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• 7.1.9d) Use backwards substitution to solve an = an−1 + 2n+ 3, when a0 = 4.

an = an−1 + 2n+ 3

= (an−2 + 2(n− 1) + 3) + 2n+ 3

= an−2 + 2n− 2 + 3 + 2n+ 3

= an−2 + 4n+ 2(3)− 2

= (an−3 + 2(n− 2) + 3) + 4n+ 2(3)− 2

= an−3 + 2n− 4 + 3 + 4n+ 2(3)− 2

= an−3 + 6n+ 3(3)− 2− 4

= (an−4 + 2(n− 3) + 3) + 6n+ 3(3)− 2− 4

= an−4 + 2n− 6 + 3 + 6n+ 3(3)− 2− 4

= an−4 + 8n+ 4(3)− 2− 4− 6

= . . .

= an−n + 2n(n) + n(3)− 2− 4− 6− . . .− 2(n− 1)

= a0 + 2n2 + 3n−
n−1∑
i=1

2i

= a0 + 2n2 + 3n− 2
(n− 1)(n− 1 + 1)

2
= a0 + 2n2 + 3n− n(n− 1)

= a0 + 2n2 + 3n− n2 + n

= n2 + 4n+ 4

• Find the solution to the recurrence relation:

an = 2an−1 + 8an−2

a0 = 3

a1 = 4
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This relation is a linear homogeneous recurrence relation of degree 2 because:

– The right-hand side has only multiples of previous terms of the sequence and
coefficients are all constants. Therefore, it is linear.

– No terms occur that are not multiples of aj (i.e., no non-recursive cost). Therefore,
it is homogeneous.

– It is expressed in terms of the (n − 2)th term of the sequence. Therefore, it is of
degree 2).

We know that a solution to solve this recurrence relation is of the form an = rn where
r is some real constant. Replacing the solution in the recurrence relation, we get:

rn = 2rn−1 + 8rn−2.

Dividing by rn−2, we get:
r2 = 2r1 + 8.

Thus, the characteristic equation of this recurrence relation is:

r2 − 2r − 8 = (r + 2)(r − 4) = 0.

This characteristic equation has the roots r1 = −2 and r2 = 4; Therefore, the solution
of the recurrence relation is

an = α1(−2)n + α24
n.

Plugging in our initial conditions we get

3 = α1 + α2

4 = −2α1 + 4α2

Solving for α1 = 3−α2, we get 4 = −2(3−α2) + 4α2 ⇒ 4 = −6 + 2α2 + 4α2 ⇒ 5
3

= α2.
Therefore, α1 = 4

3
and α2 = 5

3
.

Putting the values of α1, α2 back in the solution form, we obtain the following solution
of the recurrence relation given the boundary conditions

an =
4

3
(−2)n +

5

3
4n.

• You are not responsible for solving non-homogeneous recurrence relations.
Solve the following linear non-homogeneous recurrence relation:

an = 2an−1 − 8an−2 + n (1)

a0 = 3 (2)

a1 = 4 (3)
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We notice that f(n) is polynomial n. We will solve this problem using Theorem 6 on
page 469, which covers this case, the case that f(n) is an exponential in n, and the
case where f(n) is a product of a polynomial and an exponential in n.

First, we solve the associated linear homogeneous recurrence relation, which happens
to be the one above :-). Its solution is:

an = α1(−2)n + α24
n.

Next, we find a particular solution for the given non-homogeneous term. Theorem 6
applies to f(n) of the form:

f(n) = (btn
t + bt−1n

t−1 + . . .+ b1n+ b0)s
n.

In our case, f(n) = n and s is 1. Since our s is not a root of our characteristic equation
(*relief*), there is a particular solution of the form:

ap = (ptn
t + pt−1n

t−1 + . . .+ p1n+ p0)s
n.

For us, the particular solution is ap = p1n + p0. Plugging the particular solution in
Equation (1), we get:

ap = p1n+ p0 = 2(p1(n− 1) + p0)− 8(p1(n− 2) + p0) + n

= 2p1n− 2p1 + 2p0 − 8p1n+ 16p1 − 8p0 + n

Moving all terms to one side of the equation, we get:

(7p1 − 1)n+ (−14p1 + 7p0) = 0.

Given that n 6= 0, we must have the following:

7p1 − 1 = 0

−14p1 + 7p0 = 0

Now, 7p1 − 1 = 0⇒ 7p1 = 1⇒ p1 = 1
7
.

Further, −14p1 + 7p0 = 0⇒ −14(1
7
) + 7p0 = 0⇒ −2 + 7p0 = 0⇒ 7p0 = 2⇒ p0 = 2

7
.

We have thus found the particular solution: have ap = 1
7
n+ 2

7
. Therefore,

an = ah + ap

an = (α1(−2)n + α24
n) + (

1

7
n+

2

7
).

To determine the values of α1, α2, we plug in our initial conditions:

3 =
2

7
+ α1 + α2

4 =
1

7
+

2

7
+−2α1 + 4α2
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Or:

19

7
= α1 + α2

25

7
= −2α1 + 4α2

Solving for α1 = 19
7
− α2, we get 25

7
= −2(19

7
− α2) + 4α2 ⇒ 25

7
= −38

7
+ 2α2 + 4α2 ⇒

63
7

= 6α2 ⇒ 63
42

= α2 Replacing α2 by its value, we get α1 = −13
42

.

Replacing α1, α2, we get

an =
1

7
n+

2

7
+

63

42
(−2)n +

−13

42
4n.

• Give the asymptotic characterization for T (n) = 3T (n/4) + 8n3.

Remember Master Theorem, when we have T (n) = aT (n/b) + f(n) where:

– T (n) is monotone

– f(n) ∈ Θ(nd) where d ≥ 0,

– b is a constant

we can use it to classify our recurrence relation as follows:

T (n) is


Θ(nd) a < bd

Θ(nd log n) a = bd

Θ(nlogb a) a > bd

Therefore, we can use Master’s theorem and a = 3, b = 4 and d = 3. Therefore, T (n)
is O(n3) because a < bd(3 < 64).
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