
An Improved Meta-Heuristic Search for Constrained Interaction Testing

Brady J. Garvin, Myra B. Cohen, and Matthew B. Dwyer
Department of Computer Science and Engineering

University of Nebraska–Lincoln
Lincoln, NE 68588-0115

{bgarvin, myra, dwyer}@cse.unl.edu

Abstract

Combinatorial interaction testing (CIT) is a cost-
effective sampling technique for discovering interaction
faults in highly configurable systems. Recent work with
greedy CIT algorithms efficiently supports constraints
on the features that can coexist in a configuration. But
when testing a single system configuration is expensive,
greedy techniques perform worse than meta-heuristic
algorithms because they produce larger samples. Un-
fortunately, current meta-heuristic algorithms are inef-
ficient when constraints are present.

We investigate the sources of inefficiency, focusing
on simulated annealing, a well-studied meta-heuristic
algorithm. From our findings we propose changes to
improve performance, including a reorganized search
space based on the CIT problem structure. Our em-
pirical evaluation demonstrates that the optimizations
reduce run-time by three orders of magnitude and yield
smaller samples. Moreover, on real problems the new
version compares favorably with greedy algorithms.

1. Introduction

Software development is shifting to producing fam-
ilies of related products [2, 19]. Developing these fam-
ilies as integrated, highly-configurable systems offers
significant opportunities for cost reduction through sys-
tematic component reuse. Unfortunately, highly config-
urable systems are even more difficult to validate than
traditional software of comparable scale and complex-
ity; faults may lie in the interactions between features.
These interaction faults only appear when the corre-
sponding features are combined, and it is generally im-
practical to validate every feature combination as that
means testing all possible configurations [5, 6, 24].

Combinatorial interaction testing (CIT) tempers
the cost of validation by limiting the degree of feature

interaction considered. Only a sample of the set of pos-
sible configurations is tested, but that sample contains at
least one occurrence of every t-way interaction, where t
is called the strength of testing [4].

CIT sampling is dominated by approximating algo-
rithms of two varieties: greedy techniques such as the
Automatic Efficient Test Case Generator (AETG) [4]
or the In Parameter Order (IPO[G]) algorithm [14, 23]
and meta-heuristic algorithms like simulated annealing
[8, 21, 22]. Both greedy and meta-heuristic approaches
construct solutions by making small, elementary de-
cisions, but a greedy algorithm’s selections are per-
manent, whereas meta-heuristic search may revisit its
choices. Intuitively, greedy techniques should be faster
because each decision occurs just once; for the same
reason, meta-heuristic strategies should discover better
answers when the consequences of selections are diffi-
cult to anticipate. In CIT this impression is accurate:
greedy algorithms tend to run faster, but meta-heuristic
searches usually yield smaller sample sizes [8]. Thus,
the former are better when building and testing a con-
figuration is inexpensive, but the latter become superior
as these costs increase.

However, these observations ignore an inherent
problem: highly-configurable systems typically have
feature constraints—restrictions on the features that can
coexist in a valid configuration. While earlier work ef-
ficiently handled constraints in a greedy algorithm [7],
they remain a roadblock to meta-heuristic search [6].
Hence, if testing is expensive and feature constraints are
present, neither approach is cost-effective.

In this paper we study the sources of inefficiency
for the only published meta-heuristic algorithm for con-
strained CIT—a variation on simulated annealing [6]
described in Section 3. In Section 4 we identify eight
algorithmic improvements, two of which show signifi-
cant promise: (1) modifying the global strategy for se-
lecting a sample size and (2) changing the neighbor-



hood of the search. Then, in Section 5, we evaluate
the benefits of these improvements on five real highly-
configurable systems and 30 synthesized systems that
share their characteristics. Our results show that sim-
ulated annealing can be cost-effective for constrained
CIT problems: the changes reduce sample generation
time by three orders of magnitude. Perhaps more impor-
tantly, when each configuration takes non-trivial time
to test (for example, more than 30 seconds), the results
suggest that simulated annealing’s better sample sizes
more than compensate for its longer run time, compared
to a greedy algorithm. This makes it the superior choice
for CIT on real systems where executing a test suite typ-
ically takes tens or hundreds of minutes [16].

2. Background

We begin by introducing a small example of a soft-
ware product line (SPL). An SPL is one type of con-
figurable system, a family of related products defined
through a well managed set of commonalities and points
of variability [2, 20]. SPLs are used for development in
many large companies and present unique challenges
for validation [5, 17]. Our example is an SPL for a me-
dia player and appears on the left side of Figure 1(a) in
the Orthogonal Variability Modeling language (OVM)
[20]. In OVM variation points are shown as triangles,
and rectangles represent each variant (or feature). Re-
quired variants are connected by solids lines, optional
features use dashed lines, and arcs indicate alternative
choices. Additionally, dashed arrows labeled “requires”
indicate hierarchical relationships between variants and
variation points. Because the modeling language is hi-
erarchical, the selections of leaf features uniquely deter-
mine the final products.

There are two variation points of interest in this
family, encoding and format, and a single optional vari-
ant, closed-captioning. The encoding is either MPEG or
RAW, and format is AUDIO or VIDEO. Because closed-
captioning is optional we represent its inclusion or ex-
clusions with YES or NO. Hence, there are a total of
eight possible products in this SPL.

If we plan to test the family for interaction faults
then each of the eight products must be constructed and
tested individually. Although this is reasonable in a
small example, most realistic product lines have thou-
sands or millions of possible products because the size
of the family grows exponentially with the number of
variation points. For instance, an unconstrained SPL
with 10 variation points, each having 3 variants, de-
scribes 310 or 59,049 distinct products.

Interaction faults in software usually depend on a
small number of interacting features [13]; in CIT we

Encoding Format 

MPEG Raw Audio Video 

Closed 

Captioning 

requires 

requires 

v v v v

v

Media 

Player 

VP 

VP VP 

Encoding Format Closed-

captioning 

1 MPEG Video Yes 

2 MPEG Audio No 

3 Raw Audio Yes 

4 Raw Video No 

2-way CIT sample 

Encoding Format CC 

1 Raw Video Yes 

2 Raw Audio No 

3 MPEG Audio No 

4 Raw Video Yes 

Original Algorithm 

Fitness=3 

Neighbor Move 

Fitness=4 

(a) 

(b) 

Encoding Format CC 

1 Raw Video Yes 

2 Raw Audio No 

3 MPEG Audio No 

4 Raw Audio Yes 

Encoder 

v

VP 

v

Type 

Figure 1. Example of SPL and Neighbors

sample to cover these interactions. Thereby we save
testing effort: in the SPL with 10 variation points we
only need 14 products to exercise all 2-way interactions,
and in the example media player SPL we need just the 4
on the right side of Figure 1(a). A CIT sample is usually
encoded as a covering array, which we define next.

2.1. Constrained Covering Arrays

A covering array (CA) is an array having N rows
and k columns (factors). The elements in the ith column
are chosen from a set of vi symbols (values). We adopt
the convention that columns do not share symbols. The
key property of a CA is that for any choice of t columns,
all possible sets of t symbols (t-sets) appear in at least
one row; the t-sets are said to be covered.

In CIT, a covering array’s rows describe a sample
of the configuration space; columns represent variation
points, so each symbol in a row indicates the alternative
chosen at the corresponding point. For example, k = 3
in the media player SPL, and each v is size 2. To test all
pairwise interactions we would set t = 2 and obtain the
sample of four products in Figure 1(a).

But there are also constraints such as hardware or
software incompatibilities or developer/market prefer-
ences. Returning to the media player example, picking
YES for closed-captioning implies the choice of VIDEO.
The third configuration in our CIT sample (Figure 1(a))
violates this constraint—it is an invalid product.

The presence of such constraints in CIT was for
a long time a major impediment to the sampling pro-
cess [4,6]. However, recent work [6] has shown that we
can incorporate constraint information into the greedy
sampling algorithms without increasing computational
cost. This work led to the formalization of constrained
covering arrays (CCAs) in [7].

In CCAs we define a Boolean variable for each
symbol that could appear in the covering array. Given



a row, a variable is true if the corresponding symbol
appears in that row, false otherwise. We then encode
constraints on the rows as a propositional formula and
restrict the covering array to rows that satisfy this for-
mula. For instance, the formula VIDEO∨¬YES would
capture the constraint where closed captioning implies
video support. Once we’ve added constraints, fewer t-
sets need to be covered, but the space of valid covering
arrays has a more complicated structure.

2.2. Simulated Annealing

The objective in CIT is to find a CCA that mini-
mizes N. Unfortunately, a tight bound is not known for
general CAs, let alone CCAs [11], so approaches such
as greedy algorithms and meta-heuristic search that ap-
proximate minimality are most prevalent. We concen-
trate on simulated annealing because it has produced
small arrays for unconstrained problems [8, 22].

Under simulated annealing the search space com-
prises all N × k arrays populated with the values for
each factor. The fitness function for the CIT problem
is the number of uncovered t-sets in the sample. For in-
stance, in Figure 1(b) on the left, we see an intermediate
state of the algorithm when N is 4 (ignoring constraints
for now). Of the twelve 2-sets that must be covered
we are missing [MPEG, YES], [MPEG, VIDEO] [AUDIO,
YES] and [VIDEO,NO]; the fitness is 4. A smaller fitness
means that we are closer to the optimum, zero.

The algorithm starts with an initial, random array
(the start state) and then makes a series of state tran-
sitions. Each transition is a random mutation of a sin-
gle location in the solution. This mutation defines the
search neighborhood. In Figure 1(b) a transition to a
new solution is illustrated. The cost of the new solu-
tion, 3, is better.

The simulated annealing algorithm accepts a new
solution if its fitness is the same or closer to optimal
than the current one. When this is not the case, it uses
a pre-defined temperature and cooling schedule to set
the probability for making the bad move at e f (S)− f (S′)/T ,
where T is the current temperature, S and S′ are the old
and new solution, and f (S) represents the fitness of so-
lution S. As the algorithm proceeds, the temperature is
cooled by a decrement value (the number of iterations
between decrements is a parameter of the algorithm).
As the temperature cools the probability drops and we
are less likely to allow a bad move.

3. Base Algorithm

The original application of simulated annealing to
covering array problems is described by Stevens in [22].

Though that algorithm requires each column to have the
same number of symbols, Stardom [21] extended it to
remove this restriction. In [8] we added optimizations
and other features, and [6] introduced support for con-
straints. We used a satisfiability (SAT) solver to deter-
mine whether or not rows of the covering array satisfy
the constraints at each move. Our work continues from
this last version; we refer to it as the base algorithm.

Compared with our implementation of the AETG
greedy algorithm, mAETG, the base algorithm met with
limited success in [6]. For small 2-way problems it
found constrained CIT samples that matched the qual-
ity of mAETG, but failed to compete at higher strengths
both in size and time; the search had little information
about constraints so it spent too many iterations undoing
transitions to infeasible arrays. Moreover, though both
programs took longer to solve constrained problems, the
base algorithm’s run time grew at a much faster rate.

The following subsections first explain the base al-
gorithm’s overall approach and then discuss its two pri-
mary components: an outer search and an inner search.
Along the way we highlight some drawbacks that war-
rant remedy.

3.1. Design

Because the minimum covering array size cannot
be known ahead of time, the base algorithm repeatedly
calls simulated annealing, each time with a different N.
Hence, there are two layers to the design. The outer
search chooses values for N and either accepts or re-
jects them according to the results of an inner search,
simulated annealing proper.

3.2. Outer Search

The outer search is shown in Figure 2. It takes an
upper and lower bound on the size of the covering array
and performs a binary search within this range.

There are two points of interest. First, at each size
simulated annealing attempts to build an array (line 4),
and the return value is the last array found, whether it is
a solution or not, so its coverage must be checked (line
5). Second, the outer search is responsible for returning
the smallest covering array constructed, so it must keep
a copy of the best solution (line 6).

Though this approach works, binary search is a
poor fit for this problem because its fundamental as-
sumptions are violated. Our first two criticisms of the
base algorithm are:

1. The binary search supposes that the inner search
accurately evaluates whether an array of some size
can be built. However, the inner search is stochas-



binarySearch(t,k,v,C, lower,upper)

let A←∅;1
let N← b(lower +upper)/2c;2
while upper ≥ lower do3

let A′← anneal(t,k,v,C,N);4
if countNoncoverage(A′) = 0 then5

let A← A′;6
let upper← N−1;7

else8
let lower← N +1;9

end10
let N← b(lower +upper)/2c;11

end12
return A;13

Figure 2. The Base Outer Search, a Bi-
nary Search

tic and might terminate before finding a solution
that does in fact exist.

2. The binary search expects the minimum size to
lie within the given bounds. But the quantities
lower and upper are merely estimates and may not
bound the final answer, especially in constrained
problems.

3.3. Inner Search

Figure 3 shows the specifics of the inner search.
At each step, the code randomly chooses a location in
the array and a symbol to put there (lines 4–6). If the
replacement causes the row to violate constraints, it dis-
cards that move and tries again (line 9), following an un-
sophisticated policy called the death penalty [3]. Con-
sequently, the search never enters an infeasible region.
But if constraints are satisfied, it computes the change
in coverage (line 10). When the alteration increases or
maintains coverage, the algorithm applies it and contin-
ues (lines 11–13), but it only accepts bad moves with
a probability that depends on the quality of the move
and the current temperature (lines 14–16). The itera-
tions continue until a stabilization criterion is met (line
3); that is, the algorithm has found a solution or seems
not to be making further progress. Then the array is
returned (line 21).

Unlike a typical implementation of simulated an-
nealing, only the first start state is entirely random.
Instead, because we are repeatedly invoking the inner
search for nearly the same problem we use a single large
array for every search and ignore the rows at index N
and higher.

We point out four criticisms of the inner search and
add them to our list:

3. Constraints decrease the connectivity of the state
space, so the average path to a solution is longer in

anneal(t,k,v,C,N)

let A← initialState(t,k,v,C,N);1
let temperature← initialTemperature;2
until stabilized(countNoncoverage(A)) do3

choose row from 1 . . .N;4
choose column from 1 . . .k;5
choose symbol from vcolumn;6
let A′← A;7
let A′row,column← symbol;8
if SAT(C,A′row,1...k) then9

let δ ← countCoverage(A′)− countCoverage(A);10
if δ ≥ 0 then11

let A← A′;12
else13

with probability eδ/temperature do14
let A← A′;15

end16
end17
let temperature← cool(temperature);18

end19
end20
return A;21

Figure 3. The Base Inner Search,
Element-wise Simulated Annealing

constrained problems. Thus the search needs many
more iterations for the same probability of success.

4. In the extreme case, constraints disconnect the
search space, rendering the problem unsolvable
from some start states.

5. The initial state generator keeps no record of the
symbols it has tried while creating random rows.
Therefore, it may waste time making choices al-
ready known to violate constraints.

6. Although progress is saved from one run of simu-
lated annealing to the next, the choice of rows to
use is arbitrary. Difficult-to-obtain rows may be
lost while redundant rows are preserved.

4. Modifications

For each shortcoming we detail a solution. Our
ideas are organized into two categories: the two most
influential changes appear as major modifications; the
rest are listed under minor modifications.

4.1. Major Modifications

We discovered that our most significant alterations
stemmed from Criticisms 1 and 3. We introduce one-
sided narrowing, a meta-heuristic, to accommodate in-
accuracy from the inner search and t-set replacement, a
state space restructuring, to mitigate constraints’ impact
on state space traversal.
One-Sided Narrowing. In the previous section we
pointed out that the binary search assumes simulated



(a) Binary Search

smaller
indices

larger
indices

(b) One-Sided Narrowing

smaller
indices

larger
indices

Figure 4. One-Sided Narrowing Chooses Parti-
tions so that Larger Sizes are Eliminated

annealing can decide whether a covering array is con-
structable (Criticism 1). This assumption does not hold
because simulated annealing cannot conclusively show
the nonexistence of a solution at a given size. Con-
straints make the problem harder, so the inner search
is even more likely to return a false negative. There-
fore, one-sided narrowing keeps the essence of a binary
search, but abandons this faulty assumption.

The idea behind binary search is still valid: we
want to restrict the range of candidate sizes as much
as possible. Rather than narrowing from both sides
though, the algorithm should only improve the upper
bound because soundness is guaranteed. So at each
step the code must either find a covering array of size
N ∈ [lower . . .upper] and refine its search or give up.

The difference is illustrated by Figure 4. A solid
range represents a subspace being considered; a dashed
range has been eliminated. Arrowheads indicate the
points of partition. In an ordinary binary search, part
(a), the algorithm begins with a partition and then de-
cides which half to discard. With one-sided narrowing,
part (b), the program decides that the upper half will be
eliminated, then it looks for a satisfactory partition.

Naı̈vely, the algorithm could always choose N =
upper as the partition, but our experience discourages a
linear search. With rows being reused from one attempt
to the next, larger fluctuations in size help knock the
inner search out of local optima. Moreover, it is waste-
ful to decrease upper by just one row when larger cuts
might be possible.

Instead, we recognize that though the binary search
cannot serve as the entire outer search, it does accom-
plish a single step: it returns an N ∈ [lower . . .upper] at
which a covering array can be constructed or determines
that it cannot find such an N. Therefore, one-sided nar-
rowing uses binary search to locate each partition.

We now have a three-layer search. The new, out-
ermost search shown in Figure 5 invokes the old outer
search from Figure 2, which calls simulated annealing.

outermostSearch(t,k,v,C, lower,upper)

let A←∅;1
while upper ≥ lower do2

let A′← binarySearch(t,k,v,C, lower,upper);3
if A′ = ∅ then4

break;5
else6

let A← A′;7
let upper← rows(A′)−1;8

end9
end10
return A;11

Figure 5. The New Outer Search, One-
Sided Narrowing

At first glance this seems to be an expensive
proposition—finding the first partition means executing
the entire base algorithm! Nevertheless, we expect to
recover the cost by needing fewer iterations each time
the inner search is called.

t-set Replacement. Each iteration of simulated anneal-
ing attempts a single state transition; if we represent the
state space as a graph, simulated annealing is tracing a
path through the graph until it runs out of iterations or
reaches a solution vertex. States that violate constraints
form obstacles to search progress, leading to the prob-
lem in Criticism 3.

For example, suppose that we are testing 2-way
interactions in the media player presented earlier. To
make the search space small enough to illustrate, we
will assume that every pair except [MPEG, VIDEO],
[MPEG, YES], and [VIDEO, YES] is covered in the first
rows of the covering array and that simulated annealing
will only change the last row. Trivially, this row should
be [MPEG, VIDEO, YES], so we will put its initial state
as far away as possible, at [RAW, AUDIO, NO]. This
gives the state space in Figure 6(a). Solid lines depict
legal transitions; dashed lines indicate transitions that
violate constraints. Note that every state also has three
self-loops, not shown for the sake of readability.

Looking at just the upper right part of the graph,
the path from [RAW, AUDIO, NO] through [RAW, AU-
DIO, YES] to [RAW, VIDEO, YES] was valid without con-
straints. But if simulated annealing attempts this route
with constraints, it fails on the first transition and must
instead detour via [RAW, VIDEO, NO].

To lessen the effect we allow simulated annealing
to take short excursions through the infeasible states
such as [RAW, AUDIO, YES]. Instead of checking fea-
sibility after every transition, we have the search ap-
ply several transitions, then check. Or, equivalently, we
treat this group of transitions as a single step. In the
example, we combine pairs of transitions so that [RAW,



[RAW,AUDIO,NO]

[MPEG,AUDIO,NO]

[RAW,VIDEO,NO]

[RAW,AUDIO,YES]

[MPEG,VIDEO,NO]

[MPEG,AUDIO,YES]

[RAW,VIDEO,YES]

[MPEG,VIDEO,YES]

Edges incident on a state
that violates constraints

[RAW,AUDIO,NO]

[MPEG,VIDEO,NO]

[MPEG,AUDIO,YES]

[RAW,VIDEO,YES]

[MPEG,VIDEO,YES]

(a) Original Space (b) Revised Space

Figure 6. The Original and Revised Search Space

VIDEO, YES] becomes directly reachable from [RAW,
AUDIO, NO], much like what is shown in Figure 6(b).

We must be careful though: if we group too many
transitions together adjacent states will be unrelated,
and simulated annealing will degenerate to random
search. To balance concerns about constraints with con-
sideration for the search space we set the number of old
moves per new move at t. There is particular advan-
tage to choosing t. Rather than allowing all sets of t
transitions, we can further inform the search by only
choosing groups that substitute in a yet-to-be-covered
t-set. We show this in Figure 6(b). For instance, [RAW,
AUDIO, NO] becomes [RAW, VIDEO, YES] when the 2-
set [VIDEO, YES] is added; the subsequent addition of
[MPEG, VIDEO] or [MPEG, YES] leads to a solution.

We observe two clear advantages. First, in this
new space, simulated annealing has many options when
it is far from a solution, but the alternatives dwindle
as it nears an answer. For example, in Figure 6(b),
[RAW, AUDIO, NO] has three outgoing edges, [MPEG,
VIDEO, YES] has one, and [MPEG, VIDEO, YES] has
none. Being confined in a solution’s vicinity, the algo-
rithm should make a more thorough search there than
in the rest of the space. Second, a t-set that by itself
violates constraints will never be one that needs to be
covered, so simulated annealing avoids these inherently
infeasible transitions.

4.2. Minor Modifications

We developed several other changes, each moti-
vated by a criticism from Section 3. These modifica-
tions were less effective, but we briefly list them for
completeness. Criticisms 1, 2, 4, 5, and 6 are addressed
by (1) dynamically bounding the inner search’s itera-

tion, (2) choosing binary search partitions more intel-
ligently, (3) checking if the lower or upper bounds are
attained, (4) replacing whole rows to escape highly con-
strained states, (5) adding a simple SAT history to the
initial state generator, and (6) sorting the rows after each
run of simulated annealing.

Along with these alterations we changed the under-
lying SAT solver from zChaff [15] in the base algorithm
to MiniSAT [10] for comparability with the greedy im-
plementation mAETG.

5. Evaluation

Our evaluation is organized as follows: We present
two research questions and establish the scope of in-
vestigation. We then describe experiments aimed to
answer each research question. Results and analy-
sis follow. The evaluation artifacts are available for
download at http://cse.unl.edu/∼bgarvin/
research/ssbse2009/.

5.1. Research Questions

Our first objective is to determine which changes
are beneficial in the targeted context—constrained
problems. This leads to the research question:

RQ1 (Effect of Modifications). How does each
change affect performance on constrained problems?

Using the set of modifications that yield the best
performance, we pose a second research question:

RQ2 (Comparison to mAETG). How does the best
algorithm from RQ1 compare to a greedy approach, the
modified AETG algorithm from [7]?



5.2. Scope

Conducting a full factorial experimentation to
quantify the effects of each proposed change would
be too costly. Instead, we group the modifications to
study their effects. All of the minor modifications are
grouped as a single change and we investigate the major
changes—t-set replacement and one-sided narrowing—
independently. In total there are four variations to the
base algorithm: with minor changes (Minor), with mi-
nor changes and t-set replacement (TSR), with minor
changes and one-sided narrowing (OSN), and with all
of the changes (All).

Along with the minor modifications we refac-
tored the implementation to more cleanly support our
changes. When adding the minor changes, we kept
the simulated annealing parameters from the base al-
gorithm, but these settings were updated when major
modifications were introduced; the specific parameter
settings are available on the website given earlier.

5.3. Experiments

All of our data are obtained by executing simu-
lated annealing once per problem unless otherwise indi-
cated. The computations were performed on a 2.4GHz
Opteron 250 running Linux. We record the final array
size and total run time.
Effect of Modifications. In the first experiment we let
t be two and compare all five versions on the 35 prob-
lems in [7]. Five of these problems are taken from real
highly-configurable systems, and the other thirty are
based on the characteristics of these five. More detail
on these systems is given in [7].

Our dependent variables are the cost in run time
and size of the generated sample. With just this raw
data, it is not clear whether a small sample found at
great expense is better than a large sample discovered
quickly. But CIT is ultimately meant to reduce the total
time spent selecting and testing configurations; this is
the metric we should use.

This total cost is modeled as cgen + ccon f ig × N,
where cgen is the cost to generate a sample and ccon f ig
the cost to test a configuration. Clearly, lower values
of cgen compensate for larger N. On the other hand, if
ccon f ig is expensive then expending more time to gen-
erate a smaller sample would make sense. Following
convention, when comparing two CIT methods we call
the point where cgen + ccon f ig×N = c′gen + ccon f ig×N′

the break-even point.
For this first experiment we use the sums over all

the benchmarks to find break-even points. Our discus-
sion of performance is based on these points.

Comparison to mAETG. The second experiment ran
the best performing implementation 50 times over the
35 benchmarks. In this way, the averages are directly
comparable with the mAETG figures reported in [7].
Our dependent variables are the array size, run time,
and break-even point calculated from the mAETG and
simulated annealing run times and array sizes.

5.4. Results and Analysis

Throughout the presentation of results we adopt an
abbreviated notation for constrained covering arrays. A
model term written as xy1

1 xy2
2 · · ·x

yn
n indicates that there

are yi columns with xi symbols to choose from for each
i. A constraint term, written in the same format, means
that yi constraints involve xi symbols.
Effect of Modifications. The results for the first exper-
iment are listed in Table 1. After the benchmark names
and brief descriptions, the table gives the sample sizes
and run times for each algorithm. The smallest values
are shown in bold. Two samples for the base algorithm
did not complete after 27 days (2.3 million seconds); in
those cases we list N/A and append + to the sum.

It’s clear that t-set replacement dramatically re-
duces run time. On the other hand, the effect of one-
sided narrowing varies with the search space. In the
old search space (columns Minor and OSN) it worsens
array sizes, but combined with t-set replacement (be-
tween columns TSR and All), it always does at least
as well. Put together, the All version runs more than a
thousand times faster than the base algorithm and pro-
duces smaller covering arrays.

When we compute break-even points, only the ver-
sion TSR ever outperforms All. So there is only one
break-even point of interest: variation TSR is best when
the per-configuration time is less than 39.79 seconds,
and after that the All version dominates. Because few
test suites for configurable systems run in under 40 sec-
onds [16], we conclude that including both major mod-
ifications is suitable for the common case.
Comparison to mAETG. Table 2 gives the averages
for simulated annealing, including both changes, and
mAETG over 50 runs. For every row we choose the
mAETG variant with the best break-even point com-
pared to simulated annealing, breaking the one tie (on
benchmark 22) by array size.

The contrast is sharp. Simulated annealing gives
better array sizes in all but one case, averaging 11.16
fewer rows; over the set of 35 samples we only need
75% as many configurations to achieve the same CIT
goals. If we had chosen different mAETG variants for
each problem that produce the smallest sizes rather than
the best break-even point, the average difference would



Table 1. Sizes and Times for Constrained Two-Way Problems

Size Run Time (s)
Name Model Constraints Base Minor TSR OSN All Base Minor TSR OSN All
SPIN-S 21345 213 24 21 20 26 19 1513.8 1827.2 1.7 140.1 32.2
SPIN-V 24232411 24732 36 33 39 32 36 22278.2 22206.0 18.5 122355.0 122.2
GCC 2189310 23733 21 19 25 19 19 49856.7 50981.0 1250.4 61013.0 850.6
Apache 215838445161 23314251 33 31 36 47 34 47465.2 31638.4 60.6 12686.9 137.8
Bugzilla 2493142 2431 17 16 18 16 17 972.6 123.1 4.1 2081.4 4.4
1. 28633415562 2203341 44 40 40 63 38 41055.5 9154.3 31.6 7047.5 74.3
2. 28633435161 21933 32 30 33 44 32 80020.5 6185.9 24.1 6650.4 9.2
3. 22742 2931 18 18 18 18 18 284.4 3718.5 4.0 327.2 2.8
4. 251344251 21532 21 20 22 23 21 16968.6 1096.8 6.2 2725.7 5.8
5. 215537435564 2323641 60 48 65 81 47 69107.0 69003.4 77.0 62702.1 337.0
6. 2734361 22634 24 24 24 24 24 62706.3 1777.6 7.7 16454.9 29.4
7. 22931 21332 9 9 9 9 9 121.9 2902.2 1.5 192.2 2.1
8. 210932425363 2323441 49 43 45 66 39 243499.0 11621.1 30.5 19858.2 105.9
9. 25731415161 23037 N/A 30 30 20 20 N/A 10.8 3.3 2103.3 25.6
10. 213036455264 24037 58 44 48 78 43 257061.2 40577.3 60.4 9575.0 258.8
11. 28434425264 22834 46 43 47 43 41 170596.4 63153.2 25.0 143728.6 139.7
12. 213634435163 22334 49 41 43 62 40 359336.2 14544.8 66.6 16873.7 116.3
13. 212434415262 22234 40 36 36 54 36 304404.0 12641.5 31.5 6237.2 56.1
14. 281354363 21332 37 37 41 36 37 81464.6 63353.5 19.6 159571.8 104.0
15. 25034415261 22032 N/A 30 30 30 30 N/A 6467.3 9.6 61320.4 20.0
16. 281334261 23034 19 24 25 24 24 1001.9 2208.4 15.2 27995.8 60.9
17. 212833425163 22534 42 39 41 64 39 47396.6 36955.7 51.7 10406.1 69.7
18. 212732445662 2233441 177 44 45 72 43 15515.0 18433.3 61.2 2511.9 72.7
19. 217239495364 23835 180 49 51 103 47 132833.5 68558.4 118.3 8436.6 1550.7
20. 213834455467 24236 67 56 57 105 53 340518.9 32677.3 86.4 25030.8 915.3
21. 27633425163 24036 37 36 37 53 36 81000.3 16736.3 20.3 6816.0 37.6
22. 272344162 23134 36 36 37 40 36 64098.0 2699.5 12.5 2882.2 12.4
23. 2253161 21332 13 18 18 12 13 48.0 0.7 0.5 906.0 5.0
24. 2110325364 22534 51 44 47 71 44 241610.7 113832.0 32.8 11674.2 80.2
25. 211836425266 2233341 59 49 54 80 49 26043.5 143208.0 45.2 23952.7 285.1
26. 287314354 22834 30 30 33 48 31 151137.6 43067.7 23.1 5821.4 25.4
27. 25532425162 21733 36 36 36 47 36 5105.4 1634.9 5.7 2402.5 7.8
28. 2167316425366 23136 164 51 55 84 50 255115.0 115759.9 126.3 71001.6 787.3
29. 21343753 21933 31 29 32 40 27 36434.7 17289.0 38.7 9752.7 283.8
30. 2733343 22032 20 17 20 20 19 33245.9 32270.0 16.1 9378.8 36.7
Sum 1580+ 1171 1257 1654 1147 7905417.1+ 1058315.0 2387.5 932614.0 6696.9

only decline to 11.06, still a 25% cut. However, the
overall cost for running our algorithm on these samples
is more than six times that of mAETG.

In the last column we show the break-even points
between mAETG and simulated annealing as the mini-
mum time that each configuration must take before sim-
ulated annealing outperforms mAETG. Most of these
times are quite small, less than 30 seconds. There are
two notable exceptions: the break-even point for the
GCC optimizer is just short of eight minutes, and our al-
gorithm never does better on benchmark 22. As demon-
strated by [16] though, eight minutes is not much time
to test a configuration, so we conclude that the new sim-
ulated annealing is competitive in every case but one.

Further Analysis. To confirm that we have still re-
tained the quality of the original simulated annealing
algorithm on unconstrained problems we selected 29
benchmarks from a variety of publications. For each
we ran version All one time and compared this with the

best size reported for simulated annealing. The aggre-
gate figures are promising; our implementation’s total
array size is only 0.2% higher than the best figures.

5.5. Threats to Validity

We classify our threats as affecting external, inter-
nal, or construct validity.
External Validity. The major external threat is our
choice of benchmarks. We cannot guarantee that either
the real CIT problems or the synthetic inputs accurately
represent configurable software. Though diverse, they
are all derived from open-source command-line or web-
based software.
Internal Validity. There are four main threats to in-
ternal validity. First, in RQ1 we only use one run of
stochastic algorithms. Our continuing experimentation
suggests that this threat is minor; we see consistency as
in RQ2 where the standard deviation in size is no more
than three rows on any benchmark and less than a row



Table 2. Average Size and Times Over 50 Runs
for Constrained Two-Way Problems

Size Run Time (s)
mAETG mAETG Break-

Name Best All Best All even
[7] [7] (s/cfg.)

SPIN-S 27.0 19.4 0.2 8.6 1.11
SPIN-V 42.5 36.8 11.3 102.1 15.93
GCC 24.7 21.1 204.0 1902.0 471.67
Apache 42.6 32.3 76.4 109.1 3.17
Bugzilla 21.8 16.2 1.9 9.1 1.29
1. 53.3 38.6 24.4 179.5 10.55
2. 40.5 31.0 14.7 25.4 1.13
3. 20.8 18.0 0.2 3.4 1.14
4. 28.6 21.0 3.1 29.3 3.45
5. 63.8 47.7 134.8 655.9 32.37
6. 34.0 24.2 7.2 18.2 1.12
7. 12.5 9.0 0.3 2.1 0.51
8. 55.6 40.5 45.1 249.9 13.56
9. 26.0 20.0 3.0 29.8 4.47
10. 60.4 44.0 74.3 357.3 17.26
11. 58.3 41.9 23.8 240.7 13.23
12. 54.5 40.4 68.0 221.1 10.86
13. 48.6 36.5 45.5 60.5 1.24
14. 51.8 36.9 20.2 58.1 2.54
15. 40.4 30.7 4.9 19.3 1.48
16. 33.4 24.1 9.7 19.7 1.08
17. 53.4 39.2 46.9 335.5 20.32
18. 57.3 42.3 60.1 303.5 16.23
19. 64.7 47.8 168.4 823.6 38.77
20. 71.5 53.2 121.1 1133.3 55.31
21. 51.7 36.3 14.3 46.2 2.07
22. 26.2 36.0 6.7 12.3 N/A
23. 15.7 12.6 0.6 10.1 3.06
24. 58.3 42.8 40.6 304.5 17.03
25. 65.7 48.3 61.7 507.8 25.64
26. 42.0 30.7 15.5 71.2 4.93
27. 45.8 36.0 4.6 10.8 0.63
28. 68.5 50.7 170.4 1522.3 75.95
29. 38.4 29.7 38.9 89.3 5.79
30. 45.8 19.3 10.3 30.5 0.76
Sum 1546.1 1155.4 1533.1 9501.8 20.40

on average. Second, it may be that we bias the results
by making poor parameter choices for some algorithms.
For instance, perhaps we should have chosen parame-
ters for the versions with major modifications on an in-
dividual basis, rather than as a group. Third, the refac-
toring that accompanies the minor changes may have
affected the run time; however, this threat only affects
comparisons to the base version, not the effects of the
major changes. Fourth, although we have verified the
results of every run, we cannot be completely confident
that the implementations are correct translations from
pseudocode, nor that they are bug-free.

Construct Validity. We have considered both run time
and the size of the output, but we have ignored other
metrics that are important in specific scenarios. For ex-
ample, if we do not expect to finish the interaction test-
ing, diversity of t-sets in the early rows is desirable.

6. Related Work

There has been a large body of work on construct-
ing unconstrained interaction test samples [4, 8, 14, 21–
23]. Two primary algorithmic techniques are greedy
[4, 9, 14, 23] and meta-heuristic search. The latter in-
cludes implementations of simulated annealing, tabu
search and genetic algorithms [8, 18, 21, 22].

The work of D. Cohen et al. [4] describes the prob-
lem of constrained CIT although the primary means to
handle this is through a re-modeling of the CIT parame-
ters. Czerwonka [9] provides a more general constraint
handling technique and uses the t-set as the granularity
of the search. However, few details of the exact con-
straint handling techniques are provided. Both of the
above algorithms are greedy. Our own work [6, 7] pro-
vides a more general solution for greedy construction of
constrained CIT samples.

Hnich et al. [12] use a SAT solver to construct CIT
samples, but they do not provide a direct way to encode
constraints into the problem. Recent work by [1] incor-
porates constraints directly into their ATGT tool which
utilizes a model checker to search for a CIT sample. The
only work we are aware of that incorporates constraints
into a meta-heuristic CIT algorithm is our own [6] but
this solution does not scale.

In this work we focus on one meta-heuristic search
algorithm, simulated annealing [8], and reformulate the
search to work well on both constrained and uncon-
strained CIT problems.

7. Conclusions

Testers need CIT tools that perform well in the
presence of constraints. Earlier work focused on greedy
algorithms, which tend to build larger samples than
meta-heuristic searches. But the meta-heuristic search,
simulated annealing, did not retain its quality and scaled
poorly when finding constrained samples.

In this paper, we adapted a simulated annealing
algorithm for constrained CIT. It finds the CIT sam-
ple size more efficiently and employs a coarser-grained
search neighborhood. Together with some minor mod-
ifications these changes provide small sample sizes for
a fraction of the original cost, less than one thousandth
of the run time.

We have run experiments on four versions of the
constrained simulated annealing algorithm and com-
pared the best of these with a greedy implementation on
a set of 35 realistic samples. Our experimental results
show that we need on average 25% fewer configura-
tions, but the run time for simulated annealing is longer.
When we calculate the break-even point based on the



sample construction time and the time to run the test
suite on each configuration, we find that if a test suite
takes more than 30 seconds to run, simulated annealing
typically outperforms the greedy algorithm.

In future work we will plan to add more runs to our
experiments, experiment with higher strength CIT sam-
ples, and to optimize the simulated annealing parame-
ters for both constrained and unconstrained problems.

8. Acknowledgments

We would like to thank Jiangfan Shi for the use
of his mAETG tool and for supplying the CIT mod-
els for evaluation of RQ1 and RQ2. Brady Garvin is
supported in part by CFDA#84.200A: Graduate Assis-
tance in Areas of National Need (GAANN). This work
is supported in part by the National Science Foundation
through awards CNS-0454203, CCF-0541263, CNS-
0720654, and CCF-0747009, by the National Aero-
nautics and Space Administration under grant number
NNX08AV20A, by the Army Research Office through
DURIP award W91NF-04-1-0104, and by the Air Force
Office of Scientific Research through award FA9550-
09-1-0129. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of
the authors and do not necessarily reflect the position or
policy of NSF, NASA, ARO or AFOSR.

References

[1] A. Calvagna and A. Gargantini. A logic-based approach
to combinatorial testing with constraints. In Tests and
Proofs, Lecture Notes in Computer Science, 4966, pages
66–83, 2008.

[2] P. Clements and L. Northrup. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[3] C. Coello Coello. Theoretical and numerical constraint
handling techniques used with evolutionary algorithms:
A survey of the state of the art. Computer Methods in
Applied Mechanics and Engineering, 191(11-12):1245–
1287, Jan. 2002.

[4] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Pat-
ton. The AETG system: an approach to testing based on
combinatorial design. IEEE Transactions on Software
Engineering, 23(7):437–444, 1997.

[5] M. B. Cohen, M. B. Dwyer, and J.Shi. Coverage and ad-
equacy in software product line testing. In Proceedings
of the Workshop on the Role of Architecture for Testing
and Analysis, pages 53–63, July 2006.

[6] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction
testing of highly-configurable systems in the presence
of constraints. In International Symposium on Software
Testing and Analysis, pages 129–139, July 2007.

[7] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing
interaction test suites for highly-configurable systems in

the presence of constraints: A greedy approach. IEEE
Transactions on Software Engineering, 34(5):633–650,
2008.

[8] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J.
Colbourn. Constructing test suites for interaction test-
ing. Software Engineering, 2003. Proceedings. 25th In-
ternational Conference on, pages 38–48, May 2003.

[9] J. Czerwonka. Pairwise testing in real world. In Pacific
Northwest Software Quality Conference, pages 419–
430, October 2006.

[10] N. Eén and N. Sörrenson. MiniSAT-C v1.14.1. http:
//minisat.se/, 2007.

[11] A. Hartman and L. Raskin. Problems and algorithms for
covering arrays. Discrete Math, 284:149 – 156, 2004.

[12] B. Hnich, S. Prestwich, E. Selensky, and B. M. Smith.
Constraint models for the covering test problem. Con-
straints, 11:199–219, 2006.

[13] D. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault
interactions and implications for software testing. IEEE
Transactions on Software Engineering, 30(6):418–421,
2004.

[14] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and
J. Lawrence. IPOG: A general strategy for t-way soft-
ware testing. Engineering of Computer-Based Systems,
IEEE International Conference on the, pages 549–556,
2007.

[15] S. Malik. zChaff. http://www.princeton.edu/∼chaff/
zchaff.html, 2004.

[16] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C.
Schmidt, and B. Natarajan. Skoll: Distributed continu-
ous quality assurance. In Proceedings of the 26th IEEE
and ACM SIGSOFT International Conference on Soft-
ware Engineering (ICSE 2004), 2004.

[17] H. Muccini and A. van der Hoek. Towards testing prod-
uct line architectures. In Proceedings of the Interna-
tional Workshop on Test and Analysis of Component-
Based Systems, pages 111–121, 2003.

[18] K. J. Nurmela. Upper bounds for covering arrays by tabu
search. Discrete Applied Mathematics, 138(1-2):143–
152, 2004.

[19] D. L. Parnas. On the design and development of program
families. IEEE Transactions on Software Engineering,
2(1):1–9, 1976.

[20] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering. Springer, Berlin, 2005.

[21] J. Stardom. Metaheuristics and the search for covering
and packing arrays. Master’s thesis, Simon Fraser Uni-
versity, 2001.

[22] B. Stevens. Transversal Covers and Packings. PhD the-
sis, University of Toronto, 1998.

[23] K. C. Tai and Y. Lei. A test generation strategy for pair-
wise testing. IEEE Transactions on Software Engineer-
ing, 28(1):109–111, 2002.

[24] C. Yilmaz, M. B. Cohen, and A. Porter. Covering arrays
for efficient fault characterization in complex configura-
tion spaces. IEEE Transactions on Software Engineer-
ing, 31(1):20–34, Jan 2006.


