Title: A Filtering Algorithm for Constraints of Difference in CSPs
Author: J.-Ch. Régin
Proc.: AAAI 1994
Pages: 362-367

Foundations of Constraint Processing CSCE421/821, Spring 2011
 www.cse.unl.edu/~cse421

Berthe Y. Choueiry (Shu-we-ri)
Avery Hall, Room 360
choueiry@cse.unl.edu, Tel: (402)472-5444
Images scanned from paper by Nimit Mehta

All-diffs constraint

Constraint: C
Variables: $\quad X_{C}=\left\{x_{1}, x_{2}, \ldots, x_{6}\right\}$

Context: finite CSPs
Goal: efficiency of arc consistency
Focus: All-diff constraints

Result: efficient algorithm $\left\{\begin{array}{l}\text { Space }: \mathcal{O}(p d) \\ \text { Time }: \mathcal{O}\left(p^{2} d^{2}\right)\end{array}\right\}$
Application: used in RESYN for subgraph isomorphism (plan synthesis in organic chemistry)

- An algorithm to establish arc consistency in an all-diff constraint
\rightarrow efficient
\rightarrow powerful pruning
- An algorithm to propagate deletions among several all-diff constraints
- Illustration on the zebra problem

Why?

- GAC4 handles n-ary constraints
\rightarrow good pruning power
\rightarrow quite expensive:
depends on size and number of all admissible tuples $=\frac{d!}{(d-p)!}$ p : \#vars, d : max domain size
- Replace n-ary by a set of binary constraints, then use AC-3 or AC-4
\rightarrow cheap
\rightarrow bad pruning

Example

- n-ary constraint

GAC4: rules out a, b for x_{3}

- Set of binary constraints

AC-3/4 ends with no filtering

Notations

CSP: $\mathcal{P}=(\mathcal{X}, \mathcal{D}, \mathcal{C})$
$C \in \mathcal{C}$ defined on $X_{C}=\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{j}}\right\} \subseteq \mathcal{X}$
p : arity of $C, p=\left|X_{C}\right|$
$d: \max \left|D_{x_{i}}\right|$

- A value $\underline{a_{i}}$ for x_{i} is consistent for C, if \exists values for other all \checkmark variables in X_{C} such that these values and a_{i} simultaneously satisfy C
- A constraint \underline{C} is consistent, if all values for all variables X_{C} are consistent for C
- A CSP is arc-consistent, if all constraints (whatever their arity) are consistent
- A CSP is diff-arc-consistent iff all its all-diffs constraints are arc-consistent

Value Graph

Given C, an all-diff constraint, the value Graph of C is a bipartite graph

$$
\operatorname{GV}(C)=\left(X_{C}, D\left(X_{C}\right), E\right)
$$

Vertices: $\quad X_{C}=\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{j}}\right\}$
Vertices: $D\left(X_{C}\right)=\cup_{x \in X_{C}}\left(D_{x}\right)$
Edges: $\quad\left(x_{i}, a\right) \quad$ iff $\quad a \in D_{x}$

Space complexity?
Draw GV of the 3-node coloring example

Definitions: matching

Matching: a subset of edges in G with no vertex in common Max. matching biggest possible

Matching covers a set X : every vertex in X is an endpoint for an edge in matching

- Left: M that covers X_{C} is a max matching
- If every edge in $\operatorname{GV}(C)$ is in a matching that covers X_{C}, C is consistent

Theorem 1

CSP: $\mathcal{P}=(\mathcal{X}, \mathcal{D}, \mathcal{C})$ is diff-arc-consistent iff
for every all-diff $C \in \mathcal{C}$
every edge $\operatorname{GV}(C)$ belongs to a matching that covers X_{C} in $\operatorname{GV}(C)$

Task:

Repeat for each all-diff constraint,

- Build G ($\equiv \mathrm{GV}$) of all-diff constraint C
- Remove edges that do not belong to any matching covering X_{C}

Algorithm 1:

- Compute one $\mathrm{M}(\mathrm{G})$, maximal matching in G
- If $\mathrm{M}(\mathrm{G})$ does not cover X_{C}, then stop
- Using $\mathrm{M}(\mathrm{G})$, remove edges that do not belong...

```
Algorithm 1: DifF-Initialization(C)
% returns false if there is no solution, otherwise true
% the function ComputeMaximumMatching(G) com-
putes a maximum matching in the graph G
begin
    Build G=( X
    M(G)\leftarrow COMPUTEMAXIMUMMATCHING}(G
    if }|M(G)|<|\mp@subsup{X}{C}{}| then return fals
    RemoveEdgesFromG(G,M(G))
    return true
end
```

\longrightarrow Hopcroft \& Karp: Efficient procedure for computing a matching covering X_{C}
\longrightarrow Or, maximal flow in bipartite graph (less efficient)

Our problem becomes

Given:

- an all-diff constraint C
- its value graph $G=(X, Y, E)$
- one maximum covering $M(G)$

Remove edges that belong to no matching covering X

Definitions

Given a matching M :
matching edge: an edge in M
free edge: an edge not in M
matched vertex: incident to a matching edge free vertex: otherwise
alternating path (cycle): a path (cycle) whose edges are alternatively matching and free length of a path: number of edges in path
vital edge: belongs to every maximum matching

Questions

Indicate:

- matching edges
- free edges
- matched vertices
- a free vertex
- an alternating path, length?
- an alternating cycle, length?
- a vital edge

Property 1 (Berge)

An edge belongs to some of but not all maximum matchings, iff for an arbitrary maximum matching M, it belongs to either:

- an even alternating cycle, or
- an even alternating path that begins at a free vertex

t
 Thus:

The edges to remove should not be in:

- all matchings (vital)
- an even alternating path starting at a free vertex
- an even alternating cycle

- every directed cycle in G_{O} corresponds to an even alternating cycle of G, and conversely
LIOZ '开 чวлел
- every directed simple path in G_{O}, starting at a free vertex corresponds to an even alternating path of G starting at a free vertex, an conversely

Task:

Given G, and $M(G)$, remove edges that do not belong to any matching covering X_{C}

Algorithm 2

- Build G_{O}
- Mark all edges of G_{O} as unused
- Identify all directed edges that belong to a directed simple path starting at a free vertex by a breadth-first search, mark them as used
- Compute strongly connected components in G_{O}. Mark "used" any directed edge between two vertices in the same strongly connected component, as any such edge belongs to a directed cycle and conversely
- All remaining unused edges, if they are in $M(G)$, mark them as vital else put them in RE and remove them from G

Algorithm 2

```
Algorithm 2: RemoveEdgesFromG(G,M(G))
% RE is the set of edges removed from G.
%M(G) is a matching of G which covers X
% The function returns RE
begin
    Mark all directed edges in GO as "unused".
    Set RE to \emptyset.
    Look for all directed edges that belong to
        a directed simple path which begins at a free
        vertex by a breadth-first search starting from
        free vertices, and mark them as "used".
3 Compute the strongly connected components of GO.
        Mark as "used" any directed edge that joins two
        vertices in the same strongly connected component.
        for each directed edge de marked as "unused" do
        set }e\mathrm{ to the corresponding edge of de
        if e\inM(G) then mark e as "vital"
        else
                        RE\leftarrowRE\cup{e}
                remove e from G
    return RE
    end
```

1
4

Algorithm 2

- ...
- Identify all edges starting at a free vertex by a breadth-first search, mark them as used
- Compute strongly connected components in G_{O}. Mark "used" any directed edge between two vertices in the same strongly connected component, as any such edge belongs to a directed cycle and conversely
- All remaining unused edges,
if they are in $M(G)$, mark them as vital else put them in RE and remove them from G

Algorithm 2

- ...
- Identify all edges starting at a free vertex by a breadth-first search, mark them as used
- Compute strongly connected components in G_{O}. Mark "used" any directed edge between two vertices in the same strongly connected component, as any such edge belongs to a directed cycle and conversely
- All remaining unused edges,
if they are in $M(G)$, mark them as vital else put them in RE and remove them from G

So far..

Given C, remove edges that are not consistent for C
.. but,
A variable x may be in more than one all-diff constraints, i.e. x may be in $X_{C_{i}}$ and $X_{C_{j}}$, with C_{i} and C_{j} two all-diff constraints

How to propagate the effect of filtering of C_{i} on C_{j} ?
\rightarrow start from scratch?
\rightarrow propagate deletions more intelligently
use the fact that before deletion due to C_{j},
a matching covering $X_{C_{i}}$ was known in $\operatorname{GV}\left(C_{i}\right)$

Assume we have C_{i}, C_{j}, and C_{k} involving a given variable
Compute $\left\{\begin{array}{l}\operatorname{RE}\left(C_{i}\right), \operatorname{RE}\left(C_{j}\right), \operatorname{RE}\left(C_{k}\right), \\ \mathrm{G}=\operatorname{GV}\left(C_{i}\right), \mathrm{M}(\mathrm{G}), \text { etc. }\end{array}\right.$

Idea

Consider C_{i}
First remove from G deletions due to C_{j}, C_{k}
Second, try to extend the remaining edges in $\mathrm{M}(\mathrm{G})$ into a matching that covers $X_{C_{i}}$
Finally, apply Algorithm 2
... iterate

Consider $C_{i}, \mathrm{G}=\mathrm{GV}\left(C_{i}\right), \mathrm{M}(\mathrm{G})$

$$
\begin{aligned}
\text { Set } \mathrm{RE} & \leftarrow \mathrm{RE}\left(C_{i}\right) \\
\mathrm{ER} & \leftarrow \operatorname{RE}\left(C_{j}\right) \cup \mathrm{RE}\left(C_{k}\right)
\end{aligned}
$$

Algorithm 3: Diff-Propagation $(G, M(G), E R, R E)$ $\%$ the function returns false if there is no solution $\% G$ is a value graph
$\% M(G)$ is a matching which covers X_{C}
$\% E R$ is the set of edges to remove from G
$\% R E$ is the set of edges that will be deleted by the filtering
begin
computeMatching \leftarrow false
1 for each $e \in E R$ do if $e \in M(G)$ then $M(G) \leftarrow M(G)-\{e\}$ if e is marked as "vital" then return false else computeMatching \leftarrow true remove e from G
if computeMatching then if \neg MatchingCoveringX $\left(G, M(G), M^{\prime}\right)$ then return false
else $M(G) \leftarrow M^{\prime}$
$R E \leftarrow$ RemoveEdgesFromG $(G, M(G))$ return true
end

Example: the Zebra problem
5 houses of different colors
5 inhabitants, different nationalities, different pets, different drinks, different cigarettes
Consider the following facts:

1. The Englishman lives in the red house
2. The Spaniard has a dog
3. Coffee is drunk in the green house
4. The Ukrainian drinks tea
5. The green house is immediately to the right of the ivory house
6. The snail owner smokes Old-Gold
7. etc.

Query: who drinks water?
who owns a zebra?

Zebra: formulation

$$
25 \text { variables: }\left\{\begin{array}{l}
5 \text { house-color } C_{1}, C_{2}, \ldots, C_{5} \\
5 \text { nationalities } N_{1}, N_{2}, \ldots, N_{5} \\
5 \text { drinks } B_{1}, B_{2}, \ldots, B_{5} \\
5 \text { cigarettes } T_{1}, T_{2}, \ldots, T_{5} \\
5 \text { pets } A_{1}, A_{2}, \ldots, A_{5}
\end{array}\right.
$$

Domain of each variable $=\{1,2,3,4,5\}$
($\equiv\{h 1, h 2, h 3, h 4, h 5\})$
Constraints 2-15?

Formulating Constraint 1:

1. Binary constraint between any pair in each cluster: binary CSP
2. Five 5-ary all-diff constraints: non-binary CSP
3. The 5 -ary constraints are replaced with their GV. Space?

Results (I)

Formulation 1 solved with AC

$2(=)$	3 (=)		4 ($=$)		$5(=)$		$6(-1)$		7 ($=$)		8 ($=1$		B_{3}	
N_{1} C_{1} 3				C_{2}				C_{3}						
3 3	2	2	4	4	2	2	4	3	1	1	1	1	3	
48	3	3	5		4	4	5	4	2	2	3	3		
5	4	4			5	5			3	3	4	4		
	5	5							4	4	5	5		
									5	5				

Figure 4.
Formulation 2 solved with GAC-4

10	$11(\pm 1)$		$12(\pm 1)$		13 (=)		$14(=) 15(\pm 1)$					
N_{4}	T_{2}	A_{3}	A_{4}	T_{3}	T_{4}	B_{4}	N_{5}	T_{5}	N_{4}	C_{5}	A_{5}	B_{5}
1	2	1	2	1	2	2	2	2	1	2	1	1
	2	3			4	4	3	3			3	
	3	4			5	5	4	4			4	
	4	3					5	5			5	.
	4	5										
	5	4										

Figure 5.

Formulation 3 solved with the new technique.
Same results as 2 .

Results (II)

a : \# of binary constraints
p : size of a cluster
$c: \quad \#$ of clusters
$d: \quad \#$ of values in a domain
$\mathcal{O}\left(a d^{2}\right)$: complexity of AC on binary

Formulation 1 solved with AC

- number of binary constraint added is $\mathcal{O}\left(c p^{2}\right)$
- filtering complexity is $\mathcal{O}\left(\left(a+c p^{2}\right) d^{2}\right)$

Formulation 2 solved with GAC-4

- filtering complexity is $\mathcal{O}\left(\frac{d!}{(d-p)!} p\right)$

Formulation 3 solved with the new technique

- arc-consistency is $\mathcal{O}\left(a d^{2}\right)$
- all-diff filtering is $\mathcal{O}\left(c p^{2} d^{2}\right)$
- total filtering is $\mathcal{O}\left(a d^{2}+c p^{2} d^{2}\right)$

Extension

Improved bounds by J.-F. Puget (AAAI 99) for ordered domains (e.g., time in scheduling).

Lesson

We can improve the performance of search by:

- identifying special structures in the constraint graph (e.g., tree, biconnected components, DAG)
- identifying special types of constraints (e.g., functional, anti-functional, monotonic, all-diffs)

Functional

A constraint C is functional with respect to a domain D iff for all $v \in D$ (respectively $w \in D$) there exists at most one $w \in D$ (respectively $v \in D)$ such that $C(v, w)$.

Anti-functional
A constraint C is anti-functional with respect to a domain D iff $\neg C$ is functional with respect to D.

Monotonic

A constraint C is monotonic with respect to a domain D iff there exists a total ordering on D such that, for all values v and $w \in D$, $C(v, w)$ holds implies $C\left(v^{\prime}, w^{\prime}\right)$ holds for all values v^{\prime} and $w^{\prime} \in D$ such that $v^{\prime} \leq v$ and $w^{\prime} \leq w$.

