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A B S T R A C T

Current hazard-identification efforts in construction mostly rely on human judgment, a reality that leaves a
significant number of hazards unidentified or not well-assessed. This situation highlights a need for enhancing
hazard-identification capabilities in dynamic and unpredictable construction environments. Given the fact that
hazards cause disruptions in workers' behaviors and responses, capturing such disruptions offers opportunities
for identifying hazards. This study proposes a collective sensing approach that senses and assesses workers' gait
abnormalities in order to identify physical fall hazards in a construction jobsite. Laboratory experiments si-
mulating an ironworkers' working environment were designed and conducted to examine the feasibility of the
proposed approach. A wearable inertial measurement unit (WIMU) attached to a subject's ankle collected ki-
nematic gait data. The results indicated that the aggregated gait abnormality score from multiple subjects have a
strong correlation with the existence of installed fall hazards such as obstacles and slippery surfaces. This out-
come highlights the opportunity for future devices to use workers' abnormal gait responses to reveal safety
hazards in construction environments.

1. Introduction

The development of wearable sensing technology enables the col-
lection and analysis of individual worker's bodily and physiological
responses to work on a job site, an opportunity that was previously
unattainable [1–3]. Collecting and analyzing worker's data is especially
valuable in the pursuit of increasing safety on a construction site since
identifying at-risk workers and safety hazards represents the first step
towards mitigating risks. The hazard identification in a construction
environment is still a challenging issue due to the lack of resources [4]
and the dynamic work environments involved [5]. Construction takes
place both indoor and outdoor—often at the same time—and tasks
often generate unpredictable work environments such as surface con-
tamination by dust and mud [5]. Different also tasks take place in the
same space [5], which yields frequent overlaps in the construction work
environment and site changes due to the interaction between various
activities. With such dynamic environments, construction sites contain
a significant quantity of unidentified or not well-assessed hazards that
expose construction workers to additional safety risks during required
operations [6,7].

The standard approach to identifying a hazard in construction

mainly functions on the basis of the judgment of safety managers or
individual workers [6]. However, these approaches still encounter three
main challenges in a construction environment: 1) Safety managers
must assess multiple areas, a fact that decreases their effectiveness in
addressing new safety risks as hazards arise; 2) individuals have dif-
ferent levels of knowledge and experience in identifying hazards; 3)
dynamic work environments add complexities that decrease in-
dividuals' ability to recognize hazards on the jobsite. Therefore, in-
novative approaches to identifying hazards would help address such
limitations and enhance hazard-identification capabilities to prevent
accidents in a construction site.

Among the various types of accidents, slips, trips and falls (STFs) are
the primary sources of injuries among construction workers [8,9], and
these events result in enormous economic and human losses [10]. With
such high risk of STFs, many previous studies have sought to auto-
matically detect STFs through wearable sensing technology [11–15]. In
clinical spheres, Bourke and his colleagues developed a threshold-based
fall-detection algorithm that uses an accelerometer [11] or gyroscope
[12]; their research showed a feasibility of automated detection of fall
of patients with wearable sensor. Lai et al. [13] proposed a method for
detecting patients' injuries using multiple accelerometers; their
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outcomes revealed an opportunity of identifying injured body area and
estimating severity through data from accelerometers. In the con-
struction-safety realm, Lim et al. [14] implemented an artificial neural
network model to detect slip and trip events using acceleration data
recovered from a smartphone. Dzeng et al. [15] investigated whether it
was possible to detect fall portents—i.e., near-miss falls—using em-
bedded IMU sensors in a smartphone. Combined, these studies reveal
the feasibility of using wearable sensors to detect occurred STFs in both
daily-living or working environments. However, considering the fact
that not all fall hazards will result in STFs, current approaches based on
retrospectives have limited performance for robust identification of
current hazards or future risks. Thereby, different approach that can
identify a possible source of STFs (i.e., fall hazards) without experien-
cing STFs would be necessary to increase the hazard identification
performance in construction.

Previous studies revealed that the human body responds to physical
environmental changes [16,17]. Accordingly, considering the fact that
STFs often begin with bad interactions between a foot and floor-surface
conditions, potential sources of STFs could foreseeably be identified by
studying changes in a worker's gait pattern (i.e., foot movement pat-
terns) alongside the changes' spatial locations. In this context, this study
investigates whether and how measuring workers' gait patterns can
help locate fall hazards in a construction jobsite. Specifically, this study
used wearable inertial measurement units (WIMU) to collect workers'
gait patterns as the subjects responded to fall hazards in a laboratory
settings and then computed spatiotemporal gait features to quantify the
workers' gait-pattern changes. In order to effectively translate the de-
gree of gait disruption from multiple gait features into a single value,
this study defined an IMU-based Gait Abnormality Score (I-GAS); this
score first uses the Mahalanobis distance [18] to measure the magni-
tude of gait disruption generated from fall hazards and then compares
the outcome to reference gait data from non-hazardous locations/la-
boratory setups. Using the different laboratory experimental setups—-
which simulated ironwork environments—this study verified the ex-
istence of gait disruptions at hazard location and showed the feasibility
of identifying fall hazards using the proposed I-GAS. Consequently, the
results of this study contribute to identifying fall hazards in a proactive
manner. The developed technique can thereby help construction man-
agers eliminate the risk of hazards without depending exclusively upon
observations or hazard reporting from a construction worker.

2. Research background

Fall accidents are the leading cause of fatalities and account for
approximately 30% of all fatalities in construction [19]. Also, falls are
one of the major causes of minor injuries in construction, and many
workers have suffered a significant number of work disabilities (e.g.,
contusions and fractures) from fall accidents [20]. Due to the high risks
and related costs associated with fall accidents, many studies have
sought to reveal and prevent the causes of falls in construction [20–23].
Courtney et al. [20] investigated disabling injuries in construction and
identified the sources and types of worker injuries from falls. Cattledge
et al. [21] analyzed nonfatal injuries from falls in construction and
revealed that ladder and scaffold tasks are major sources of such in-
juries—these activities account for 50% of all nonfatal fall injuries in
construction. Huang et al. [22] analyzed fall-accident records and
identified high-risk trades, causes of accidents and other related in-
formation (e.g., types of construction projects, fall height, worker's age,
height of fall) in construction. Chi et al. [23] identified contributing
factors of fatal fall accidents in construction and suggested prevention
measures for fall accidents. These studies provide valuable insights
about fall-causing environments and situations in construction.

However, hazard identification still relies on individuals' hazard-
recognition abilities, which may vary according to experience and
knowledge of hazards. In response, previous studies into hazard iden-
tification worked to increase individuals' recognition abilities through

training programs or training in virtual environments [24–26]. Albert
et al. [24] developed a maturity model for enhancing the hazard-re-
cognition capabilities of construction workers and demonstrated the
usefulness of the model by observing increases in hazard-recognition
levels during construction. Bahn [25] studied the hazard-identification
levels of construction workers and showed that length of work experi-
ence did not predetermine the hazard-identification performance of an
individual. Sacks et al. [26] tested safety training in a virtual con-
struction site and showed the effectiveness of using a virtual reality
environment for worker's safety training. Each of these studies helped
reveal the significance of worker training and preparation in con-
struction safety.

While training is an effective way to enhance workers' hazard-
identification performance, humans' recognition abilities are still sub-
ject to surrounding environmental factors (e.g., noise and low light),
especially in a dynamic environment such as construction. For example,
a slippery surface—which is one of the leading causes of slip events—is
challenging to detect in low-light conditions. Also, construction
workers often must manually handle material (e.g., carry, pull, or push)
during tasks, which often interferes with visibility for hazard identifi-
cation [5]. Thus, environmental factors during construction can easily
undermine current hazard-identification performance, and workers are
still at risk of injuries due to unidentified hazards.

It is well-known that existing hazards can cause a certain amount of
disruptions in workers' behaviors, and these disruptions can evolve into
accidents [27]. Also, falls often begin as a result of unexpected changes
between a foot surface and the surface under the foot [28,29]. Thus, fall
hazards cause disruptions to workers' gait movements, and these gait-
pattern changes can foreseeably provide an insight into the existence of
fall hazards. In such circumstances, gait analysis is widely studied to
prevent fall accidents or to identify a potential faller in clinical appli-
cations [30–34]. In the past, such gait analyses were only available in
the laboratory setting using a marker-based motion-tracking system
[31,32] or a floor-pressure sensor system [33,34]; however, with the
recent developments in wearable sensing technology and analysis
techniques, ambulatory gait analysis has become available to outdoor
environments through the use of wearable sensor systems. Accordingly,
clinical researchers have begun to implement wearable sensor-based
gait analysis methodologies to record spatiotemporal gait features (e.g.,
stride times and stride distances) to then assess the abrupt changes in a
patient's gait to measure the risk of falls [35–38]. A single or multiple
WIMUs are attached to the subject's lower body parts for ambulatory
gait analysis. Then, these sensors record kinematics of leg or foot
movements using the accelerometer, gyroscope, and magnetometer
imbedded within the WIMU. Previous studies confirmed the accuracy of
measuring spatiotemporal gait features using a WIMU and revealed the
opportunity for real applications [39–41]. Although these gait analysis
techniques have been used to measure the fall risks of patients, no
previous studies have used such gait analyses to identify fall hazards in
construction environments.

In construction, several studies also used wearable sensing tech-
nologies to enhance safety on a construction site while mitigating the
difficulties associated with current safety inspections, which depend on
human recognition and judgment. Gatti et al. [2] tested a physical
monitoring system to measure workers' physiological responses—such
as heart rate, breathing rate—for safety monitoring. Cheng et al. [3]
proposed the fusion of a location-tracking system and a physiological
monitoring system for ergonomic analysis of a construction worker to
prevent workers' musculoskeletal or other injuries. Also, different types
of sensors, real-time locating systems (RTLS) [42], electromyography
(EMG) [43], and electroencephalograms (EEG) [44] were evaluated for
identifying hazard proximity and for measuring mental stress and the
physical stability of a worker in a construction environment. WIMUs,
which include an accelerometer, have been used to monitor a worker's
activities and behaviors (i.e., motion tracking) and demonstrated an
ability to capture workers' behaviors in construction [45–48]. Joshua
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and Varghese [45] proposed an activity-recognizing method that is able
to classify construction activities using accelerometer. Jebelli et al. in-
vestigated gait stability [46] and posture-stability metrics [47] for
measuring the fall risks of construction workers. Valero et al. [48] in-
troduced a system that can detect unsafe postures based on movements
of construction worker through WIMU. Combined, these studies de-
monstrate the applications of this technology to the construction safety
realm.

In addition to being inexpensive, small, and durable [47], a WIMU is
more robust as compared to vision approaches in challenging condi-
tions such as construction sites [45]. Capitalizing on such advantages in
data collection, our previous studies [49–51] detected ironworkers'
near-miss falls to identify fall-prone workers and hazardous locations in
the ironwork environment. These studies revealed that identified
workers' near-miss falls can be used to infer hazardous locations.
However, our past studies also identified the challenges in auto-
matically detecting near-misses from sensed data since near-misses are
very subjective depending on individual workers. In addition, the low
number of near-miss falls that occurred on a jobsite was insufficient to
estimate the locations of fall hazards in a quantitative and reliable
manner. Our initial study [52] used WIMUs to monitor workers' bodily
responses (e.g., body acceleration measured at the waist level) to an
environment in order to identify hazards; this preliminary work de-
monstrated the possibility of using bodily response to identify hazard
locations. However, the results of our preliminary work indicated that
such an approach required a large amount of sensed data to reliably
estimate hazard locations, as bodily responses do not contain direct
information about the interaction between a worker's foot and the
surface conditions on a jobsite.

In response, this study extends our earlier study [53] and presents
gait abnormality–measurement techniques and collective sensing (i.e.,
data aggregation) techniques for fall-hazard identification. To accom-
plish this objective, this study measured a breadth of disruptions in a
worker's gait due to hazards to identify hazards more efficiently. Due to
the fact that fall hazards on a surface directly interact with a worker's
foot, this study monitored workers' gait responses by placing WIMUs on
subjects' ankles to identify fall hazards concisely. Then, this study
comprehensively assessed the deviations among all available gait fea-
tures to determine instances of gait abnormality. Subsequently, the
research team tested the performance of identifying fall hazards by
measuring such gait abnormalities. Ultimately, this study validated the
proposed approach within a laboratory experiment setting and suggests
a potential application of this approach to construction safety man-
agement.

3. Methodology

3.1. Data collection during the laboratory experiment

This study conducted a laboratory experiment to collect the dis-
ruptions in workers' gaits caused by fall hazards in an ironwork en-
vironment, a discipline that records the second highest fatality rates
and the highest non-fatal injury rates among construction trades [54].
This study tested two different types of fall hazards (i.e., an obstacle and
slippery surface, which are common, observable hazards that can in-
duce slip and trip events). To simulate an ironwork environment, a
24.4 m-long (80 ft-long) steel I-beam structure (see Fig. 1a) was in-
stalled 10 cm off the ground. The experiment subjects wore standard
safety tools for an ironworker (safety harness, safety boots, and safety
helmet) during the experiment. Also, ironwork-related tools (e.g., sle-
ever bar, spud wrench, and dual ratchet spud) were attached on the
subjects' tool belts to create a similar experience to actual ironwork. A
total of nine subjects without ironwork experience walked on the 0.15-
meter-wide steel I-beam surface with their typical walking speed. The
detail of subject information is shown in Table 1.

This study conducted five different experiments to study the

feasibility of using gait abnormality for hazard identification (see
Fig. 1a). First of all, subjects participated in the experiment without any
hazards on the beam to collect data about each subject's normal gait
patterns. Then, either the obstacle or the slippery surface was installed
on the beam, and each hazard was tested at two different locations
(9.1 m or 15.2 m). In this study, two different types of fall hazards—an
obstacle and a slippery surface—were installed on the beam: A wooden
block (see Fig. 1e) and liquid (oil) on a plastic sheath (see Fig. 1f)
served as an obstacle and slippery surface, respectively. Also, due to the
starting (1.5 m) and ending (22.9 m) locations on the beam as well as
the eliminated data from each subject's first step/last step (which were
not included within complete gait cycles), the total distance covered
during this gait analysis came to 18.4 m.

A WIMU (Opal, APDM Inc.) (see Fig. 1c) was attached to the sub-
ject's right ankle (see Fig. 1d) for data collection. A WIMU collected the
data from three axes of acceleration (m/s2) and angular velocity (rad/s)
with 128 Hz sampling rates. All of the experiments were video re-
corded, and the video was time synchronized with the WIMU data using
the manufacturer software (Motion Studio, APDM Inc.). Using the col-
lected video, the gait cycles under the influence of a hazard were
manually classified. When a gait cycle had any overlap with the in-
stalled hazards, this study considered the data as being under a hazard's
influence. With this rule, one-to-three consecutive gait cycles was la-
beled as gait data from hazards. In this study, all of computations were
performed using the MATLAB (R2015, MATHWORKS).

3.2. Data preprocessing

In order to compute gait features, ambulatory gait analysis requires
preprocessing steps such as gait events detection, coordinate alignment,
gravity cancellation, and zero-velocity update. Of these considerations,
gait-event detection is the first essential step to computing gait features.
Since a gait is a cyclic movements of the foot [55], any consecutive gait
events (e.g., heel strike and toe-off) of one foot can be used to define a
gait cycle (see Fig. 2a) [56]. This study defined gait cycle as a gait
between consecutive heel strike points of one foot, similar to other gait
analysis studies [36,37,56,57]. For gait-event detection, this study used
pitch angle of the WIMU to identify heel strike and toe-off points, si-
milar to a previous study [58] (see Fig. 2c).

When an WIMU is attached to lower body parts (e.g., leg or foot) for
computing gait features, coordinate alignment is necessary between the
sensor's coordinate system (local axis system) and the body's coordinate
system (global axis system). As shown in Fig. 2a, the axes of the sensor
coordinate system (i.e., the WIMU) are continually changing with leg
movements. Thereby, the angle difference between the two coordinate
systems—see theta in Fig. 2b—also changes. In order to compute gait
features, acceleration data collected in the sensor's coordinate system
by the WIMU need to be aligned with the body's coordinate system. For
this coordinate alignment, this study utilized orientation data (i.e.,
quaternion) from the WIMU (Opal, APDM), similar to a previous study
[59]. The quaternion, which represents the object's orientation using a
complex number ( ̂ = q q q qq [ , , , ] ),r i j k

T is computed by performing the
integration of the WIMU signals using a Kalman filter. The rotation
matrix, RM, is computed using these quaternion data with following
equation:
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Then, horizontal acceleration (Ah in Fig. 2b) and vertical accelera-
tion (Av in Fig. 2b) are computed using a rotation matrix from Eq. 1 and
acceleration data from the WIMU (Ax, Ay, and Az). Also, vertical ac-
celeration (Av) offsets the influence of gravity (approximately 9.81 m/
s2) to enable the computation of vertical movement-related gait fea-
tures (i.e., maximum foot clearance). Details of the computation
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processes follow this equation:
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where, Ah, Am, and Av are horizontal (same as anterior-posterior),
mediolateral, and vertical axis accelerations in the body's coordinate
system, respectively.

In this study, gait feature that are related to the mediolateral axis
(i.e., stride width) are not measured since the steel beam surface had a
narrow width (i.e., 0.15 m), causing subjects to maintain a narrow
stride width while walking on the beam during the experiment. Raw
IMU data and the preprocessing results are displayed in Fig. 3.

(b) (e)

(c) (d)

(f)

(a)
Finish Point

Start Point

24.4m

0.15m

Hazard 
Location #2

(15.2m)

Hazard 
Location #1

(9.1m)

1. No-hazard
2. Obstacle (#1)
3. Obstacle (#2)
4. Slippery Surface (#1)
5. Slippery Surface (#2)

IMU Data 
Collection
(Laptop)

Video Recording

Experiment Process

Steel Beam Structure
(Elevated 0.1m from ground)

Fig. 1. Laboratory experiment setups: (a) experiment overview; (b) laboratory experiment settings; (c) WIMU System (Opal, APDM Inc.); (d) WIMU installation for gait kinematic data
collection; (e) obstacle on the steel beam structure; and (f) slippery surface on the steel beam structure.

Table 1
Detailed information about experiment subjects.

Height
(cm)

Weight
(kg)

Shoe size
(U.S.)

Age
(years)

Mean 177.22 75.89 9.56 27.56
Median 178.00 76.00 9.78 27.78
Min 165.00 60.00 7.00 25.00
Max 187.00 88.00 12.00 30.00
Standard deviation 6.68 8.33 1.42 1.42

(b)

Heel Strike Toe OffIMU Heel Strike

Gait Cycle

Stance Phase Swing Phase

(a)

(c)

Fig. 2. (a) Definition of gait cycle; (b) sensor coordinate
system and body coordinate system; (c) gait-event (zero-
velocity, heel-strike, toe-off) detection with angular velo-
city data in anterior-posterior axis (Adapted from our
previous study [53]).
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Sensor drift is a well-known challenge for gait analysis [60] and
IMU-based localization techniques (e.g., dead reckoning) [61]. Specifi-
cally, sensor drift can cause huge errors when finding an integral of
acceleration for measuring a spatially related gait feature (e.g., stride
distance). For example, when the foot is located on the ground during
stance phase, the velocity of the WIMU has to be zero since a foot is
located on the ground. However, the sensor will record a small velocity
in this moment, and these errors are accumulated across gait cycles. To
address this problem, this study used the widely applied zero-velocity
update (ZUPT) technique, which updates zero velocity when the foot is
located horizontally on the ground during stance phase (also called the
“zero-velocity point”). By updating the zero for every zero-velocity
point, sensor drifts or measurement errors are effectively compensated
for in each gait cycle, and this technique has been shown to be reliably
accurate in other gait-analysis studies [36,57,60]. In this study, the
ZUPT technique was used for both horizontal and vertical velocity
computation.

3.3. Gait-feature computation

This study used six available spatiotemporal gait features (stride
time, stride distance, average velocity, maximum foot clearance, stance
ratio, and swing ratio) expressed within the WIMU data (see Fig. 4 for
details of spatiotemporal gait features from foot kinematics).

These gait features are also used in the ambulatory gait analysis
with WIMU for patients and the elderly [39,61,62]. Equations for each
gait feature computation are as follows:

(1) Stride time (ST), the time between heel strike events of one foot:

= −+ST t HS t HS( ) ( )i i1 (3)

where, t(HSi+1) is the time of the (i+ 1)th heel strike event and t(HSi)
is the time of the ith heel strike event.

(2) Stride distance (SD), the traveling distance during a gait cycle:

∫=
+

SD V t dt( )
t HS

t HS
h( )

( )

i

i 1

(4)

where, Vh is the horizontal velocity during the gait at time t.

(3) Average velocity (
−
Vh ,) the average of horizontal velocity during a

gait cycle:

− ∫=
−+

+
V

t HS t HS
V t dt1

( ) ( )
( )h

i i t HS

t HS
h

1 ( )

( )

i

i 1

(5)

(4) Maximum foot clearance (MaxFC), the maximum foot height from
the ground during a gait cycle:

=
∈ ⋯ +

MaxFC FC tmax ( )
t t HS t HS{ ( ), , ( )}i i 1 (6)

where FC(t) is the foot height from the ground (i.e., integral of the
vertical velocity).

(5) Stance ratio (StR), the ratio of stance phase time to gait cycle time:

= −
−+

StR t TO t HS
t HS t HS

( ) ( )
( ) ( )

i i

i i1 (7)

where t(TOi)is the time of ith toe-off event.

(6) Swing ratio (SwR), the ratio of swing-phase time to gait-cycle time:

= −
−

+

+
SwR t HS t TO

t HS t HS
( ) ( )
( ) ( )

i i

i i

1

1 (8)

In this study, the WIMU data from the start point in Fig. 1a to first
heel strike point and from last heel strike point to the finish point in
Fig. 1a of each trial are neglected in the gait-feature computation; these
events are not contained within the entire cycle. The computed gait
features are used to measure the degree of gait disruption through a
gait-abnormality measurement technique.

The validity of the gait-feature computations presented here was
also tested using additional experiments. Specifically, this study com-
pared two gait features (stride time and stride distance) as computed
from WIMU data with ground truth data that were manually collected
using a ruler and a timer. In this validating study, a WIMU sensor was

(a) (b)

Fig. 3. (a) Raw accelerations in x- and z-axes (Ax and Az); (b) adjusted accelerations in horizontal and vertical axes (Ah and Av) after coordinate alignment and gravity cancellation;

Foot 
Clearance

Fig. 4. Foot kinematics and spatiotemporal gait features.
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attached to the subject's right ankle, and the subject walked on the
laboratory floor without the interference of a hazard. The experiment
organizer collected a total of 45 samples of stride time and stride dis-
tance data manually. Then, the manually collected data were compared
with the stride time and stride distance computed from the WIMU data
using root mean square error (RMSE). The computed stride time and
stride distance were within 0.23 s RMSE and 0.09 m RMSE of the re-
ference data, respectively, which equates to less than 10% of the
average stride time (3.984 s) and stride distance (1.216 m). This study
also conducted a paired-sample t-test and confirmed that the computed
stride distance and stride time did not have a significant difference
(p > 0.05) when compared to the reference data.

3.4. Gait abnormality measurement

Approaches to using a single score to represent the degree of a gait's
deviation have been studied in clinical applications. The most widely
used approaches are the Gillette Gait Index (GGI) [31,58,63] and the
Gait Deviation Index (GDI) [32,64]. These approaches measure the
distance of multiple gait features between healthy subjects and Par-
kinson's or Cerebral Palsy patients in the principal component space.
Such approaches effectively quantify the deviation of gait features be-
tween patients and healthy subjects. However, these metrics have not
been used to quantify the gait disruption of a single subject (called the
subject's gait abnormality) when meeting hazards during a gait. Fur-
thermore, these existing metrics require multiple joint-angle data (16
angles of joints) for computation; data requirements create challenges
to applying the existing approaches to measuring the deviation of gait
features in a construction environment.

Given the need for a gait abnormality measuring technique for the
construction environment, this study proposes an IMU-based Gait
Abnormality Score, which measures the deviations of a single subject's
momentary stride from a distribution of his/her normal strides. This
study used the Mahalanobis distance (MD) metric, which can measure
the distance between a given sample point and a group of reference
data while considering the distribution of the reference data as a whole
[67]. The MD metric is widely used to solve clustering problems and to
detect outliers in multivariate analysis [18,65]. Specifically, the inverse
covariance matrix (C−1 in Eq. 9, below) makes each feature have same
degree of dispersion when measuring a distance using the MD metric.
Thereby, the MD metric rescales each dimension to have a unit variance
to measure the distance between the sample point and the center of the
distribution and the proposed I-GAS handles the correlation and mea-
surement unit difference between gait features. Consequently, the
proposed I-GAS quantifies the changes within an individual's gait fea-
tures—collected via the WIMU—by comparing the changes with his/her
gait features in non-hazard conditions. Eq. 9 is as follows:

− −− = − −−I GAS y C y(x ) (x )i
T

i
1

i (9)

where, x is a (1 × M) vector of gait features (M) from ith gait cycle,−y is
a (1 × M) mean vector of gait features (M) from reference data (y), and
C−1 is an inverse covariance matrix of reference data (y).

4. Gait feature computation result

4.1. Data overview

After executing the preprocessing steps described above, the study
computed both the horizontal and vertical velocities. The computed
velocities data showed changes in the subjects' gait patterns when in-
teracting with a hazard as compared to the gait patterns without ha-
zards (see Fig. 5). With the obstacle, both the horizontal and vertical
velocities showed decrease patterns at the hazardous location. On the
other hand, the slippery surface show a smaller difference compared to
the obstacle, but the length of the subjects' gait-cycle time decreased as

compared to the non-hazardous conditions. The preprocessed IMU data
showed the existence of a gait disruption in the hazardous locations,
and this study computed the gait features to effectively measure such
gait disruptions quantitatively.

4.2. Gait feature computation result

This study analyzed the gait features for both hazardous and non-
hazardous cases. The results of the gait-feature computation revealed
the existence of gait disruptions in both types of hazardous cases, and
these gait disruptions were observed in all subjects (see Table 2).

With the obstacle hazard, most of the subjects, except one subject,
decreased their gait velocity (i.e., average velocity) and had longer
stride times. The stride distance and swing ratio also decreased 6.2%
and 10.5%, respectively, as compared to the subjects' normal gaits. On
the other hand, the maximum foot clearance increased substantially (at
least 10%) to avoid the obstacle. Lastly, the swing ratio increased 8.5%
when encountering the obstacle hazard.

With the slippery surface hazard, subjects also decreased their gait
speed and had longer stride times, similar to the obstacle. Subjects'
stride distances decreased more than 10% to respond the slippery ha-
zard. The maximum foot height and swing ratio decreased 3.4% and
9.6% when confronted with the slippery surface, while the stance ratio
increased 7.5%.

Among the gait features, the maximum foot clearance shows the
biggest difference (i.e., 35%) between the two hazards because of the
different mechanisms involved in inducing a fall. For example, an ob-
stacle makes a subject increase her maximum/minimum foot height to
avoid a tripping accident whereas a slippery surface makes a subject
decrease her foot height to have more time during a gait. The corre-
sponding characteristics of a hazard therefore yield different maximum
foot heights depending on the type of hazard, which presents an op-
portunity for identifying the type of hazard using certain gait features.

Although the gait analysis results show the existence of gait dis-
ruptions by hazards, each subject has an individual difference in his gait
responses. In Fig. 6, Subject #1 and Subject #2 have different response
patterns to the same hazard. For example, for Subject #1, the stride
time increases substantially at both hazards, while Subject #2 has
comparably smaller increases. Also, Subject #2 has similar changes in
stance ratio and swing ratio from both hazards, whereas Subject #1
does not. In addition, each subject has a different sensitivity to differ-
entiating a hazard even when using the same gait feature.

These outcomes are important to applications in construction since
various types of fall hazards exist on a construction site and current
knowledge cannot determine which gait features are sensitive enough
to identify such hazards. These findings do support the use of the I-GAS
for measuring the abnormality of multiple gait features at a time.

5. Hazard identification with I-GAS

Using the Mahalanobis distance metric, each subject's gait disrup-
tions were measured via a single score that represented the degree of
the gait disruption the subject experienced in response to the hazards.
The I-GAS results demonstrate a significant difference (two-sample t-
test, p < 0.01) between both hazardous cases and the non-hazardous
case. Installed hazards generated higher I-GAS values (i.e., higher de-
grees of gait disruption) compared to the non-hazardous conditions.
Specifically, the obstacle had a higher I-GAS value (14.974) compared
to the slippery surface (12.456), and the non-hazardous condition had a
comparably lower I-GAS compared to both hazardous cases (see Fig. 7).
This result shows that the proposed gait-abnormality approach can
capture gait disruptions in hazardous conditions and that the I-GAS can
represent the degree of gait disruption with a single score.

On the other hand, even in a laboratory setting, some experiment
subjects modified their gait patterns (e.g., changed their gait speeds) at
the non-hazardous locations, which linked these changes to high I-GAS

K. Yang et al. Automation in Construction 82 (2017) 166–178

171



values (see Fig. 8). The high I-GAS outcomes from the non-hazardous
locations can decrease the hazard-identification performance sub-
stantially, especially in actual construction site. Considering the fact
that a construction environment has a higher probability of prompting
irrelevant gait-pattern changes in non-hazardous locations, further
analysis of these outcomes becomes necessary to address this limitation
for actual implementation in the construction site.

To address this limitation, this study aggregated the I-GAS data of
multiple workers based on their collected locations (i.e., collective
sensing) to focus on the spatial pattern of subjects' responses. This study
deemed this aggregated I-GAS as Local I-GAS (see Eq. 10). With this
approach, all of the irrelevant I-GAS peaks in non-hazardous locations
are successfully filtered out, and only hazardous locations appear as
peaks. Thus, this aggregated approach can improve the identification
performance compared to raw I-GAS results.

∑=
=

Local I‐GAS 1
n

I‐GASi
j 1

n

ij
(10)

where I-GASi is the collected I-GAS at the location i, and n is the total
number of collected I-GAS in location i.

In this study, the location of each gait cycle was determined based
on the stride distance of each gait cycle. This technique is similar to the
IMU-based location technique (i.e., Pedestrian Dead-Reckoning) in
previous studies, and it shows reliable accuracy in total traveling-dis-
tance estimation [62,68,69]. Also, distance errors between total cov-
ered distance and total stride distance can be equally distributed to each
gait cycle. As this study defined the gait cycle as the gait between
consecutive right heel strikes, the total covered distance during the
experiment is the distance between the first heel strike point and the
last heel strike point. As a result, the spatial information of each I-GAS
is assigned for aggregation. This study named each data sample from
subjects as a “trial” and plotted each trial based on its locations.

Figs. 9a and 10a illustrate the spatial pattern of assigned I-GAS from
all subjects. The I-GAS results show a concentration of high values at
hazard locations. In detail, the obstacle has fewer unrelated peak points
at the non-hazardous locations when compared to the slippery surface.

These unrelated peak points are located sparsely throughout the loca-
tions, a characteristic that led this study to use the aggregation method
to filter out the unrelated peak I-GAS. With data aggregation, these
unrelated peak points in non-hazardous locations are successfully ad-
dressed, and only hazard locations result in a high I-GAS value. Figs. 9b
and 10b present the final results from aggregating the data of all sub-
jects encountering an obstacle and slippery surface, respectively.

This study also tested the impact of the size of the data set in ag-
gregating I-GAS values for identifying hazards. Fig. 11 illustrates the
range of mean I-GAS values from all the possible combinations by in-
creasing the number of subjects. For example, “1 subject” in Fig. 11-a
shows the distribution of aggregated I-GAS mean values from one out of
all the nine subjects. Then, “2 subjects” in Fig. 11a represents the
average of aggregated I-GAS values from all the possible selections of
two subjects (e.g., Subject 1 and 2, Subject 2 and 3). Any overlaps of the
boxplots between obstacle and no-hazard indicate a possible false alarm
in identifying hazards using I-GAS values. The results revealed that
increasing the number of subjects is highly effective in reducing false
alarms and that slippery surfaces require more data aggregation com-
pared to obstacles in order to avoid false alarms.

To verify the performance of hazard identification using the I-GAS
measurements in a quantifiable manner, this study conducted the point-
biserial correlation analysis between aggregated Local I-GAS results of
each location and ground truth on the hazard locations. To test the
minimum and maximum performance when using data from multiple
subjects, this study aggregated multiple subjects' I-GAS outcomes from
the data having the lowest correlation coefficient to the data having the
highest correlation coefficient. The results of this correlation analysis
are presented in Table 3. Of particular note is the fact that the corre-
lation coefficient for the obstacle increases faster than for the slippery
surface; the worst scenario in our data samples—the obstacle—needed
data from 4 subjects (36 trials) to have a strong correlation (r > 0.7)
with I-GAS, whereas the slippery surface required data from 6 subjects
(54 trials). These observations reveal the intensity of the magnitude of
subjects' responses to obstacles as compared to slippery surfaces. In the
best scenario, one subject's data was sufficient to demonstrate the
strong correlation with Local I-GAS data and hazard locations. This

Fig. 5. Changes in horizontal acceleration (Ah), vertical acceleration (Av), horizontal velocity (Vh), and vertical velocity (Vv) in obstacle, slippery surface, and non-hazardous locations.
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finding points to an opportunity to demonstrate that with a sufficient
number of data samples, latent hazards that are otherwise challenging
to detect could be identified through the proposed I-GAS approach.

6. Discussion

6.1. Performance of I-GAS-based hazard identification

This study proposes a gait abnormality measurement technique that
quantifies the magnitude of disruption of a subject's gait to identify fall
hazards on a surface. The results of this study confirmed that the pre-
sence of fall hazards on a surface generate disruptions in a subject's gait
patterns and that these disruptions can be quantified using the proposed
I-GAS. This study tested identifying two different types of common fall
hazards on construction sites (an obstacle and a slippery surface). Our
results show that the proposed gait abnormality measurement tech-
nique manifested a strong correlation with the tested hazards. It should
be noted that this study only examined the correlation of I-GAS with the
exact location of hazards, but the research team observed that a hazard
prompts gait-pattern changes before/after the experience of the hazard
and such high I-GAS values before/after the hazard negatively impact
the correlation analysis result. However, if we can extend the correla-
tion analysis to cover these before/after gait-response areas, the iden-
tification performance of this methodology would foreseeably increase
significantly.

6.2. Relationship between spatiotemporal gait feature and fall accident

The results of the spatiotemporal gait-features analysis in this study
show similar results with previous fall-risk assessment studies that use
gait analysis. Jefferey [70] studied the gait variability and fall-accident
experiences of older adults and found that stride-time variability highly
correlates with fall-accident experience; similarly, the computed gait-
feature results about stride time in this study identify stride time as
showcasing one of the highest variabilities in both types of hazards.
Sterke [71] predicted short-term fall risks among nursing home re-
sidents with dementia and revealed that reduced gait velocity and re-
duced stride length are the best predictors of fall accidents. Also,
Garman [72] estimated the probability of tripping accidents from an
obstacle by using a subject's gait speed and other information (e.g., the
height of the obstacle, age, obesity) and showed these data could assist
in estimating a tripping accident.

Similar to these studies, the result of our study show that stride time
and gait velocity decrease in hazard locations. These concurring out-
comes reveal an opportunity to evaluate worker's gait responses to
hazardous conditions in light of existing knowledge about gait analysis;
by allowing these two arenas of gait analysis to work in dialogue, we
may deepen our understanding and knowledge about workers' gait re-
sponses and thereby increase the opportunities for measuring each
worker's risk of fall accidents, as clinical disciplines have been at-
tempting to do. Thus, the benefits of studying human-response patterns
in high fall-risk areas to identify both fall hazards and fall-prone
workers continues to be a promising arena of research.

6.3. Potential applications

The proposed approach is envisioned to significantly increase ha-
zard-identification performance on construction jobsites by providing
supportive tools that add workers' gait-response data to the current
safety-hazard identification efforts. For example, current identification
approaches ask safety managers to conduct visual inspections, which
are limited in the face of the dynamic changes taking place within a
construction work environment. Also, concentrations of multiple
workers' gait abnormalities can be used as immediate indicators of in-
creasing fall-accident risks, even in changing work environments. With
these data, a safety manager can decide whether to pursue additionalTa
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inspection plans in the specific high-risk area. Also, the difference be-
tween the gait abnormality results and the manual inspection outcomes
can be used to infer the location of latent fall hazards in the job site.
With such information, a safety manager could perform further ex-
aminations in such areas to identify latent fall hazards, thereby en-
abling safety managers to mitigate the risk of an accident catalyzed by
these hazards. Also, similar with previous study from Zhang [73],
measured gait abnormalities can be mapped in the Building Information
Modeling (BIM) of a construction site to assist in a safety manager's
further examinations by delivering better understanding on the con-
texts of why gait abnormalities occur at a certain location (e.g., re-
cognized hazards, latent hazards, non-hazardous site conditions). In

particular, the integration with the BIM model will help filtering out
gait abnormalities caused by non-hazardous site conditions (e.g., site
geometry, stairs). Moreover, such the integration will facilitate the
better communication among safety managers and workers on identi-
fied hazards, thereby efficiently mitigating the risks of identified ha-
zards.

6.4. Limitations and future directions

Although the result of this study showed that the suggested method
has a potential to indicate the existence of hazard in the controlled
experiment setting, our experiments included only two types of hazards
which are commonly found in the ironwork. Other types of hazards
need to be further tested. For example, every items or conditions such
as, tool boxes, other workers, dust, and unorganized electrical code in
construction site, can cause abnormal gait which can be linked to STFs.
Moreover, the conducted experiment tested only walking activity
without any additional tasks (e.g., carrying material, combined with
other stationary tasks). Thus gait patterns and disruptions with addi-
tional tasks need to be investigated to demonstrate the feasibility of the
proposed approach in a real world setting. In addition, it needs to be
investigated how the diverse characteristics of construction workers
(e.g., work experience, age, gender) affect their gait responses in related
to hazards.

Furthermore, the following aspects of the proposed method need to
be further investigated to ensure its performance in practice. First of all,
this approach requires multiple data samples to have accurate hazard
identification results; unfortunately, the extended data requirement
makes real-time monitoring challenging since multiple observations
may take time to garner. One available approach to decreasing the data
requirement is to consider additional gait features from the WIMU in
the gait-abnormality measurement technique. By introducing foot
angle- or foot trajectory-related features to the gait-abnormality

Subject #1 Subject #2 Fig. 6. Two individual subjects' gait-fea-
ture data from the obstacle, slippery sur-
face, and no-hazard locations.

Fig. 7. Result of I-GAS computation for all subjects with obstacle, slippery surface, and
no-hazard conditions.
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measurements, deviations within workers' gait data may be more
readily visible for hazard identification. Another aspect is that the
proposed approach requires robust localization techniques to collect,
aggregate, and link I-GAS data with hazard locations. In this study's
experiment setup, the IMU-based Pedestrian Dead-Reckoning (PDR)
technique can be used due to subjects' one-dimensional movement
during the experiment (walk on the straight steel beam). However, the

PDR technique would likely have low accuracy in real work scenarios
since we would not know the trajectory of the worker or any locational
information. To counter this limitation, accurate worker-location sen-
sing becomes necessary. Considering that a subject's gait cycle usually
covers between 0.8 and 1.5 m, the accuracy localization technique—-
which can have an error range bellowed than worker stride distance —
needs to be tested and used on a real construction site to determine

Hazard : Obstacle
Stride Time (+)
Stride Distance (-)
Average Gait Velocity (-)
Maximum Foot  Clearance(+)
Stance Ratio (+)
Swing Ratio (-)

No-Hazard : Gait Speed Change
Stride Time (+)
Average Gait Velocity (-)

Fig. 8. High I-GAS result from non-hazardous condition.

Obstacle 

(b)

Obstacle 

(a)

Fig. 9. I-GAS computation results: (a) spatial pattern of I-
GAS with obstacle at 9.1 m; (b) Local I-GAS with obstacle at
9.1 m.

(b)

Slippery

Slippery

(a)

Fig. 10. I-GAS computation results: (a) spatial pattern of I-
GAS with slippery surface at 15.2 m; and (b) Local I-GAS
with slippery surface at 15.2 m.
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whether workers can be located accurately enough to make this ap-
proach viable outside the laboratory.

7. Conclusion

This study proposes a gait abnormality measurement approach to
identify the existence of fall hazards on the surface of a construction
environment. This study tested the proposed approach in a laboratory
setting by installing an obstacle and a slippery surface as fall hazards on
an I-beam. The results of the collective gait abnormality approach show

a strong correlation between the location of hazards and the test sub-
jects' physical responses to the hazards, which in turn reveal the fea-
sibility of identifying fall hazards by measuring workers' gait disruption
patterns. The results of this study will enhance safety managers' hazard-
identification capabilities for detecting existing fall hazards and will
help these managers eliminate these hazards on the construction site.
The findings of this study can serve as a basis for developing an auto-
mated hazard-identification system that utilizes workers' physical re-
sponse patterns as an informative source of data for hazard identifica-
tion in construction.

As a future research direction, field experiments that include
workers' natural movements and/or the various latent hazards found in
real-world settings are necessary to examine the actual performance of
this hazard identification methodology. Also, different types of gait
disruptions—such as gait-path changes and leg-angle changes—need to
be studied to capture more information from fall hazards and thereby
make this approach more robust. Lastly, further explorations into lo-
cating workers need to be executed in order to identify hazard locations
on two-dimensional work surfaces.
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Number of
aggregated
subjects
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coefficient
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Correlation
coefficient
(maximum)

Correlation
coefficient
(minimum)

Correlation
coefficient
(maximum)
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