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Abstract—Wireless underground sensor networks (WUSNs)
are becoming ubiquitous in many areas and designing robust
systems requires extensive understanding of the underground
(UG) channel characteristics. In this paper, UG channel impulse
response is modeled and validated via extensive experiments
in indoor and field testbed settings. Three distinct types of
soils are selected with sand and clay contents ranging from
13% to 86% and 3% to 32%, respectively. Impacts of changes
in soil texture and soil moisture are investigated with more
than 1,200 measurements in a novel UG testbed that allows
flexibility in soil moisture control. Time domain characteristics
of channel such as RMS delay spread, coherence bandwidth,
and multipath power gain are analyzed. The analysis of the
power delay profile validates the three main components of the
UG channel: direct, reflected, and lateral waves. It is shown
that RMS delay spread follows a log-normal distribution. The
coherence bandwidth ranges between 650 kHz and 1.15MHz for
soil paths of up to 1m and decreases to 418 kHz for distances
above 10m. Soil moisture is shown to affect RMS delay spread
non-linearly, which provides opportunities for soil moisture-based
dynamic adaptation techniques. The model and analysis paves the
way for tailored solutions for data harvesting, UG sub-carrier
communication, and UG beamforming.

I. INTRODUCTION

Wireless underground sensor networks (WUSNs) are be-

coming ubiquitous in many areas including environment and

infrastructure monitoring [24], [13], [26], border patrol [2],

and precision agriculture [11]. Establishing robust wireless

underground communication links between two underground

nodes (UG2UG links) or an underground node and a node

above the surface (UG2AG links) requires extensive knowl-

edge of the underground (UG) channel characteristics.

In general, performance of a communication system is

seriously degraded by multipath fading [14]. Communication

in UG channel is affected by multipath fading caused by

reflection of electromagnetic (EM) waves in soil and from

soil-air interface. Reducing the effects of these disturbances

requires characterization of the UG channel. Traditional over-

the-air communication channel models cannot be readily used

in WUSNs because EM waves in soil suffer higher attenuation

than in air due to their incidence in lossy media which consists

of soil, water and air, and leads to permittivity variations over

time and space with changes in soil moisture [11]. WUSNs

are generally deployed at depths which are less than 50 cm [5].

Due to proximity to the Earth surface, a part of the transmitted

EM waves propagate from soil to air, then travel along the soil-

air interface, and enter the soil again to reach the receiver.

These EM waves (lateral waves [17]) are a major component

of the UG channel.

The analysis of EM wave propagation in underground

channel is challenging because of its computation complexity

[2]. In [10] and [27], channel models based on the analysis of

the EM field and Friis equations have been developed and

direct, reflected, and lateral waves are shown to be major

contributors of received signal strength. These models provide

good approximations when coarse channel measures (e.g.,

path loss) are concerned but are limited due to the lack of

insight into channel statistics (e.g., delay spread, coherence

bandwidth) and empirical validations.

Partly unique to the UG channel, there are mainly four

types of physical mechanisms that lead to variations in the

UG channel statistics, the analyses of which constitute the

major contributions of this paper:

1) Soil Texture and Bulk Density Variations: EM waves

exhibit attenuation when incident in soil medium. These

variations vary with texture and bulk density of soil. For

example, sandy soil holds less bound water, which is the major

component in soil that absorbs EM waves. Water holding

capacity of medium textured soils (silt loam, fine sandy loam,

and silty clay loam) is much higher, because of the small pore

size, as compared to coarse soils (sand, sandy loam, loamy

sand). Medium textured soils have lower pore size and hence,

no aggregation and little resistance against gravity [12]. To

cover a wide array of soil texture and bulk density variations,

we have performed experiments in three distinct types of soils.

2) Soil Moisture Variations: The effective permittivity of

soil is a complex number, thus, besides diffusion attenuation,

the EM waves also suffer from an additional attenuation

caused by the absorption of soil water content. To this end,

experiments are conducted with controlled soil moisture vari-

ations in an indoor testbed.

3) Distance and Depth Variations: Received signal strength

varies with depth of and distance between transmitter and

receiver antennas because different components of EM waves

suffer attenuation based on their travel paths. Sensors in
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WUSN applications are usually buried in topsoil and subsoil

layers1. Therefore, we have taken measurements for depths

of 10−40 cm with transmitter receiver (T-R) distances of

50 cm to 12m for UG2UG experiments. Near-field effects

of underground antenna for frequency range used in these

experiments are within the 30 cm region. In addition, UG2AG

experiments are conducted for radii of 2−7m with receiver

angles of 0◦-90◦.

4) Frequency Variations: The path loss caused by the

attenuation is frequency dependent [9]. In addition, when EM

waves propagate in soil, their wavelength shortens due to

higher permittivity of soil than the air. Channel capacity in

soil is also function of operation frequency. Channel transfer

function measurements (S21) are taken to analyze the effects

of frequency on underground communication.

In this paper, we present an UG channel impulse response

model corresponding analysis based on measured data col-

lected from UG channel experiments with a 250 ps delay

resolution. Statistical properties of multipath profiles measured

in different soil types under different soil moisture levels

are investigated. The results presented here describe: Root

mean square (RMS) delay spread, distribution of RMS delay

spread, mean amplitude across all profiles for a fixed T-R

displacement, effects of soil moisture on peak amplitudes

of power delay profiles, mean access delay, and coherence

bandwidth statistics. The goal of the measurement campaign

and the corresponding model is to produce a reliable channel

model which can be used for different types of soils under

different conditions. Thus, we have considered several possible

scenarios with more than 1, 200 measurements taken over a

period of 7 months.

The rest of the paper is organized as follows: The related

work is discussed in Section II. Description of UG channel

impulse response model is given in Section III. In Section IV,

measurement sites and procedures are described. Results and

analysis of measured impulse responses are presented in

Section V. WUSN communication system design is discussed

in Section VI. Paper is concluded in Section VII.

II. RELATED WORK

Wireless communication in WUSNs is an emerging field

and few models exist to represent the underground communi-

cation. In [27], we have developed a 2-wave model but lateral

wave is not considered. In [4], models have been developed but

these do not consider underground communication. A model

for underground communication in mines and road tunnels has

been developed in [24] but it cannot be applied to WUSN

due to wave propagation differences between tunnels and

soil. We have also developed a closed-form path loss model

using lateral waves in [10] but channel impulse response and

statistics cannot be captured through this simplified model.

Wireless underground communication shares characteristics

of underwater communication [3]. However, underwater com-

munication based on electromagnetic waves is not feasible

1Topsoil layer (root growth region) consists of top 1 Feet of soil and 2−4
Feet layer below the topsoil is subsoil.

Fig. 1: The three EM waves in an underground channel [10].

because of high attenuation. Therefore alternative techniques

including acoustic [3] are used in underwater communications.

Acoustic technique cannot be used in UG channel due to

vibration limitation. In magnetic induction (MI), [18],[25],

signal strength decays with inverse cube factor and high data

rates are not possible. Moreover, communication cannot take

place if sender receiver coils are perpendicular to each other.

Therefore, MI cannot be readily implemented in WUSNs.

To the best of our knowledge, this is the first measurement

campaign conducted to analyze and measure the channel

impulse response of UG channel and the first work that

proposes guidelines for the development of a novel WUSN

testbed to improve the accuracy, to reduce the time required

to conduct WUSN experiments, and to allow flexibility in soil

moisture control.

III. IMPULSE RESPONSE OF UG CHANNEL

A wireless channel can be completely characterized by its

impulse response. Traditionally, a wireless channel is modeled

as a linear filter with a complex valued low pass equivalent

impulse response which can be expressed as [16]:

h(t) =
L−1
∑

l=0

αlδ(t− τl) , (1)

where L, αl, τl are the number of, the complex gains of, and

the delays associated with multipaths, respectively.

Schematic view of UG channel is shown in Fig. 1, where

a transmitter and a receiver are located at a distance of L and

depths of Bt and Br, respectively [10]. Communication is

mainly conducted through three EM waves. First, the direct

wave which travels through the soil in line-of-sight from

transmitter to receiver. Second, the reflected wave, also travels

through the soil, is reflected from the air-soil interface. Third,

the lateral wave propagates out of soil, travels along the surface

and enters the soil to reach the receiver.

Based on this analysis, the UG channel process can be

expressed as a sum of direct, reflected and lateral waves. Hence

(1) is rewritten for UG channel as:

hug(t) =
L−1
∑

l=0

αlδ(t−τl)+
D−1
∑

d=0

αdδ(t−τd)+
R−1
∑

r=0

αrδ(t−τr) ,

(2)

where L, D, and R are number of multipaths; αl, αd, and αr

are complex gains; and τl, τd, and τr are delays associated with

lateral wave, direct wave, and reflected wave, respectively.
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Fig. 2: Testbed Development: (a) Testbed box, (c) Packed soil, (b) Layer of gravel at the bottom of the testbed, (d) Antenna placement, (e) Final outlook.

The received power is the area under the profile and is

calculated as the sum of powers in all three components in

the profile. Accordingly, the received power is given as:

Pr =
L−1
∑

l=0

|αl|2 +
D−1
∑

d=0

|αd|2 +
R−1
∑

r=0

|αr|2 . (3)

The path loss is calculated from the difference of the known

transmit power and Pr, and is given as:

PL(dBm) = Pt(dBm) +Gt(dBi) +Gr(dBi)− Pr(dBm) ,
(4)

where Pt is transmit power, Pr is received power, and Gt and

Gr are transmitter and receiver antenna gains, respectively.

Antenna effects are included, intrinsically, in the impulse

response hug(t) obtained from the channel transfer function.

Traditionally, impulse response of wireless indoor channel is

also dependent on antenna properties as power radiated and

received in a particular direction is defined by directive gains

of transmitter and receiver antennas [21]. In our experiments

and analysis, we use omni-directional dipole antennas to

observe multipath components in all directions.

Next, we review the metrics derived from the channel

impulse response, including excess delay and delay spread.

Excess delay is the time delay between the first and last

arriving components. Last component is defined by a threshold

value in dB relative to the strongest component in the power

delay profile (PDP). Typically, a threshold value of -30 dB is

used [14],[21]. Mean excess delay (τ ) is defined as the first

moment of power delay profile and is given as [21]:

τ =
∑

k

Pkτk

/

∑

k

Pk , (5)

where Pk is the absolute instantaneous power at the kth bin,

and τk is the delay of the kth bin.

Root mean square (RMS) delay spread is the square root of

the second central moment of the power delay profile and is

given as [21]:

τrms =
√

(τ2)− (τ)2 , (6)

where (τ2) =
∑

k

Pkτ
2

k/
∑

k

Pk, Pk is the absolute instanta-

neous power at kth bin, and τk is the delay of the kth bin.

TABLE I: Particle Size Distribution and Classification of Testbed Soils.

Textural Class %Sand %Silt %Clay

Sandy Soil 86 11 3

Silt Loam 33 51 16

Silty Clay Loam 13 55 32

RMS delay spread is a good indicator of multipath spread and

it indicates the potential of inter-symbol interference (ISI).

IV. MEASUREMENT SITES AND PROCEDURES

Measurement are conducted in an indoor testbed (Sec-

tion IV-A) and field settings (Section IV-B). The measurement

procedures are explained in Section IV-C.

A. Indoor Testbed

Conducting WUSN experiments in outdoor settings is a

challenging task. These challenges include lack of availability

of wide range of soil moisture levels over a short period

of time, difficulty of dynamic control over soil moisture,

changing soil types, and installation/replacement of equip-

ment. Furthermore, extreme weather and temperature affects

make it hard to conduct experiments in all seasons.

To overcome these challenges faced in outdoor environ-

ments, an indoor testbed is developed in a greenhouse settings.

It is a 100 "x36 "x48 " wooden box (Fig. 2(a)) assembled with

wooden planks and contains 90 ft3 of packed soil. A drainage

system is installed in the bottom, and sides of the box are

covered with water proof tarp to stop water seepage from

sides. Before installation of antennas and sensors, 3 " layer

of gravel is laid in the bottom of the box for free drainage of

water (Fig. 2(b)) and then soil is placed in the box (Fig. 2(c)).

To monitor the soil moisture level, 8Watermark sensors are

installed on each side of the box at 10 cm, 20 cm, 30 cm and

40 cm depths. These sensors are connected to two Watermark

dataloggers. Soil is packed after every 30 cm by using a tamper

tool to achieve the bulk density2 to mimic real-world field

conditions. This process is repeated for antenna installation at

each depth. Three sets of four dipole antennas are installed

(Fig. 2(d)) at the depths of 10 cm, 20 cm, 30 cm, and 40 cm.

These sets are 50 cm apart from each other. Final outlook of

the testbed is shown in Fig. 2(e).

2Bulk density is defined as the ratio of dry soil mass to bulk soil volume
including pore spaces.
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Fig. 3: (a) Soil moisture (expressed as soil matric potential; greater matric potential values indicate lower soil moisture and zero matric potential represents
near saturation condition) with time in silt loam testbed, (b) Outdoor testbed in a field setting, (c) Experiment layout.

We have conducted experiments for two different types

of soils in the indoor testbed: silt loam and sandy soil.

Particle size distribution and classification of testbed soils is

given in Table I. To investigate the effects of soil texture

on underground communication, soils selected for use in the

testbed have sand contents ranging from 13% to 86% and

clay contents ranging from 3% to 32%. Before starting the

experiments, soil is nearly saturated to attain the highest

possible level of volumetric water content (VWC) and then

measurements are collected as the water potential first reaches

to field capacity3 and then subsequently to wilting point4. The

changes in soil moisture level with time are shown in Fig. 3(a)

for silt loam soil.

B. Field Site

To compare with the results of indoor testbed experi-

ments and conduct underground-to-aboveground experiments,

a testbed of dipole antennas has been prepared in an outdoor

field with silty clay loam soil (Fig. 3(b)). Dipole antennas are

buried in soil at a burial depth of 20 cm with distances from

the first antenna as 50 cm-12m. A pole with adjustable height

is used to conduct underground-to-aboveground (UG2AG)

experiments with radii of 2m, 4m, 5.5m and 7m5 with

receiver angles of 0◦, 30◦, 45◦, 60◦, 90◦.

C. Measurement Procedure

Accurate measurement of channel impulse response can

be obtained from frequency domain measurements due to

Fourier transform relationship between transfer function and

channel impulse response [15]. Accordingly, we have obtained

3Plant available water after the drainage of excess water.
4Water content level at which water is no more available to plants.
5The maximum distance of 7m is due to the limitations of the antenna

cable length for VNA.

TABLE II: Underground Channel Measurement Parameters

Parameter Value

Start Frequency 10 MHz

Stop Frequency 4 GHz

Number of Frequency Points 401

Transmit Power 5 dBm

Vector Network Analyzer Agilent FieldFox
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Fig. 4: (a) Distribution of mean excess delay τ in indoor testbed (silt loam)
experiment, (b) Excess delay with distance at 20 cm depth in field (silty clay
loam) experiment.

channel impulse by taking frequency domain measurements

and then taking inverse Fourier transform. A diagram of the

measurement layout is shown in Fig. 3(c). Frequency response

of the channel is measured using a Vector Network Analyzer

(VNA). VNA-based channel measurements are popular for

measuring channel transfer functions in wireless communi-

cations and antenna domains [6], [14], [15], [21], [22], [23].

The measurement parameters are given in Table II. The VNA

generates a linearly swept frequency signal [20] which is

propagated over a frequency range of 10MHz to 4GHz. In

this range, VNA records 401 complex tones and stores them on

external storage for post-processing. The discretized complex

channel frequency response Hn is given by [23]:

Hn = H(fstart + nfinc) , (7)

where fstart and finc are the start and increment frequencies

of the sweep, respectively. Hn is obtained by measuring the

reference (R) and input (A) channels and taking the complex

ratio, such that Hn = An/Rn. This process is repeated over

the frequency range Fsweep at N discrete points, such that

finc = Fsweep/N . To obtain channel impulse response, the

complex frequency data is inverse Fourier transformed. The

resulting N point complex channel impulse response has a

delay bin spacing of 1/Fsweep and an unambiguous FFT

range of N/Fsweep. The measured Hn are windowed using

a minimum three term Blackman-Harris window [23] because

of its excellent side lobe suppression and relatively wide main

lobe width. Before time domain conversion, windowing of

Hn is required to avoid sinc2 side lobes associated with
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Fig. 5: (a) Distribution of RMS delay spread, τrms, for 50 cm and 1m distance along with log-normal fit over all four depths in indoor testbed (silt loam)
experiment, (b) RMS delay spread, τrms, with distance in field (silty clay loam) experiment, (c) Distribution of coherence bandwidth for 50 cm and 1m
distance in indoor testbed (silt loam) experiment, (d) Coherence bandwidth with distance in field (silty clay loam) experiment.

rectangular nature of frequency sweep [23].

V. ANALYSIS AND RESULTS

A. Characterization of UG Channel Impulse Response

Excess delay, mean access delay (5), RMS delay spread

(6) [22], [21], [6], and coherence bandwidth in relation to

RMS delay spread [15] are the parameters used to characterize

the channel. For channel characterization, these parameters are

used because system performance is not effected by the actual

shape of PDP [22]. In the following, we discuss these metrics

and the effects of soil moisture, soil types, distance, and depth

on these metrics.

1) Statistics of Mean Excess Delay: Distribution of mean

excess delay for 50 cm and 1m distance over all four depths

in indoor testbed (silt loam) experiment is given in Fig. 4(a).

Higher mean excess delay can be observed with the increase

in T-R separation, which corresponds to an increase of 2−3ns

(8%). In Table III, statistics for mean (µ) and standard

deviation (σ) for the mean excess delay for 50 cm and 1m

distances, and the 4 depths are shown. Higher mean excess

delays are also observed as transmitter and receiver are buried

deeper. In Fig. 4(b), excess delay is shown as a function of

distance at 20 cm depth in field (silty clay loam) experiment.

It can be observed that excess delay is increased from 40 ns

up to 116 ns as UG communication distance increases from

50 cm to 12m.

2) Analysis of RMS Delay Spread: Distribution of RMS

delay spreads for T-R separations of 50 cm and 1m in indoor

testbed (silt loam) experiment, are shown in Fig. 5(a) with

statistical fits. Our analysis shows that empirical distribution

of τrms follows a log-normal distribution and the mean values

of 23.94 ns and 24.05 ns and standard deviations of 3.7 ns and

3.4 ns for 50 cm and 1m distance, respectively. In Table III,

statistics for mean (µ) and standard deviation (σ) of the RMS

delay spread for 50m and 1m distances, and 4 depths are

shown. It can be observed from Fig. 5(a) and Table III that

RMS delay spread (τrms) is dependent on T-R separation and

burial depth with positive correlation. There is an increase

of 2-3 ns (20%) in RMS delay spread as depth is increased

from 10 cm to 40 cm. A 4 ns increase in RMS delay spread

can be observed from 10 cm to 20 cm depth at 50 cm distance,

which is caused by lateral wave, because at 20 cm lateral wave

reaches the receiver after direct wave. At 40 cm, RMS delay

spread decreases to 23 ns because lateral wave attenuates more

as the burial depth increases. In Fig. 5(b), RMS delay spread

is shown as a function of T-R distance at 20 cm depth in field

(silty clay loam) experiment. It can be observed that RMS

delay spread is increased to 48 ns by increasing distance to

12m.

The increase in RMS delay spread with depth and distance

is contributed by the strong multipaths associated with the

lateral and reflected components, since their propagation time

differences increase with distance. This increase in RMS

delay spread is an important result as it limits the system

performance in terms of coherence bandwidth. It has been

shown by analysis and simulations that maximum data rate

that can be achieved without diversity or equalization is a

few percent of the inverse of RMS delay spread [15]. Using

this relationship, a coherence bandwidth is established for the

RMS delay spread. For our analysis, we have used 90% signal

correlation (1/50 τrms) as an approximation of coherence

bandwidth, because underground channel experiences higher

attenuation in soil as compared to terrestrial WSNs, where

typically 50% and 70% signal correlation values are used to

approximate coherence bandwidth.

In Fig. 5(c), distribution of coherence bandwidth for 50 cm

and 1m distance over all depths in indoor testbed (silt loam)

experiment is shown. It is observed that the range of coherence

bandwidth for UG channel is between 650 kHz to 1.15MHz

for distances up to 1m. In Fig. 5(d), coherence bandwidth as

a function of distance in field (silty clay loam) experiment is

shown. It can be observed that coherence bandwidth decreases

to 418 kHz (63%) as communication distance is increased to

12m. The restriction placed on the coherence bandwidth by

the increase in RMS delay spread with distance and depth

should definitely be considered in system design but a fine

TABLE III: Mean (µ) and Standard Deviation (σ) in nanoseconds for the mean
excess delay and RMS delay spread in indoor testbed (silt loam) experiment.

Depth

Mean Excess Delay

τ
RMS Delay Spread

τrms

50 cm 1 m 50 cm 1m

µ σ µ σ µ σ µ σ
10 cm 33.53 1.24 36.09 0.80 20.05 2.24 21.94 2.32

20 cm 34.66 1.07 37.12 1.00 24.93 1.64 25.10 1.77

30 cm 35.87 0.72 37.55 0.65 24.84 2.17 25.34 3.41

40 cm 36.43 0.74 40.18 0.94 23.91 2.84 25.62 1.87
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Fig. 6: Indoor testbed (silt loam) experiment: (a) Power delay profile, (b) Path loss with vs. soil moisture at 10 cm depth, (c) RMS delay spread vs. soil
moisture at 50 cm distance, (d) Mean amplitudes of all 50 cm and 1m profiles across all depths.

design line should not be drawn because of the soil moisture

variations, which are discussed next.

3) Soil Moisture Variations: In Fig. 6(a), the effect of

soil moisture on amplitudes of a delay profiles is shown for

50 cm distance in indoor testbed (silt loam) experiment. Lower

amplitudes can be observed for higher soil moisture (lower

soil matric potential (CB)) and this increase is consistent over

all delay ranges. Amplitude decrease varies between 5−8 dB

across the entire PDP.

Water in soil is classified into bound water and free water.

Water contained in the first few particle layers of the soil is

called bound water, which is strongly held by soil particles

due to the effect of osmotic and matric forces [12]. Below

these layers, effects of osmotic and matric forces is reduced,

which results in unrestricted water movement. EM waves

experience dispersion when interfaced with bound water. Since

permittivity of soil varies with time due to the variation in

soil moisture, wavelength in soil changes which effects the

attenuation that waves experience in soil.

In Fig. 6(b), the path loss with change in soil moisture

(expressed as soil matric potential6) at 50 cm and 1m distance

and 10 cm depth in indoor testbed (silt loam) experiment is

shown. Path loss decreases by 3-4 dB (7%) as soil matric

potential changes from 0 to 50CB (Centibars). In Fig. 6(c),

change in RMS delay spread with change in soil moisture

at 50 cm distance, 10 cm and 20 cm depth in indoor testbed

(silt loam) experiment is shown. From near-saturation to 8CB,

RMS delay spread has decreased first and then increases as

soil moisture decreases. This is attributed to water repellency

of soil particles where infiltration is slowed momentarily at

near-saturation levels. For 10 cm depth, RMS delay spread

has increased from 19 ns to 25 ns (31%) as soil moisture

decreases. Similar increase in RMS delay spread with decrease

in soil moisture can be observed for 20 cm depth. Low water

absorption of EM waves with decrease in soil moisture con-

tributes to increase in τrms as multipath components exhibit

less attenuation.

The variations in amplitudes and path loss with the change

in soil moisture lead to changes in coherence bandwidth,

optimal system capacity and communication coverage range.

Specifically, increase in RMS delay spread with soil moisture

6Greater matric potential values indicate lower soil moisture and zero matric
potential represents near saturation condition.
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Fig. 7: Indoor testbed (silt loam) experiment: (a) Distribution function of mean
amplitudes at 40 cm depth. Field (silty clay loam) experiment: (b) Attenuation
with frequency.

decreases coherence bandwidth of the channel, and attenuation

is also increased when soil moisture increases. Therefore,

underground communication devices should have the ability

to adjust their operation frequency, modulation scheme, and

transmit power to compensate these changes caused by soil

moisture variation. Cognitive radio [1] solutions can be used

to adopt parameters based on changing channel conditions.

4) Soil Type: Soils are divided into textural classes based

on their particle size. To analyze the effects of soil texture,

we have measured the channel statistics for silty clay loam,

silt loam, and sandy soils. In Table IV, statistics of mean (µ)

and standard deviation (σ) for the mean excess delay, RMS

delay spread and path Loss for 50 cm and 1m distances, and

4 depths are shown.

RMS delay spread τrms in sandy soil is 2 ns higher than

silty clay loam, which is 1 ns higher than the silt loam on

the average. Similarly, path loss is 4−5dB lower in sandy

soil as compared to silt loam and silty clay loam. This is

due to the lower attenuation in sandy soil. Attenuation of

EM waves in soil varies with soil type [9]. Sandy soil holds

less bound water, which is the major component in soil that

absorbs EM waves. Water holding capacity of fine-textured

TABLE IV: Mean (µ) and Standard Deviation (σ) for the Mean Excess Delay,
RMS delay spread and Path Loss for 50 cm and 1m distances, and 20 cm
depth for three soils. Values are in nanoseconds.

Soil Type

Mean Excess Delay RMS Delay Spread Path Loss

Distance Distance Distance
50 cm 1m 50 cm 1m 50 cm 1m

µ σ µ σ µ σ µ σ
Silty Clay Loam 34.77 2.44 38.05 0.74 25.67 3.49 26.89 2.98 49 dB 52 dB

Silt Loam 34.66 1.07 37.12 1.00 24.93 1.64 25.10 1.77 48 dB 51 dB

Sandy Soil 34.13 1.90 37.87 0.80 27.89 2.76 29.54 1.66 40 dB 44 dB
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Fig. 8: Measured impulse response (dotted lines) and impulse response model (solid lines) in: (a) silt loam, (b) silty clay loam soil, and (c) sandy soil.

(silt-loam, silty clay loam) and medium-textured soils (fine

sandy loam) is much higher, because of the small pore size

(but, greater number of pores), as compared to coarse-textured

(sandy, sandy loam, loamy sand) because of larger pore size

(but less in number of pores) [12]. Hence the soils containing

the highest clay contents suffer more attenuation.

In sandy soil, there is a trade-off between attenuation and

RMS delay spread. RMS delay spread τrms is large due to

least attenuated multipath components arriving at the receiver

with large delays. On the other hand, overall attenuation is low

as compared to silt loam and silty clay loam. Therefore higher

SNR can be achieved with moderate coherence bandwidth.

Effects of soil texture must be taken into account during design

and deployment of WUSNs and optimal system parameters

such as communication range and data rates should be selected

based on the physical characteristics of the soil.

5) Distance and Depth: Communication in UG channel is

effected by depth and T-R separation. However, these impacts

are much more severe then over the air communication. In

Fig. 6(d), effects of T-R distance are shown in indoor testbed

(silt loam) experiment. By increasing the distance from 50 cm

to 1m, the first component in the 1m PDP is delayed by 10 ns.

An 8 dB difference in peak amplitude is observed between

profiles at 50 cm and 1m. Distribution of mean amplitudes of

50 cm and 1m profiles at 40 cm depth in indoor testbed (silt

loam) experiment is shown in Fig. 7(a). A 9−10dB decrease

in mean amplitude can be observed when T-R separation is

increased from 50 cm to 1m. Peak amplitude of delay profile

is decreased by 5 dB from 10 cm depth to 40 cm depth at 50 cm

distance, whereas this decrease in peak amplitude is 20 dB for

1m distance when depth is changed from 10 cm to 40 cm.

Since increase in burial depth increases the path of EM waves

in soil, higher attenuation is observed.

EM waves in soil are reflected and attenuated by soil-air

interface and suffers diffusion attenuation. Additional attenu-

ation is caused by absorption of waves in soil. Higher attenu-

TABLE V: Speed of the wave in all three soils, calculated by refractive indices
n based on particle size distribution of soils given in Table II.

Soil Type
Speed in Soil

m/s
% of c

Refractive Index

n
Silt Loam 5.66x107 18.89 5.28

Sandy Soil 5.01x107 16.71 5.98

Silty Clay Loam 5.67x107 18.91 5.29

ation is the limiting factor for communication system design.

The attenuation is increased with distance and depth because

of reflection effects of lateral wave. At soil-air interface phase

of lateral wave is randomly changed, which adds constructive-

destructive interference at the receiver.

6) Operation Frequency: In Fig. 7(b), attenuation with

frequency at different distances of up to 12m are presented.

Transmitter and receiver depths are set to 20 cm. At 2m

distance, attenuation increases by 24 dB when frequency in-

creases from 200MHz to 400MHz. Similarly, for 200MHz,

attenuation is increased from 51 dB to 92 dB (80%) when

distance increases from 50 cm to 12m.

Higher frequencies suffer more attenuation because when

EM waves propagate in the soil their wavelength shortens

due to higher permittivity of soil than the air. Hence, due

to less effects of permittivity of soil on lower frequency

spectrum, it is more suitable for UG2UG communication as

larger communication distances can be achieved. In order to

have minimum attenuation, an operation frequency should be

selected, for each distance and depth, such that attenuation is

minimized. This is important from WUSN topology design

perspective because deployment needs to customized to the

soil type and frequency range of sensors being used for

deployment.

B. Model Parameters and Experimental Verifications

In this section, arrival of multipath components is validated

with a schematic of the three model components and model

parameters are given. Moreover, the shape of the PDP is

presented and with physical interpretations.

Speed of the wave in soil is given as [8] S = c/n, where

c = 3x108 m/s is the speed of light, n is the refractive index

of soil n =
√√

ǫ′2 + ǫ′′2 + ǫ′/2, and ǫ′ and ǫ′′ are the real

and imaginary parts of the relative permittivity of the soil.

Arrival time of each of the three components, in nanosec-

onds, is calculated as follows:

τd = (δs/S) + 2× (L/Sc) , (8)

τr = 2× (δs/S) + 2× (L/Sc) , (9)

τl = 2× (δs/S) + (δa/c) + 2× (L/Sc) , (10)

where τd, τr and τd are arrival times of the direct, reflected

and lateral waves, respectively, δs is distance travel by wave in

soil, L is the length of the coaxial cable attached to antenna, Sc
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Fig. 9: Attenuation with distance at different receiver angles (UG2AG) : (a) 0◦, (b) 90◦, (c) RMS delay spread with distance, (d) Coherence bandwidth with
distance.

is the speed of wave in coaxial cable calculated with refractive

index of 1.2, S is speed of wave in soil, and c is the speed of

light 3x108 m/s.

Based on (8), (9) and (10), the speed of the wave in all three

soils is found by calculating the refractive indices n based on

particle size distribution and classification of soils given in

Table II. The results of these calculations are shown in Table

V. In Figs. 8, measured PDPs for three soil types at 40 cm

depth is compared with a schematic representation of the 3-

wave model for T-R separation of 50 cm. Analysis of arrival

time of three components reveals that for 50 Cm distance and

all burial depths, lateral waves arrive later than the direct wave

except for the 10 Cm depth where lateral wave reaches the

receiver first. It can be observed that measurement data shows

a strong agreement with the model.

In Table VI, model parameters for peak amplitude, delays,

and number of multipaths statistics for direct, lateral and

reflected components for three soil types are shown. From

Fig. 8 and Table VI, it can be observed that lateral compo-

nent is the strongest component than the direct and reflected

components. This is because direct and reflected components

are spherical waves radially outward from the dipole, whereas

lateral component is, first, a plane wave that travels upward

from the source to the boundary, then travels horizontally as a

cylindrical wave, and then travels backward as a plane wave

from boundary to point of observation.

VI. WUSN COMMUNICATION SYSTEM DESIGN

The presented impulse response model and experiment

results provide insight into the statistics of the UG channel.

Moreover, the impacts of distance, depth, soil moisture and

soil texture on communication channel can be observed. These

analyses provide useful insight to system designers in order

to obtain desired performance. In this section, we present

guidelines, based on results of the presented Underground-to-

TABLE VI: Model parameters: peak amplitude, delays, and number of
multipaths statistics for direct, lateral and reflected components for three soils.

Silty Clay Loam Silt Loam Sandy Soil
Distance Distance Distance

1 m 1 m 1 m
Peak α

dB

τ
ns

N
Peak α

dB

τ
ns

N
Peak α

dB

τ
ns

N

Direct Component -90 18-28 3 -103 15-23 2 -87 11-19 4

Lateral Component -80 30-40 2 -82 26-43 3 -63 22-45 5

Reflected Component -91 41-47 2 -94 47-59 4 -70 47-61 6

underground (UG2UG) channel and additional Underground-

to-aboveground (UG2AG) channel experiments.

1) Data Collection: In Figs. 9(a)-9(b), results from UG2AG

experiments are shown. This type of channel is used to

transfer monitoring data from underground nodes to above

ground nodes for subsequent relays and delivery to sink.

The underground transmitter is at a depth of 20 cm and the

aboveground receiver position is varied at the soil surface at

distances of 2m, 4m, 5.5m, and 7m. Measurements are taken

at angles of 0◦, 30◦, 45◦, 60◦, and 90◦ from the transmitter. It

is observed that the receiver at the angles of 45◦-90◦ exhibit

the lowest attenuation, 90◦ being the ideal because of no

refraction from soil-air interface. Moreover, attenuation does

not change for wide range of frequencies and distances.

In Fig. 9(c), and Fig. 9(d), RMS delay spread, τrms and

coherence bandwidth with distance at receiver angles of 30◦

and 90◦ is shown. It can be observed that at the receiver angle

of 90◦, RMS delay spread increases by 26% from 34 ns to

43 ns, for an in crease in T-R separation from 2m to 7m. Our

analysis shows that by changing the receiver position from 90◦

to 30◦, by keeping the the same radius, RMS delay spread

is increased by 11%. This could be explained by refractions

from the soil-air interface. Since at 90◦, the wave does not go

through refractions, as opposed to the refracted path, to reach

the receiver at 30◦. Similar to the UG2UG channel, coherence

bandwidth for the UG2AG channel is found to be between

457KHz to 579KHz at 90◦, which shows that the soil path is

the bottleneck.

2) Underground Beamforming: The dominance of the lat-

eral waves in UG channel as observed in Figs. 8 has im-

portant implications in wireless underground communication

system design. Lateral component has the potential, via beam-

forming techniques, to reach at farther underground distances

which otherwise are limited (8m to 12m) because of higher

attenuation in soil. Beam-forming antennas [19] are being

used in indoor wireless networks to improve capacity. In UG

channel, these multiple antenna arrays can be used to focus

the maximum signal energy to exploit the lateral wave. Signal

footprint can be tailored by limiting energy radiation in direct

and reflected components as these are attenuated most. This

type of beam-forming in underground channel could be either

adaptive based on effects of frequency and soil moisture on

channel, or fixed, based on the soil type, depth and distance

of system deployment.



3) Underground OFDM: From an underground commu-

nication system design perspective, RMS delay spread and

coherence bandwidth findings reported in this paper, for both

UG2UG and UG2AG channel, lead to an important conclu-

sion. To achieve high data rates, single carrier approaches may

lead to higher bandwidth requirement and use of all available

system bandwidth as a single channel for data transmission

would result in inter-symbol interference (ISI). Therefore, to

achieve high data rates and to overcome ISI problem, Orthogo-

nal Frequency Division Multiplexing (OFDM) [7] can be used

for signal transmission, where signal bandwidth of each sub-

carrier is less than the coherence bandwidth of underground

channel. Moreover, significant performance improvement can

be achieved in underground channel when modulation scheme

can be designed and adapted based on measured channel

impulse response. Such modular adaptation is supported by

discrete multi-tone modulation (DMT), a variant of OFDM, by

use of set of non-overlapping narrowband carriers and trans-

mission rate is adopted based on each sub-carrier’s individual

conditions. To develop an optimum strategy and theory to

analyze the effects of such technique on underground channel

needs to be investigated further.

VII. CONCLUSION

In this paper, analysis of impulse response of Wireless Un-

derground Sensor Networks (WUSN) channel is presented. A

3-wave based impulse response model of underground channel

is developed and validated with measured data. Distribution of

mean excess delay and RMS delay spread is determined and

it is shown that RMS delay spread is log-normally distributed.

Effect of T-R separation on mean amplitudes of power delay

profile is showed. We have presented the impact of soil

moisture and soil types on RMS delay spread and power

gains of delay profiles. It is presented that RMS delay spread

increases with increase in soil moisture. It is also showed

that coarse-textured soils have larger RMS delay spreads and

lower attenuation as compared to fine and medium-textured

soils. Coherence bandwidth of UG channel in relation to RMS

delay spread is modeled and showed to be less than 1MHz.

Coherence bandwidth findings reveled the use of OFDM for

underground channel communication to have ISI free commu-

nication and for significant performance improvements. These

findings serve as important characterization parameters of UG

channel and give guidelines for design of an underground

communication system.
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