B.Y. Choueiry

 \vdash

Title:A Filtering Algorithm for Constraints of Difference in CSPsAuthor:J.-Ch. Régin

Proc.: AAAI 1994

Pages: 362–367

Foundations of Constraint Processing CSCE421/821, Spring 2011 www.cse.unl.edu/~cse421

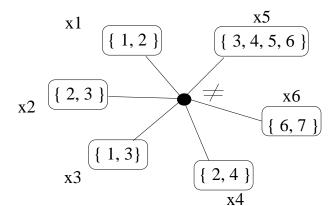
Berthe Y. Choueiry (Shu-we-ri) Avery Hall, Room 360 choueiry@cse.unl.edu, Tel: (402)472-5444

Images scanned from paper by Nimit Mehta

March 14, 2011

All-diffs constraint

Constraint: CVariables: $X_C = \{x_1, x_2, \dots, x_6\}$



Context: finite CSPs

Goal: efficiency of arc consistency

Focus: All-diff constraints

ಲು

Result: efficient algorithm $\begin{cases} \text{Space} : \mathcal{O}(pd) \\ \text{Time} : \mathcal{O}(p^2d^2) \end{cases}$ p: #vars, $d: \max$ domain size

Application: used in RESYN for subgraph isomorphism (plan synthesis in organic chemistry)

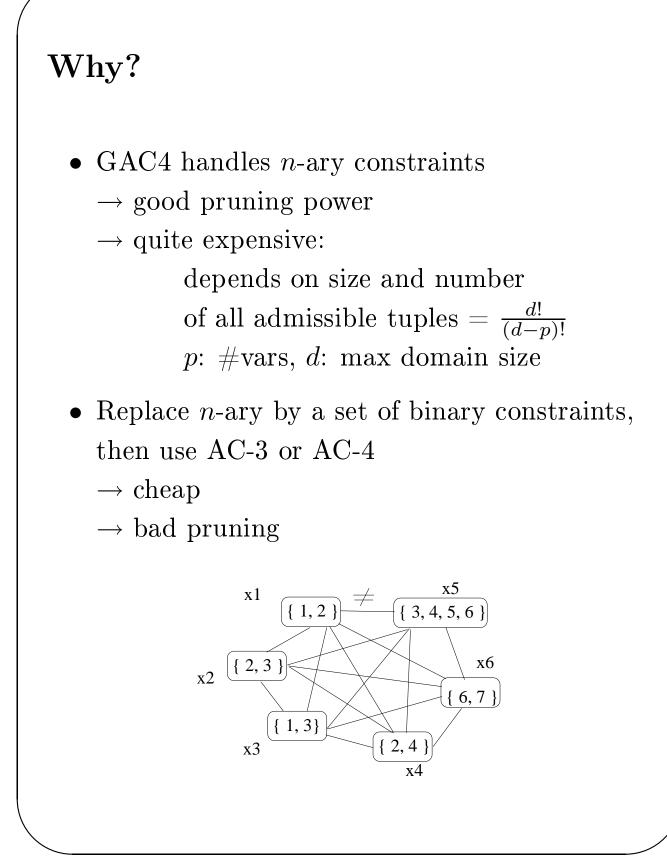
March 14, 2011 +

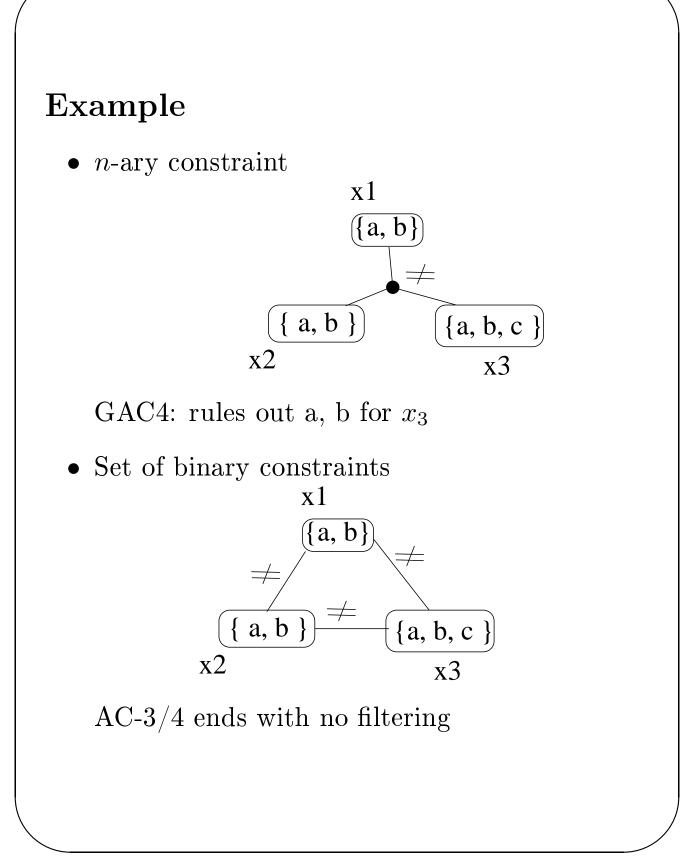
Contributions

• An algorithm to establish arc consistency in an all-diff constraint

 \rightarrow efficient

- \rightarrow powerful pruning
- An algorithm to propagate deletions among several all-diff constraints
- Illustration on the zebra problem





Notations

CSP: $\mathcal{P} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$

- $C \in \mathcal{C} \text{ defined on } X_C = \{x_{i_1}, x_{i_2}, \dots, x_{i_j}\} \subseteq \mathcal{X}$ p: arity of $C, p = |X_C|$ d: max $|D_{x_i}|$
- A value $\underline{a_i}$ for x_i is consistent for C, if \exists values for other all variables in X_C such that these values and a_i simultaneously satisfy C
 - A constraint <u>C is consistent</u>, if all values for all variables X_C are consistent for C
 - A <u>CSP is arc-consistent</u>, if all constraints (whatever their arity) are consistent

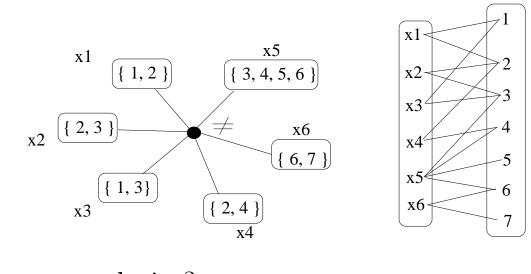
• A <u>CSP is diff-arc-consistent</u> iff all its all-diffs constraints are arc-consistent

Value Graph

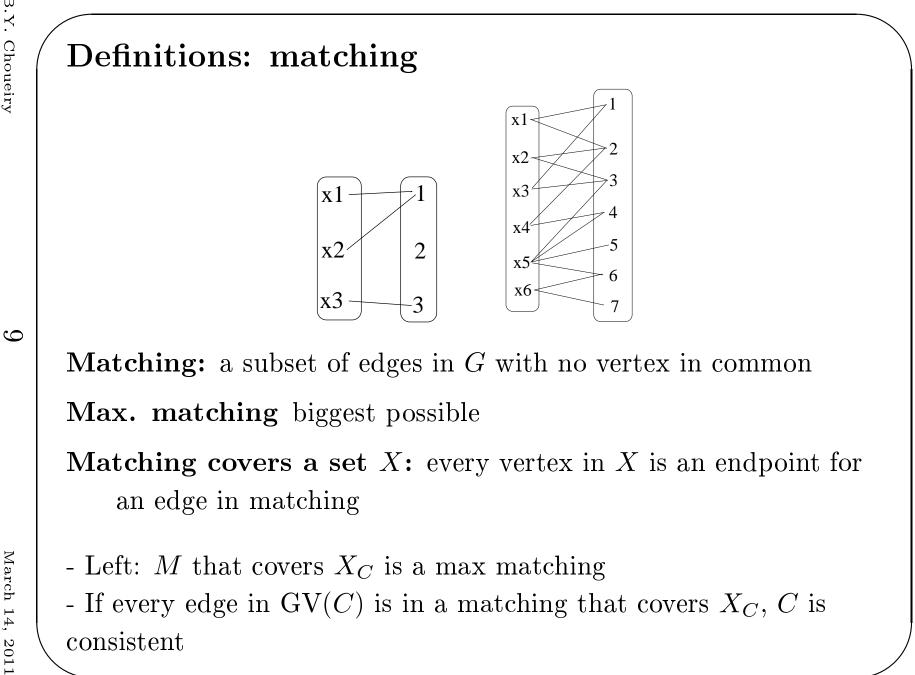
Given C, an all-diff constraint, the value Graph of C is a bipartite graph

$$\mathrm{GV}(C) = (X_C, D(X_C), E)$$

Vertices: $X_C = \{x_{i_1}, x_{i_2}, \dots, x_{i_j}\}$ Vertices: $D(X_C) = \bigcup_{x \in X_C} (D_x)$ Edges: (x_i, a) iff $a \in D_x$



Space complexity? Draw GV of the 3-node coloring example B.Y. Choueiry



March 14, 2011

Theorem 1

CSP: $\mathcal{P} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$ is diff-arc-consistent iff

for every all-diff $C \in \mathcal{C}$

every edge $\operatorname{GV}(C)$ belongs to a matching that covers X_C in $\operatorname{GV}(C)$

Task:

Repeat for each all-diff constraint,

- Build G (\equiv GV) of all-diff constraint C
- Remove edges that do not belong to any matching covering X_C

Algorithm 1:

- Compute one M(G), maximal matching in G
- If M(G) does not cover X_C , then stop
- Using M(G), remove edges that do not belong...

Algorithm 1: DIFF-INITIALIZATION(C) % returns false if there is no solution, otherwise true % the function COMPUTEMAXIMUMMATCHING(G) computes a maximum matching in the graph Gbegin 1 | Build $G = (X_C, D(X_C), E)$

- 2 $M(G) \leftarrow \text{COMPUTEMAXIMUMMATCHING}(G)$
 - if $|M(G)| < |X_C|$ then return false REMOVEEDGESFROMG(G, M(G))
- 3 | REMOVEEDGESFROMG(C return true end

 \rightarrow Hopcroft & Karp: Efficient procedure

for computing $\underline{\mathbf{a}}$ matching covering X_C

 \rightarrow Or, maximal flow in bipartite graph (less efficient)

11

March 14, 2011

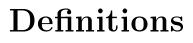
Our problem becomes

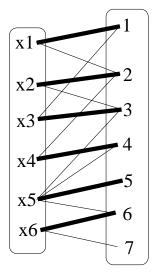
Given:

- an all-diff constraint ${\cal C}$
- its value graph G = (X, Y, E)
- one maximum covering M(G)

Remove edges that belong to <u>no</u> matching covering X

March 14, 2011





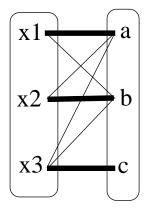
Given a matching M: matching edge: an edge in Mfree edge: an edge not in M

matched vertex: incident to a matching edge
free vertex: otherwise

alternating path (cycle): a path (cycle) whose
edges are alternatively matching and free
length of a path: number of edges in path

vital edge: belongs to every maximum matching

Questions



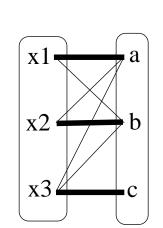
Indicate:

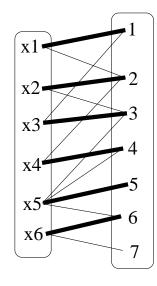
- matching edges
- free edges
- matched vertices
- a free vertex
- an alternating path, length?
- an alternating cycle, length?
- a vital edge

Property 1 (Berge)

An edge belongs to some of but not all maximum matchings, iff for an arbitrary maximum matching M, it belongs to either:

- an even alternating cycle, or
- an even alternating path that begins at a free vertex

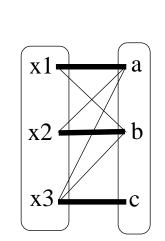


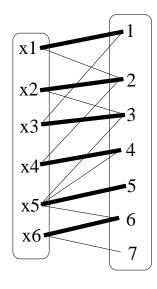


Thus:

The edges to remove should not be in:

- all matchings (vital)
- an even alternating path starting at a free vertex
- an even alternating cycle





March 14, 2011

B.Y. Choueiry

Given: -G = (X, Y, E)- a matching M(G) covering X - Build G_O , by orienting the edges x1• x2x1, а x3' x4' x24 h x5₹ x6< х3

- every directed cycle in G_O corresponds to an even alternating cycle of G, and conversely

- every directed simple path in G_O , starting at a free vertex corresponds to an even alternating path of G starting at a free vertex, an conversely

17

March 14, 2011

Task:

Given G, and M(G), remove edges that do not belong to any matching covering X_C

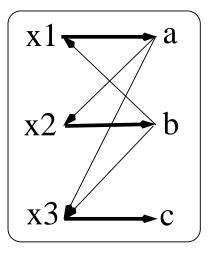
Algorithm 2

- Build G_O
- Mark all edges of G_O as unused
- Identify all directed edges that belong to a directed simple path starting at a free vertex by a breadth-first search, mark them as used
- Compute strongly connected components in G_O . Mark "used" any directed edge between two vertices in the same strongly connected component, as any such edge belongs to a directed cycle and conversely
- All remaining unused edges, if they are in M(G), mark them as vital else put them in RE and remove them from G

B.Y. Choueiry

Algorithm 2

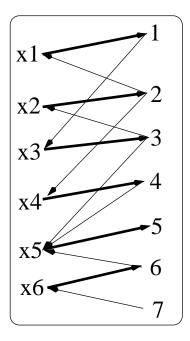
Algorithm 2: REMOVEEDGESFROMG(G, M(G))% RE is the set of edges removed from G. % M(G) is a matching of G which covers X % The function returns RE begin Mark all directed edges in G_O as "unused". 1 Set RE to \emptyset . Look for all directed edges that belong to 2 a directed simple path which begins at a free vertex by a breadth-first search starting from free vertices, and mark them as "used". Compute the strongly connected components of G_O . 3 Mark as "used" any directed edge that joins two vertices in the same strongly connected component. for each directed edge de marked as "unused" do 4 set e to the corresponding edge of de if $e \in M(G)$ then mark e as "vital" else $RE \leftarrow RE \cup \{e\}$ remove e from Greturn RE end



Algorithm 2

- ...
- Identify all edges starting at a free vertex by a breadth-first search, mark them as used
- Compute strongly connected components in G_O. Mark "used" any directed edge between two vertices in the same strongly connected component, as any such edge belongs to a directed cycle and conversely
- All remaining unused edges, if they are in M(G), mark them as vital else put them in RE and remove them from G

B.Y. Choueiry



Algorithm 2

- ..
- Identify all edges starting at a free vertex by a breadth-first search, mark them as used
- Compute strongly connected components in G_O. Mark "used" any directed edge between two vertices in the same strongly connected component, as any such edge belongs to a directed cycle and conversely
- All remaining unused edges, if they are in M(G), mark them as vital else put them in RE and remove them from G

B.Y. Choueiry

So far..

Given C, remove edges that are not consistent for C

.. but,

A variable x may be in more than one all-diff constraints, *i.e.* x may be in X_{C_i} and X_{C_j} , with C_i and C_j two all-diff constraints

How to propagate the effect of filtering of C_i on C_j ?

- \rightarrow start from scratch?
- \rightarrow propagate deletions more intelligently
 - use the fact that before deletion due to C_j ,
 - a matching covering X_{C_i} was known in $GV(C_i)$

23

Assume we have C_i , C_j , and C_k involving a given variable

```
Compute \begin{cases} \operatorname{RE}(C_i), \operatorname{RE}(C_j), \operatorname{RE}(C_k), \\ \operatorname{G=GV}(C_i), \operatorname{M}(G), \operatorname{etc.} \end{cases}
```

Idea

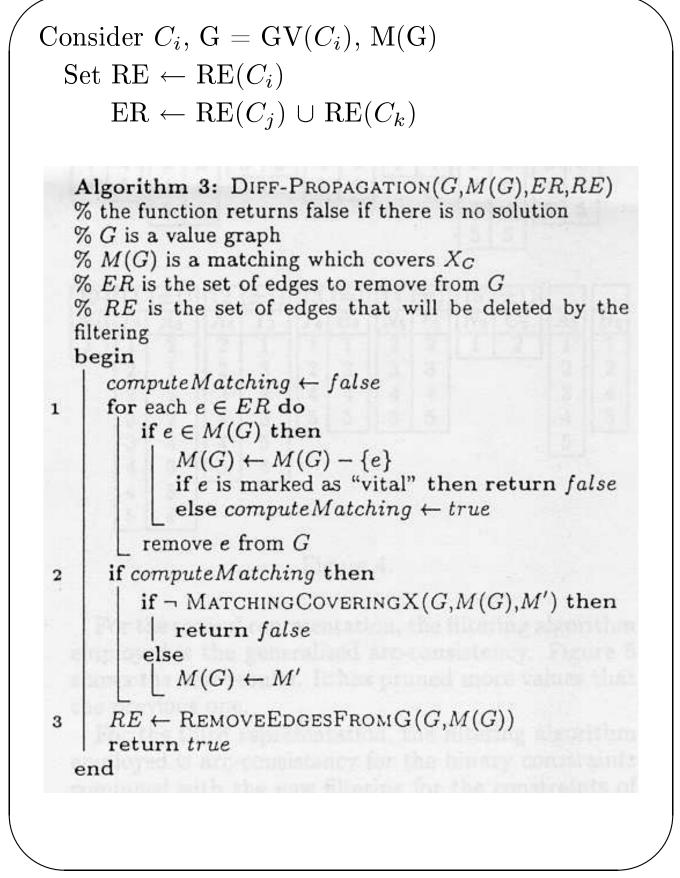
Consider C_i

First remove from G deletions due to C_j , C_k

```
Second, try to extend the remaining edges in M(G) into a matching that covers X_{C_i}
```

Finally, apply Algorithm 2

... iterate



Example: the Zebra problem

5 houses of different colors5 inhabitants, different nationalities, differentpets, different drinks, different cigarettesConsider the following facts:

- 1. The Englishman lives in the red house
- 2. The Spaniard has a dog
- 3. Coffee is drunk in the green house
- 4. The Ukrainian drinks tea
- 5. The green house is immediately to the right of the ivory house
- 6. The snail owner smokes Old-Gold
- 7. *etc.*

Query: who drinks water? who owns a zebra?

${\bf Zebra:} \ {\rm formulation}$

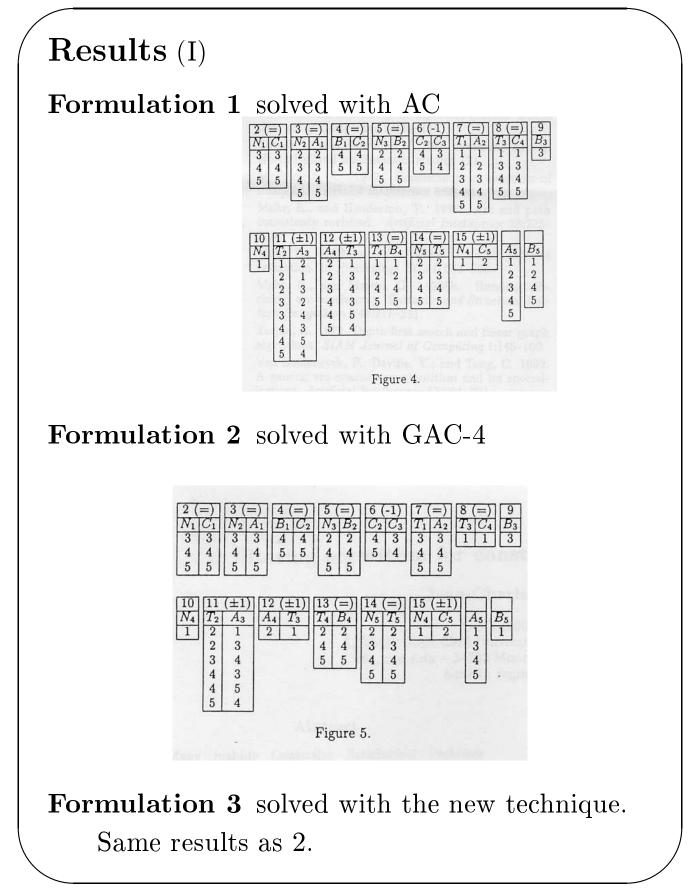
 $25 \text{ variables:} \begin{cases} 5 \text{ house-color } C_1, C_2, \dots, C_5 \\ 5 \text{ nationalities } N_1, N_2, \dots, N_5 \\ 5 \text{ drinks } B_1, B_2, \dots, B_5 \\ 5 \text{ cigarettes } T_1, T_2, \dots, T_5 \\ 5 \text{ pets } A_1, A_2, \dots, A_5 \end{cases}$

Domain of each variable = $\{1, 2, 3, 4, 5\}$ ($\equiv \{h1, h2, h3, h4, h5\}$) Constraints 2–15?

B.Y. Choueiry

Formulating Constraint 1:

- 1. Binary constraint between any pair in each cluster: binary CSP
- 2. Five 5-ary all-diff constraints: non-binary CSP
- 3. The 5-ary constraints are replaced with their GV. Space?



Results (II)

- a: # of binary constraints
- p: size of a cluster
- c: # of clusters
- d: # of values in a domain

 $\mathcal{O}(ad^2)$: complexity of AC on binary

Formulation 1 solved with AC

- number of binary constraint added is $\mathcal{O}(cp^2)$
- filtering complexity is $\mathcal{O}((a+cp^2)d^2)$

Formulation 2 solved with GAC-4

- filtering complexity is $\mathcal{O}(\frac{d!}{(d-p)!}p)$

Formulation 3 solved with the new technique

- arc-consistency is $\mathcal{O}(ad^2)$
- all-diff filtering is $\mathcal{O}(cp^2d^2)$
- total filtering is $\mathcal{O}(ad^2 + cp^2d^2)$

Extension

Improved bounds by J.-F. Puget (AAAI 99) for ordered domains (e.g., time in scheduling).

Lesson

We can improve the performance of search by:

- identifying special structures in the constraint graph (*e.g.*, tree, biconnected components, DAG)
- identifying special types of constraints (*e.g.*, functional, anti-functional, monotonic, all-diffs)

Improved arc-consistency Van Hentenryck et al. AIJ 92 Functional

A constraint C is functional with respect to a domain D iff for all $v \in D$ (respectively $w \in D$) there exists at most one $w \in D$ (respectively $v \in D$) such that C(v, w).

Anti-functional

A constraint C is anti-functional with respect to a domain D iff $\neg C$ is functional with respect to D.

Monotonic

A constraint C is monotonic with respect to a domain D iff there exists a total ordering on D such that, for all values v and $w \in D$, C(v, w) holds implies C(v', w') holds for all values v' and $w' \in D$ such that $v' \leq v$ and $w' \leq w$.