementation,
the traditional approaches (i.e., the “ED by counting,” which is also
the original approach taken by ourSmart SpaceJava program, and
the “timestamp at App.”) have the following disadvantages:1) non-
uniform event representation in different system layers, e.g., the
lower level CLS nodes only provide their sensor readings butlack
timestamps, making it impossible for higher level applications to
specify explicit spatio-temporal constraints. 2) No differentiation
between event occurrence time/ location and event generation time/
location. Thus, high spatio-temporal error rates are possible for
events, even in small-scale systems. 3) Since observer information
is also omitted inevery levelof the events, traditional approaches
have to hard-code all of the necessary observer information, and
generally assume no change in observer status, which precludes
observers dynamically joining and leaving the system. Moreover,
any change in the definition of events or configuration of the system
requires a complete re-compilation of the program. 4) An “event”
in traditional approaches, e.g., the original Java program, is usually
implemented as a nested “if-else” statements with several redun-
dant code blocks. Consequently, the overall code space for the Java
implementation is large (about 2400 lines).

In contrast, CPSim, which implements the CPS event model is
1200 lines and has the following advantages: 1) Unified represen-
tation of event instances with both temporal and spatial informa-
tion preserved, so that it is possible to specify timing and location
constraints for events. 2) Explicitly differentiates event occurrence
time/ location and event generation time/ location, providing low
spatial-temporal error rates. 3) In additional to the spatio-temporal
information, the event also includes observer information. As a re-
sult, the system is highly flexible, which allows the observers to
dynamically join and leave the system without affecting indepen-
dent components of the CPS. 4) Finally, a decrease of50% of the
code space compared to the Java implementation because of sup-
port for event composition and the unified event representation.

6. CONCLUSION
In this paper, we present a concept lattice-based event model for

Cyber-physical systems (CPS). The developed model not onlycap-
tures the essential information about events in a distributed and het-
erogeneous environment, but it also allows events to be composed
across different boundaries of different components and devices
within and among both cyber and physical domains. The treatment
of observers as events results in a complete concept lattice. A smart
home example is used to illustrate the application of the model, and

a CPS event simulator is implemented and tested.
The composition rules given in Section 4 are essentiallyhorizon-

tal, meaning that all the composing events directly link to a com-
posed event as in the lattice. However,vertical compositions of
the formΓ1 µ1 @(T1, L1, Γ2 µ2 @(T2, L2, O2)) are not system-
atically covered in this paper except for the globalizationfunction
which can be seen as a special case of vertical composition. The
treatment of vertical compositions in the developed event model is
left as a future work.
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