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Accidental falls (slips, trips, and falls from height) are the leading cause of occupational death and injury in con-
struction. As a proactive accident prevention measure, near miss can provide valuable data about the causes of
accidents, but collecting near-miss information is challenging because current data collection systems can largely
be affected by retrospective and qualitative decisions of individualworkers. In this context, this study aims to de-
velop a method that can automatically detect and document near-miss falls based upon a worker's kinematic
data captured from wearable inertial measurement units (WIMUs). A semi-supervised learning algorithm
(i.e., one-class support vector machine) was implemented for detecting the near-miss falls in this study. Two ex-
periments were conducted for collecting the near-miss falls of ironworkers, and these data were used to test de-
veloped near-miss fall detection approach. This WIMU-based approach will help identify ironworker near-miss
falls without disrupting jobsite work and can help prevent fall accidents.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The construction industry is considered one of the most dangerous
industries in the United States. Among construction-related accidents,
fall accidents are one of the leading causes of fatalities and account for
more than 30% of fatal accidents during recent decades [1]. Ironworkers
are exceptionally susceptible to fall accidents and face the highest life-
time risk of fatal injuries among construction trades [2]. According to
Beavers [3], between 2000 and2005,more than75%of fatal ironwork ac-
cidents were caused by fall accidents. Such high fatality rates among
ironworkers are rooted in various factors: (1) most of the time, iron-
workers are working on narrow surfaces of structural steel beams
installed at high elevations and are thereby exposed to numerous open
edges, and (2) ironwork construction consists of physically demanding
tasks such as handling heavy steel materials (e.g., beams, columns, and
steel plate) and equipment for steel erection. These work characteristics
contribute to the risks that ironworkers face in their daily tasks.

Due to the high risk of fall accidents among ironwork erection
projects in general construction, the Occupational Safety and Health Or-
ganization (OSHA) requires the use of fall protection measures such as
guardrails, safety nets, and personal protective equipment to protect
workers when working at elevation. The current safety measures for
fall accidents are classified as active/primary protection measures
unl.edu (C.R. Ahn),
(S.S. Aria).
(e.g., guardrails and covers), which physically prevent the occurrence
of falls, and passive/secondary protection measures (e.g., personal fall
arrest systems, safety nets), which help to prevent or minimize injury
from falls [4,5]. While passive/secondary protection measures are gen-
erally employed for ironworkers, the use of active/primary fall protec-
tion measures is limited due to the constraints of ironworkers'
working environments. This shortcoming faces particular criticism
since current fall protection measures emphasize reducing the severity
of an injury rather than proactively preventing a fall accident [6]. As an
example, the use of a personal fall arrest system (PFAS) does not pre-
vent the occurrence of fall itself during ironwork. Although the proper
use of PFAS can save the life of workers who fall after losing their bal-
ance, being suspended in a harness may result in a suspension trauma,
orthostatic intolerance, or other, more severe injuries [7]. Moreover,
many workers still get injured due to using incomplete or inadequate
fall protection devices [8].

In pursuit of a proactive approach for preventing accidents (includ-
ing falls), researchers have turned their attention to collecting and uti-
lizing accident leading indicators [9,10]. Leading indicators are
conditions, events, or measures that are valuable in predicting the fu-
ture occurrence of undesirable events, including accidents, incidents,
or nearmisses [9]. Leading indicators are designed tomonitor the safety
process by identifying gaps between the current environment and the
recommended settings [9,11]. The knowledge identified through this
monitoring is then used to decrease the possibility of injury occurrence
[11]. Thus, such indicators are associated with proactive approaches
seeking to identify, assess, and eliminate a related risk [10]. A near
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miss is one such accident leading indicator [11,12] and is defined as an
event that causes no damage or loss at the time of occurrence but
could havematerialized into an actual accident in a slightly different en-
vironment [13]. Near misses have been widely used to reduce the like-
lihood of future accidents in diverse industries (e.g., chemical, airline,
nuclear, railroad, medicine, and construction) by detecting systemic
flaws and managing such flaws by removing risk factors before acci-
dents occur [14–17]. Thus, having knowledge about near misses
(e.g., cause, worker, and location) can help identify hazardous elements
and vulnerable workers. This knowledge can also provide opportunities
to eliminate such hazardous conditions at the job site or to alert possible
victims that they need to change their behavior before an accident. For
this reason, identifying and collecting near misses is an important step
in implementing proactive accident prevention measures.

Previous studies of utilizing nearmisses for occupational safety have
emphasized the importance of nearmisses and introduced different ap-
plications of near-miss data [12,14,18–20]. In such cases, the collection
of near-miss datamainly depends on a self-reporting systemofworkers.
However, collecting near-miss data using a reporting system is not an
easy task since such an approach is easily influenced by qualitative
and retrospective decisions based upon the perceived attitudes of
individual workers, such as, fear of discipline, acceptance of risk, and
inconsistent perception of near-miss falls [18]. One of the available
methods for collecting quantitative near-miss data is using a technology
solution—such as Ultrasound or RFID—to acquire real-time information
about workers' exposure to known jobsite hazards [21]. However, such
a proximity-based approach is not sufficient to capture nearmisses that
are caused by unknown hazards or not triggered by physical hazards.
Alternatively, one promising technology is WIMUs, which can docu-
ment subtle body movements (i.e., acceleration, angular velocity) with
a 3-axis accelerometer, gyroscope, andmagnetometer. In previous stud-
ies, WIMUswere widely used in fall detection [22–26], activity recogni-
tion [27–33] and gait analysis [34–36]. Due to its small size, aWIMU can
be easily attached to the body of a subject and can transmit kinematic
data through wireless communication. Thus, WIMUs have the potential
to be widely deployed as a wearable tool on construction sites. To this
end, this study utilizes WIMUs to document ironworkers' near-miss
falls and developed a near-miss falls detection approach.
2. Research background

Many previous studies have focused on identifying fall accident risk
factors to increaseworker safety in construction. Chi [4] investigated ac-
cident patterns of previous fatal fall accidents and proposed accident
prevention measures for each type of accidental scenario. Huang [8]
identified factors related to fall accidents (i.e., cause of accident, fall
height, and accident-related elements) based on accident records from
OSHA, and Cattledge [37] studied injury records of nonfatal falls and
identified problems with current fall accident prevention measures. As
a proactive approach to accident prevention, Wu [12] developed a sys-
tematic model for identifying near-miss information from ongoing pro-
ject using knowledge from historical accident database. Wu deduced
knowledge from previous accidents and applied this knowledge to an
ongoing construction project with a real-time near-miss tracking and
reporting system that used RFID technology. Cambraia [19] provided
near-miss guidelines utilizing near-miss information for accident pre-
vention. Cambraia collected near-miss data from construction projects,
analyzed the risks of identified near misses and suggested recommen-
dations for implementing a near-miss system. Finally, Navon [38] intro-
duced an automated fall-hazard monitoring system for construction
sites. This study identified the risks of fall accidents in activities included
in project schedules and proposed a guardrail installation measures to
prevent fall accidents. Also, this studymonitored the status of guardrail
installation (e.g., missing or incomplete) through wireless communica-
tion to enhance worksite safety.
However, previous studies have only focused on investigating previ-
ous accidents to derive general recommendations [4,8,37] or on identi-
fying potential accidents using previously known hazards and locations
[12,19,38]. Moreover, previous techniques have failed to consider indi-
vidual workers, who are actually at risk of accidents while working on
construction sites. In particular, proximity-based systems [12,38] re-
quire substantial resources to prevent ironworker fall accidents since
this population almost always works near open edges on narrow-
surface steel beams. This exposure problem is compounded by the fact
that ironworkers have only a small surface space to recover from even
a small degree of balance loss, and current proximity-based systems
do not address this issue in real time. These shortcomings of proximi-
ty-based systems emphasize the current challenge in implementing
fall-prevention for ironworkers and highlight the reasons this popula-
tion is still at the high risk of fall accidents in construction.

Information technology-based construction site data (e.g., about
workers, work environment) collection measures assist in increasing
the ability to store, retrieve, and manipulate data during the construc-
tion process [39]. As a possible alternative to capturing near-miss data,
a WIMU, which includes an accelerometer, a gyroscope, and a magne-
tometer, can robustly document and wirelessly communicate human
movement data. This advantage has led to the use of WIMUs for fall de-
tection to increase the safety of patients and workers [22–26]. In bio-
medical studies, attaching accelerometers to the body is a widely used
approach for detecting fall accidents, especially for the elderly [22,24].
Automated detection of fall accidents using wearable sensors has been
considered a promising method for protecting the elderly or people
with a disability from an unidentified fall risk. In previous biomedical
studies [22–24], the key research objective focused on detecting fall ac-
cident situations or accident-related conditions such as accident loca-
tion, severity of injury, or injured body parts. These previous studies
approached fall accident detection by detecting strong accelerometer
signals from when a subject actually fell to the ground rather than by
identifying or monitoring dangerous movements (e.g., loss of balance)
that reveal informative data about future or potential fall accidents.
This limited focus is problematic for translating biomedical research to
ironworkers since according to Beavers [3], loss of balance (LOB) is
one of the major proximal causes of fall accidents for ironworkers, and
LOB is cited as contributing to most unintentional falls even in spite of
the lack of a quantitative definition [40].

There are a few studies that attempt to detect near-miss falls—
sometimes called “near-falls”— automatically using body-attached sen-
sors. In one such study, Weiss et al. [41] investigated subjects walking
on treadmills to detect near-falls in normal activities. To generate
near-fall data, different types of obstacles were placed in the walking
path at random. In his study, he defined near-falls similarly with trip ac-
cidents.Many accelerometer-related features (e.g., signal vectormagni-
tude, normalized signal magnitude area, and other derived features)
were tested in his study with an 85% sensitivity and 88% specificity
with one feature (i.e., vertical maximum peak to peak acceleration am-
plitude derivative). The study also showed an 85% sensitivity and 90%
specificity with the combination of two features (i.e., vertical maximum
peak to peak acceleration amplitude derivative and vertical maximum
acceleration). This study reveals the possibility of near-miss fall
detection using body-attached accelerometers in a controlled laborato-
ry environment. In the construction domain, Dzeng et al. [42] used a
smartphone accelerometer and gyroscope to detect fall portents
(e.g., swaying, unsteady footsteps, and loss of balance), which are refer-
enced by self-reporting and video observation. To detect fall portents,
Dzeng et al. measured the signal magnitude vector using accelerometer
or gyroscope and detected the fall portents using a threshold-based de-
tection approach. As a result of this approach, Dzeng et al. acquired
88.5% accuracy for detecting fall portents from construction tiling
workers on a scaffold.

Although previous near-miss fall detection methods demonstrate
their feasibility for detecting fall-related nearmisses, they predominantly
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focus on detecting trip or fall-portent from tiling work. Weiss et al. [41]
did not consider the different types of possible loss of balance scenarios,
such as kicking or stepping over an obstacle, and lateral body sway in
near-fall detection; additionally, the experiment in this study was per-
formed by walking on a treadmill, which sends a constant walking
speed to the sensor. The fall-portent detection method from Dzeng
et al. [42] tested tiling work, which deals with more stationary work
movements than ironworkers, whose tasks consist of diverse postures
and movements such as walking, turning, squatting, bolting, reaching,
and carrying a load on the narrow surface of an I-beam.Moreover, the de-
tection methods from both previous studies mostly examine the magni-
tude of sensor signals to detect near miss during controlled walking
speed or stationary work conditions. Our previous study [43], which
used a threshold-based approach in near-miss fall detection, also re-
vealed the challenges of threshold-based approaches using a single or
minimal set of features. Such approaches necessitate a hierarchical detec-
tion model to classify all possible variations of workers' actions. Thus, to
detect near-miss falls during ironworker tasks, an approach that can con-
sidermultiple features regarding body acceleration and angle to differen-
tiate near miss from dynamic movements would be more effective than
using a single feature. This study is extended from our earlier study
[44] and proposes a semi-supervised learning algorithm that enables de-
tecting near-miss falls from dynamic movements. Upon its validation in
indoor and outdoor experimental settings, this study suggests its poten-
tial application to identify fall-prone workers and locations in iron work.

3. Methodology

This paper aims to develop a method for automatically collecting
near-miss falls among ironworkers using kinematic data acquired
from WIMUs attached to workers. This study applied a semi-
supervised pattern-recognition algorithm (one-class support vector
machine [OCSVM]) for near-miss fall detection and tested its feasibility
and detection performance in a similar environment to ironworks. All
computation in the study is processed through MATLAB (R2014,
MATHWORKS), and OCSVM was implemented through the LIBSVM li-
brary [45], which is a popular support vector machine toolbox. The
OCSVM semi-supervised algorithm is a support vector machine (SVM)
that is one of the most promising machine learning tools for solving
classification problems. Similar to the SVM algorithm, OCSVM trans-
forms the original data to a feature space and seeks the appropriate hy-
perplane that contains only one class. Then OCSVMuses the hyperplane
as the decision boundary to classify the binary data. Two different ex-
periments were conducted to test the developed detection approach
in laboratory and outdoor environments. The laboratory experiments
were conducted to detect ironworkers' near-miss falls to show the fea-
sibility of the developed approach. The outdoor experiments examined
the performance of the developedmethod near a construction site envi-
ronment. The developed near-miss fall detection approach can provide
quantitative information about near misses and offers the foundations
for utilizing near-miss fall data to alert ironworkers about their real-
time fall risks. With this approach, unrecognized near-miss falls in a
construction workplace can be identified, which gives researchers and
safety managers the chance to better understand individual workers'
near-miss falls and the locations or conditions that contribute to such
accidents.

3.1. Data collection and processing

To test the developed near-miss fall detection method, this study
conducted laboratory and outdoor experiments to collect near-miss
fall data on the simulated ironworks environment with five subjects
whoparticipated in these experiments voluntarily. To create a test expe-
rience similar to ironworkers' experiences, all experiment subjects wore
safety boots, a safety harness, and a hard hat during the experiments.
During both experiments, each experiment subject wore a commercial
WIMU (Shimmer 2R, Shimmer) sensor on his/her sacrum, which is the
bottom of spine and also the point nearest to the human body's center
of gravity. The WIMU documented the body movements of the worker
through a 3-axis accelerometer and gyroscope. Data from the WIMU
was wirelessly transported to a laptop computer in real-time using a
Bluetooth connection. The overall process of the near-miss fall detection
appears in Fig. 1 and is described in depth below.

In the laboratory experiment, a rectangular steel frame was installed
to create a simulated, elevatedwork place of ironworker (See Fig. 2). Two
pieces of 12′ 1″ (length) by 4″ (width) steel I-beams and two pieces of 6′
6″ (length) by 2″ (width) angle beams formed the steel frame. This study
intentionally designed the laboratory experiment to have narrow-width
steel beams to encourage more instances of near-miss fall data, which
we otherwise expected to appear at lower experimental frequencies be-
cause subjects would focus more on each step during the experiment.

Experiment subjects were asked to walk on this steel frame without
interruption over a course of 5 min. During the experiment, body accel-
eration and angular velocity of subjects were documented using a
WIMU with a 51.2-Hz sampling rate and the software provided by the
WIMU manufacturer. In addition, a video recorder filmed the experi-
ment to document any near-miss falls so the researchers could label
and reference the data to identify detection results. Based on the record-
ed video data, the experiment organizermanually labeled the near-miss
falls. In the outdoor experiments, a 56′ long steel I-beam with an 8″
width was installed in the backyard of an ironworker company. This in-
stallation was exposed to an outdoor environment to simulate the
working conditions of an actual construction site. Aswith the laboratory
experiments, five subjects were asked to walk continuously on the
installed I-beam for 5 min. Since the I-beam installation was a single
beam, the subjects were required to execute a 180 degree turn at both
ends of the steel beam.

To synchronize the video data with theWIMU data, at the beginning
and end of the experiment, the experiment organizer directly hit the
sensor to insert a beginning signal and an ending signal into the
WIMUdata. Although the defaultWIMU sampling rate is 51.2 Hz,we re-
constructed the WIMU data to use a 32-Hz sampling rate to ease the
processing of the WIMU data because a 51.2 sampling rate mostly
collected data with 51 sampling rate but once with 52 sampling rate
every 5 s. Then using the video data synchronized with the WIMU
data, the experiment organizer manually labeled the occurrence of
near-miss falls to use the cross-reference as the ground truth in thema-
chine learning classification.

It is important to note here that it is challenging to define near-miss
falls—also known as near-falls or stumbles—due to the diverse condi-
tions that influence these events. Weiss et al. [41] defined a near-fall
as a loss of balance that would have resulted in a real fall if sufficient re-
covery process were not activated. Chehade [46] defined a stumble as a
precondition of a fall that can contribute to a fall if the subject fails to
recover his or her balance. Building upon these definitions, this study
defines a near-miss fall as a loss of balance that results in a visible
balance-recovery motion or decreased speed. Specifically, near-miss
falls were labeled when experiment subjects on the I-beam had to use
abnormal movements to recover their balance. Such movements in-
cluded (1) not being able to maintain the speed of walking due to a
loss of balance demonstrated by having to sway the body or swing an
arm and (2) having obvious body sway or swing motions regardless of
walking speed. In this study, actual falls (steps off of the beam) also oc-
curred, but their corresponding data were eliminated manually since
the scope of the study did not seek to classify actual falls.

To classify near-miss falls on the steel I-beam, the WIMU data were
preprocessed before extracting features to reduce sensor noise and to
improve the classification performance. This study used a third-order
Butterworth low-pass filter with a cut-off frequency of 4 Hz to remove
sensor noise because human movement energy is located below 3 Hz
[47]. Also, this study used the “detrend” built-in function in MATLAB
(R2014, MATHWORKS) to remove the influence of gravity in the
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WIMU data. Then this study sampled 32 raw data to create a single data
window. Using a methodology developed by a previous classification
study [30], we then overlapped multiple adjacent data windows at
their 50% mark to increase the classification performance. Based upon
this sample data, this study extracted 38 total features in the time and
frequency domains. These features are widely used in WIMU-based
studies examining daily activity classification and fall detection [30,48,
49] and include themean, max, standard deviation, correlation, spectral
entropy, and spectral centroid from the x-, y-, and z-axes of both accel-
erometers and gyroscopes. These 38 featureswere used to classify near-
miss falls (unstable) and normal walking motions (stable) through an
OCSVM algorithm [45] (discussed in Section 3.2).
3.2. Semi-supervised near-miss fall detection

Due to the various factors (e.g.,missteps, trip,wind, slippery surface)
at play in a construction site, different types of near-miss falls can occur
for the ironworker. This reality makes the use of a previous threshold-
based fall detection algorithm [22,23] and general supervised pattern-
recognition algorithm challenging since such an algorithm would have
to be trained with every type of near-miss fall. Such a data-intensive
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Fig. 2. Details of experiment environments: (a) laboratory experiment layout and
(b) outdoor experiment layout.
requirement canbe a huge barrier to the implementation of thismethod
in a construction site due to the difficulties in collecting all near-miss
data. With the current level of knowledge regarding near-miss
falls—subjective definitions of near-miss falls will vary depending on
the perception of each individual, and what some would qualify as a
near miss may differ according to the ability of the subject to maintain
stability or recover from a loss of balance.

To address this data acquisition challenge, this study examined a
range of abnormal signals as stand-ins for near misses. Considering
that near-miss falls generates abnormal signal patterns in WIMU data,
the foundational premise of near-miss fall detection is the process of de-
tecting which different types of abnormal signal patterns characterize
different types of near-miss falls. For example, in Fig. 3, the accelerom-
eter signal for a near-miss fall (see Fig. 3c, d, and e) and an actual fall
(see Fig. 3b) shows a change in themedio-lateral axis and anterior–pos-
terior axis acceleration as compared to normal walking (Fig. 3a).

However, there is a substantial difference between near-miss
falls and actual falls in the acceleration of the vertical axis: As dem-
onstrated in other fall detection studies [22], actual falls show a
high vertical accelerationwhereas near-miss falls do not show a sim-
ilar difference across the vertical axis and only demonstrate such
substantial differences in the anterior–posterior and medio-lateral
axes when compared to normal walking. Moreover, near-miss falls
do not show a similar pattern to each other in terms of their acceler-
ation across the medio-lateral and anterior–posterior axis. This char-
acteristic of near-miss falls makes a semi-supervised learning
algorithm necessary for this study.

Considering the abnormal characteristics of WIMU signals for near-
miss falls, this study selected to use an semi-supervised algorithm,
one-class support vector machine (OCSVM) algorithm, which can de-
tect all types of abnormal signals (near-miss falls) based upon their di-
vergence from normal signal patterns (i.e., normal walking) (see Fig. 4).

According to this approach, every different near-miss fall signal does
not need to be recorded and used to train the classifier. Rather, the
OCSVM used in this study can classify two different classes based
upon a classifier trained for only one class of data (here designated nor-
mal walking). Thus, this abnormal detection approach can be imple-
mented by using only the normal signal data that can easily be
collected in general working conditions. Instances for the algorithm
are displayed by xi∈Rn, and target values are y∈ {-1,1}l. To solve the
training problem, our algorithmneeded to solve this optimization prob-
lem (Eq. (1)) [50]:

min
w;ξi ;ρ

1
2

wk k2 þ 1
vn

Xn

i¼1

ξi−ρ ð1Þ
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Subject to (wtϕ(xi))≥ρ-ξi and ξi≥0

f xð Þ ¼ sign w •ϕðxið Þ−ρð Þ ð2Þ

Here, v is a introduced parameter between 0 and 1, which is an
upper limit on the fraction of training errors and lower limit of the frac-
tion of support vector [51], and ξi is a slack variable measuring the error
of xi. Function ϕ maps xi to higher dimension, which results in support
vectors forming a hyperplane that separates the classes. When solved
optimization problemwithw and ρ, class will be decided using decision
function (Eq. (2)). In this study, various kernels have been studied, and
Near-miss Fall
(unstable)

Normal Walk 
(stable)

Fig. 4. Concept of near-miss fa
the best results were achieved using a radial basis function (RBF):

K Xi;X j
� � ¼ exp −r Xik − Xik X j

2
���

� �
; r N 0

K Xi;X j
� � ¼ ϕðxið Þ • ϕ xj

� �Þ
An RBF kernel is widely used to handle the nonlinear classification

problemwhen the relationship between the target values and the attri-
butes is nonlinear [52].With this kernel, all kernel values sit in the range
[0, 1], which results in a simplicity of computing vectors rather than
polynomial kernels that can yield infinite values [53]. An RBF kernel
needs to define the parameter (r) to perform better in training classifi-
cation performance. To achieve the best values, we performed a grid
search by exponentially increasing the parameter. Once an approximate
Normal Walk 
(stable)

Near-miss Fall
(unstable)

ll detection using WIMU.
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value for each parameter was found via a coarse grid, we narrowed
down the search using a finer grid. Then we selected the parameter
value that offered the best accuracy in near-miss fall detection. When
it came to training the algorithm, all training data were selected from
normal walking data that did not include a near-miss fall. In this
study, 60% of the normal walking data was used for training the
OCSVM classifier, and then the rest of the normal walking as well as
the near-miss fall data were used to test the trained classifier. During
the classification process, we adjusted the parameters of the algorithm
to attempt to improve an accuracy of our algorithm.

4. Results

This study subsequently assessed the accuracy of the overall near-
miss fall detection approach by producing a confusion matrix (see
Table 1). According to the two different experiment conditions
(i.e., the laboratory experiment and the outdoor experiment) and the
outcomes of the five subjects, our resulting algorithm detected near-
miss fall occurrenceswith 75.8% recall (TP/(TP+ FN)) and 86.4% overall
detection accuracy ((TP+ TN) / (P+N)). During the laboratory exper-
iment, the test subjects experienced a cumulative 183 near-miss falls on
the installed steel frame. Among these near-miss falls, 137 data samples
were correctly classified (74.9%) using the algorithm. In the outdoor ex-
periments, a total of 69 near-miss falls occurred, and 54 of them were
successfully detected (78.3%) through the implemented algorithm.

To foster near-misses in the data samples, this study installed nar-
row-surface beams in the laboratory experiment. As a result, more
near-miss falls (183 samples) occurred compared to the outdoor exper-
iments (69 samples), and it is expected to link to the better detection re-
sults in near-miss fall detection. However, despite the larger number of
near-miss data, laboratory experiment shows slightly lower recall com-
pared to outdoor experiment. In fact, the narrow-surface beams in the
laboratory experiments presented a difficulty for subjects as they tried
to perform their normal walking movements. Their walking move-
ments thus included other simultaneous motions such as extensive
arm swing, inconstant walking speed, and irregular balance-recovery
Table 1
Near-miss fall detection results achieved through the OCSVM.

Activity Subject no. Number of occurred
near-miss falls

Number of
near-miss f

Laboratory 1 58 45

2 25 18

3 46 35

4 22 16

5 32 23

Total 183 137

Outdoor 1 28 22

2 7 6

3 12 9

4 5 4

5 17 13

Total 69 54
motions. These motions caused ambiguity in labeling normal walking
in the laboratory experiments. On the other hand, the outdoor experi-
ments faced less ambiguity in the labeling of the normal walking due
to simplicity of experiment layout (i.e., wider walking surface). This de-
tail explains the slightly lower recall in the laboratory experiments
(74.9%) as compared to the outdoor experiments (78.3%).

For walking activity classification, the developed approach achieved
86.4% recall in the two experiments, and the remaining 14.6% ofwalking
data were misclassified as near-miss falls. The misclassified walking in-
cidents occurred near the edge of the steel beam before/after subjects
made a turningmotion. At this point, the subjects'walk speeddecreased
as they prepared for the turn, or they started to walk, which may have
given a similar signal to the near-miss fall defined in this study
(i.e., when subjects reduced their walk speed and recovered their bal-
ance with an arm swing without significant body sway). Also, an irreg-
ular walk, such as wide/small step distance, steps with strong vertical
force, and small degrees of body motion, were sometimes misclassified
as near-miss falls using the developed approach. This result shows that
irregular walking patterns, especially irregular steps and small body
motions, have a similar signal pattern as defined near-miss falls when
using a single WIMU (attached to the sacrum). This result illustrates
that multiple WIMUs (e.g., attached to the head or upper body) may
be necessary to better classify subtle movements. Also, a better defini-
tion or representation of near-miss falls would be beneficial to clearly
differentiate between near-miss falls and irregularwalkingmovements.

In the laboratory experiments, near-miss falls were detected with
similar accuracy (71.9% to 77.6%) across experiment subjects. However,
outdoor experiments had a varied near-miss fall detection rate (73% to
87.5%) depending on the experiment subjects. Such a high variability of
near-miss fall detection rates manifested in-part due to the low inci-
dences of near-miss falls in the outdoor experiment setting. For exam-
ple, Subjects 2 and 5 had fewer near-miss falls compared to Subjects
1, 3, and5 during the outdoor experiments, and the near-miss fall detec-
tion rates in Subjects 2 and 5 were found to be higher than other sub-
jects. It should be noted that Subjects 2 and 5 also had fewer near-
miss falls even in the laboratory experiments. Such a consistency of
detected
alls

Confusion matrix

Near miss fall
(predicted)

Normal walk
(predicted)

Near miss fall 77.6% 22.4%
Normal walk 9.7% 90.3%
Near miss fall 72% 28%%
Normal walk 13.4% 86.6%
Near miss fall 76.1% 23.9%
Normal walk 16.4% 83.6%
Near miss 72.7% 27.3%
Normal walk 11% 88.9%
Near miss fall 71.9% 14.4%
Normal walk 10% 90%
Recall 74.9%
Accuracy 86.8%
Near miss fall 78.6% 21.4%
Normal walk 15.7% 84.3%
Near miss fall 85.7% 14.3
Normal walk 14.3% 85.7%
Near miss fall 75% 25%
Normal walk 12.1% 87.9%
Near miss fall 80% 20%
Normal walk 11.8% 88.2%
Near miss fall 76.5% 23.5%
Normal walk 16.3% 83.7%
Recall 78.3%
Accuracy 85.2%
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individual vulnerability to near-miss falls across different experimental
settings indicates that the frequency of detected near-miss falls could be
used as a predictor of the fall risks of individual workers.

5. Discussion

As a proactive fall accident prevention measure for ironworker, this
study developed a near-miss fall detection approach that uses wearable
inertial measurement units (WIMUs) to gather data about bodily mo-
tions. The data are then applied to an algorithm that monitors bodily
gestures for abnormal movements (near misses). In particular, this
study successfully usedWIMUs to document the signals of subjects los-
ing their balance (near-miss falls) and detected these signal using a
well-known abnormality detection algorithm (OCSVM). To verify the
developed near-miss fall detection approach, this study conducted
two different experiments in laboratory and outdoor settings. By apply-
ing the OCSVM algorithm, this study achieved moderate near-miss fall
detection accuracies regardless of the experimental environment.

Previous studies to detect a near-miss fall based on WIMU data
mostly used a threshold approach based on the sum of total body accel-
eration [30,31]. While such studies demonstrated the feasibility of their
approach in limited settings (e.g., during treadmill walking, stationary
motions), the threshold approach requires collecting and analyzing all
possible forms of near-miss fall data and normal activity data to define
the threshold values of near-miss falls. This task may not be feasible
considering the nature of nearmisses in construction. The proposed ap-
proach based on theOCSVMalgorithm is able to detect different types of
near-miss falls based onworkers' normal activity data, which is relative-
ly easy to obtain. In addition, unlike previous studies, which focused on
detecting trip/slip or detecting near-miss fall during stationary actions,
this study is an initial attempt at detecting near-miss falls, loss of bal-
ance, during non-stationary actions (i.e., moving along the steel
frame). Such non-stationary actions included more diverse motions
(e.g., turning at the edge of steel frames, acceleration, and deceleration
of walking speed), and irregular movements of other body parts
(e.g., extensive arm swings), all of which posed a greater challenge in
detecting near-miss falls and would explain the slightly lower accuracy
of the proposed approach compared to previous studies.

Locational information regarding near-miss fall occurrences in the
proposedmethod provides a fruitful point of discussion. By synthesizing
the detected near-miss fall information for multiple subjects walking
along the steel beams, the locations that appear to contribute tomaking
workers fall-prone can be identified (see Fig. 5). To document the loca-
tions of the collected near-miss falls on the steel structure, each turning
motion was labeled with video data. Then the near-miss fall data were
identified as before or after the turning motion and the total number
Fig. 5. Near-miss fall location
of data samples between each turning motion were resized to have
same length for each steel beam. As a result, the narrow-surface
beams—marked as A and C—show relatively higher occurrences of
near-miss falls even when utilizing data from only one subject. With
the current accuracy of the OCSVM algorithm, the figure shows a clear
difference between the wide surfaces and the narrow surfaces in the
laboratory experiment. This outcome indicates that when synthesizing
the near-miss fall data of multiple workers in a particular location, this
fall-prevention approach could help identify hazardous conditions au-
tomatically. Thus, by combining the localization techniques, this near-
miss fall detection approach has the high potential to detect hazardous
conditions and to contribute to reducing the risk of fall accidents by de-
creasing the exposure time workers face hazards detected within the
collected locational information.

However, there are still many challenges to addressing the diversity
of construction job tasks. For example, carrying a symmetrical or asym-
metrical loadmay affect to the IMU signals of normal walking and near-
miss falls. In response, this study also tested the detection performance
of the algorithm for a case in which subjects carried a side load (25 lb).
All other experimental settings were maintained exactly as those of the
previous outdoor experiments. Although this new experiment included
an asymmetrical load, we first trained the OCSVM classifier using nor-
mal walking data collected from the outdoor experiments in which
the subjects carried no loads—this choice allowed us to examine the im-
portance of building out a comprehensive training data set. Our results
showed that when we trained the classifier using the no-load data, the
recall of near-miss detection dropped by 18% compared to previous out-
door experiments. However, when the classifier was trained with data
collected from the walking with a side-load experiment, its recall accu-
racy proved to be slightly better than previous outdoor experiments.
This preliminary result indicates the need for building a comprehensive
training data set to address the diversity of construction job tasks.

An additional consideration that expands the need for a robust and
automated approach to fall accident prevention has to do with the var-
iability of workers' balance. For example, different people have different
abilities tomaintain their balancewhileworking on a small surface area
(specificallyworking on a narrow steel beam). Furthermore, even an in-
dividual worker may experience variability in his/her abilities to main-
tain a balance depending on his/her workload or fatigue level. Some
types of hazards—such as slippery surfaces, obstacles on the beam,
strong wind, or uneven or moving surfaces—can also impact workers'
balance, but such hazards are often ignored in current hazard identifica-
tion processes. Collecting and analyzing near-miss fall data using this
proposed approach will help identify workers who are fall-prone due
to excessive workload or fatigue and/or will help locate hidden fall haz-
ards that are not identified by current hazard analysis practices.
s in laboratory setting.
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6. Conclusion

This study developed and tested an approach to detect the near-miss
falls of ironworkers based on WIMU data attached to workers' bodies.
An OCSVM algorithm was implemented to detect the near-miss falls
based upon a binary assessment of the normal walking movements.
The results demonstrated the performance of this approach by achiev-
ing a 75.8% recall and 87.5% accuracy in detecting near-miss falls with
two different experimental conditions that simulate ironworker work-
ing environments.

This study validated the feasibility of the developed approach in de-
tecting near-miss falls and demonstrated its usefulness as a proactive
fall-prevention method for ironworkers. With the advantage of a
semi-supervised algorithm that classifies near-miss falls using only nor-
mal walking data, the developed approach has substantial benefits in
real-world implementation compared to previous approaches. The de-
veloped approach will contribute to providing near-miss fall informa-
tion that can be used for proactive fall-prevention measures of
ironworkers in response to their high risk of fall accidents. Also, this ap-
proach is expected to help safety managers identify individual fall risks
by counting the total number of near-miss falls for each worker and
predicting risky locations or hazards based upon the detected locations
of near-miss falls. Specifically, collected near-miss fall locations would
beneficial for analyzing the relationship between ironworkers' behavior
patterns and the construction site environment. The proposed WIMU-
based approach also has application and financial benefits due to the
small sensor size and the low operation costs.

As a limitation to the approach, the near-miss fall detection accuracy
varies depending upon the experiment subject and the performed task.
Further studies on near-miss fall detection during diverse ironworker
activities, including squatting, bolting, reaching, and carrying a load,
need to be conducted to improve the applicability of this approach.
Also, additional field experiments in actual building structures are nec-
essary to validate the effectiveness of the developed approach in identi-
fying potential problems (e.g., hazards) in a real-world setting. Finally,
future studies should test the applicability of this fall detection approach
in different construction trades to expand the reach of this study.
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