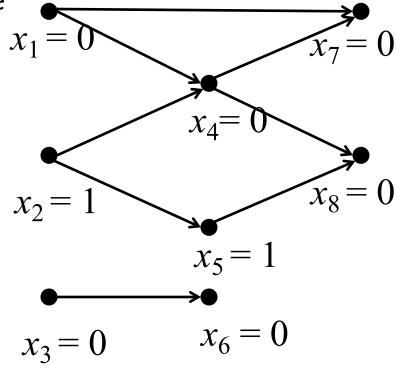
Clause Learning and Intelligent Backtracking in MiniSAT

CSCE 235H Introduction to Discrete Structures (Honors) Spring 2022 URL: cse.unl.edu/~cse235h All questions: Piazza


Clause Learning

- At every conflict, determine the cause of the conflict
- Create a new clause to prevent the conflict from being reached in the future
- Tools
 - Implication graph to determine cause of conflicts
 - Added clause is a "learnt" no-good

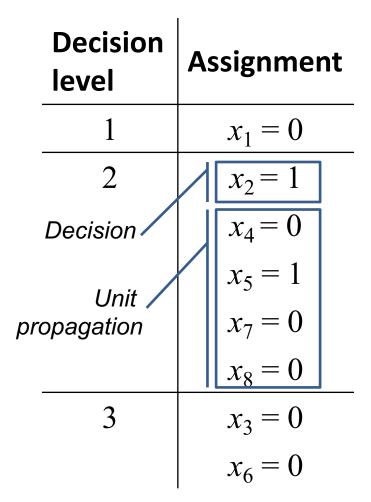
Implication Graph (1)

- Nodes correspond to assignments
- Nodes with no incoming edges are decision variables (assignments)
- Nodes with incoming edges were assigned through propagation

$$\begin{array}{ll} x_1 \leftarrow 0 & (x_1 \lor \neg x_2 \lor \neg x_4) \land \\ x_2 \leftarrow 1 & (x_4 \lor \neg x_5 \lor \neg x_8) \land \\ x_3 \leftarrow 0 & (x_1 \lor x_4 \lor \neg x_7) \land \\ & (x_3 \lor \neg x_6) \land \\ & (\neg x_2 \lor x_5) \end{array}$$

Implication Graph (2)

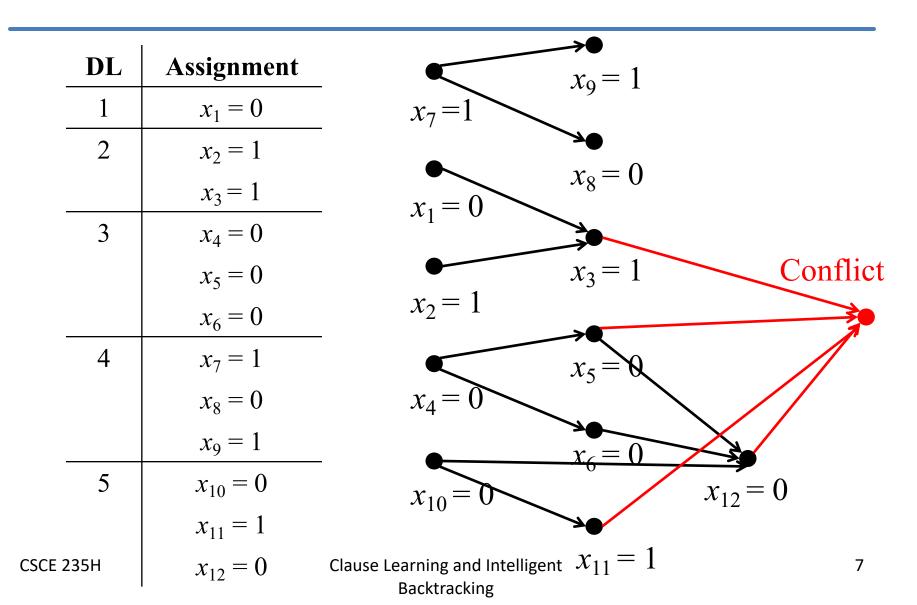
 A node and its immediate predecessors correspond to the propagating clause $(x_1 \vee \neg x_2 \vee \neg x_4)$ χ_{γ} Note: transitive links are required to show $x_{3} = 0$ which clause caused

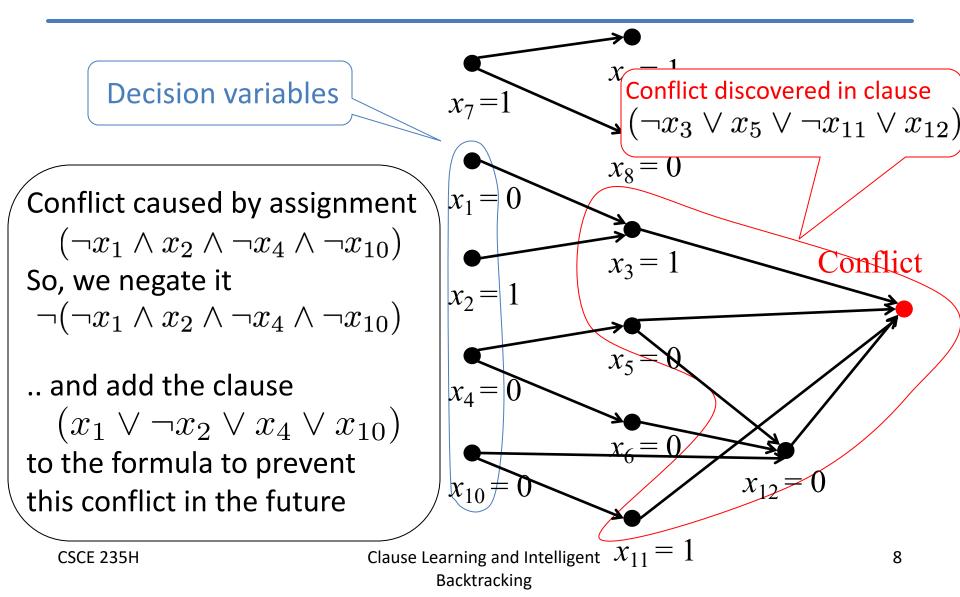

CSCE 235H

propagation

Clause Learning and Intelligent Backtracking X_8

Trail


- Series of assignments made up to current point in search
- Broken up by 'decision levels'
- Each decision level includes propagations


Clause Learning: UNSAT clause

	DL	Assignment	$\checkmark (x_5 \lor x_6 \lor x_{10} \lor \neg x_{12}) \land$
	1	$x_1 = 0$	$\mathbf{X} (\neg x_3 \lor x_5 \lor \neg x_{11} \lor x_{12}) \land$
	2	$x_2 = 1$	$\checkmark (\neg x_3 \lor x_6 \lor \neg x_{10} \lor \neg x_{11}) \land$
		$x_3 = 1$	$\checkmark (x_1 \vee \neg x_2 \vee x_3) \land$
	3	$x_4 = 0$	$\checkmark (\neg x_7 \lor x_9) \land$
		$x_{5} = 0$	$\checkmark (\neg x_7 \lor \neg x_8) \land$
		$x_6 = 0$	$\checkmark (x_4 \lor \neg x_5) \land$
	4	$x_7 = 1$	$\checkmark (x_4 \lor \neg x_6) \land$
		$x_8 = 0$	$\checkmark (x_{10} \lor x_{11}) \land$
		$x_9 = 1$	$\checkmark (\neg x_{10} \lor x_{11})$
	5	$x_{10} = 0$	v (10 10 11)
		$x_{11} = 1$	
CSCE 235H $x_{12} = 0$ Clause Learning and Intelligent Backtracking			

Clause Learning: UNSAT clause in implication graph

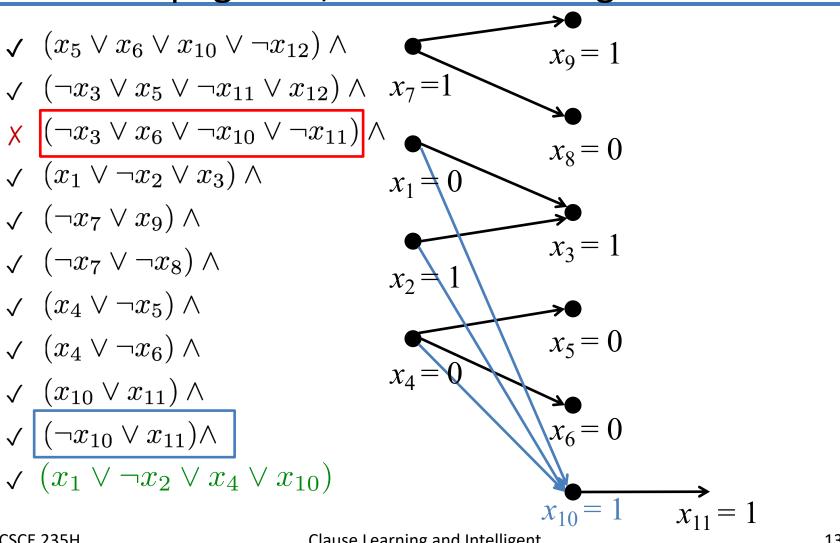
Clause Learning: Identify no-good

Intelligent Backtracking

- When reaching a conflict, we
 - Consider conflicted clauses
 - Draw the implication graph
 - Identify the decision variables
 - Generate the learnt no-good
 - Add learned clause to the formula
- Undo assignments until the learned clause becomes a unit clause
- ... Then propagate this new (unit clause)

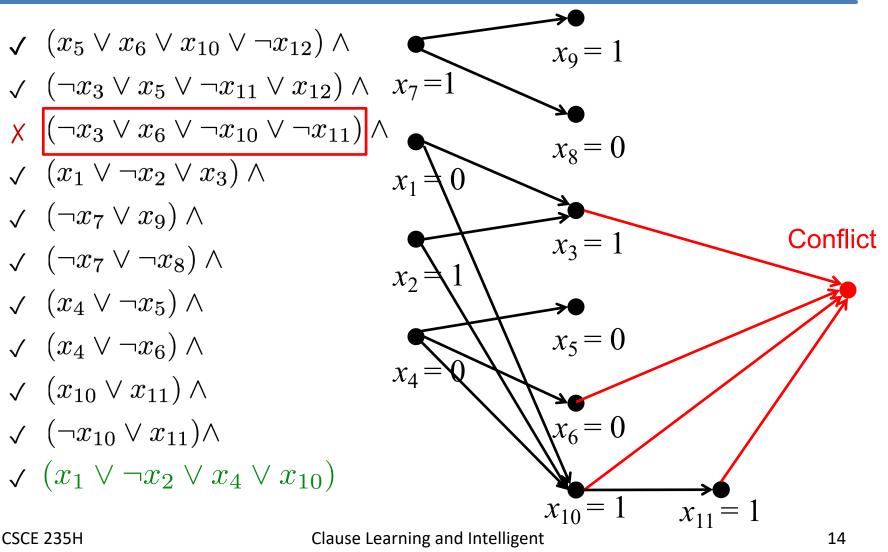
Intelligent Backtracking: Undo Deepest Decision in Learned Clause

	DL	Assignment	$(x_5 \lor x_6 \lor x_{10} \lor \neg x_1$	$_{2}) \wedge$
-	1	$x_1 = 0$	$(\neg x_3 \lor x_5 \lor \neg x_{11} \lor x_5)$	$(x_{12}) \land$
-	2	$x_2 = 1$	$(\neg x_3 \lor x_6 \lor \neg x_{10} \lor \neg$	$\neg x_{11}) \land$
_		$x_3 = 1$	$(x_1 \lor \neg x_2 \lor x_3) \land$	
	3	$x_4 = 0$	$(\neg x_7 \lor x_9) \land$	
		$x_{5} = 0$	$(\neg x_7 \lor \neg x_8) \land$	
<u>-</u>		$x_6 = 0$	$(x_4 \vee \neg x_5) \land \frown$	
	4	$x_7 = 1$	$(x_4 \vee \neg x_6) \wedge$	x ₁₀ deepest
		$x_8 = 0$	$(x_{10} \lor x_{11}) \land$	ecision variable
-		$x_9 = 1$	$- (\neg x_{10} \lor x_{11}) \land$	
	5	$x_{10} = 0$	$(x_1 \lor \neg x_2 \lor x_4 \lor x$	10
		$x_{11} = 1$		10/
CSCE 235H $x_{12} = 0$ CI		$x_{12} = 0$	Clause Learning and Intelligent Backtracking	10

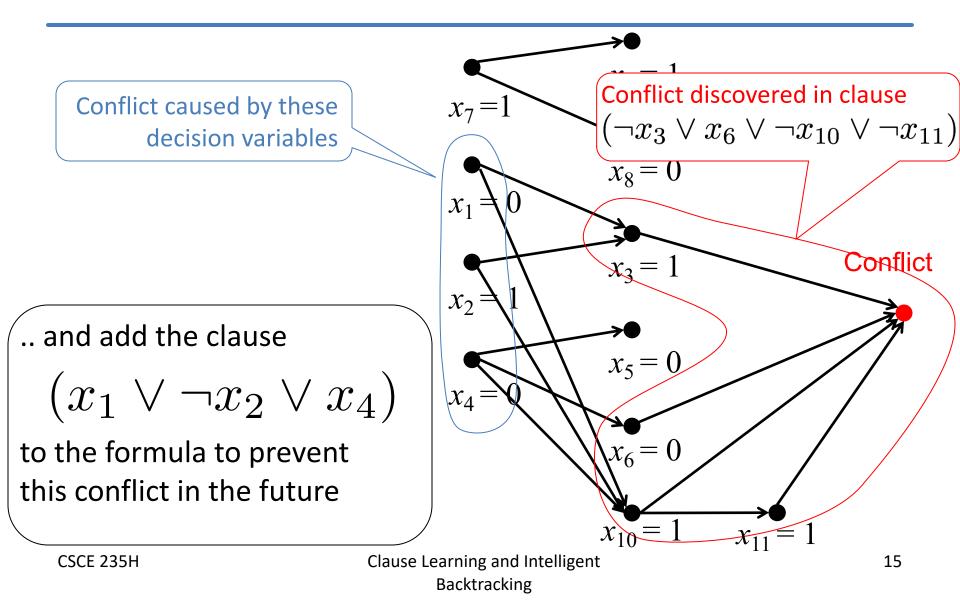

Intelligent Backtracking: Propagate New Clause

DL	Assgn	DL	Assgn	$(x_5 \lor x_6 \lor x_{10} \lor \neg x_{12}) \land \\$
1	$x_1 = 0$	1	$x_1 = 0$	$(\neg x_3 \lor x_5 \lor \neg x_{11} \lor x_{12})$ /
2	$x_2 = 1$	2	$x_2 = 1$	$(\neg x_3 \lor x_6 \lor \neg x_{10} \lor \neg x_{11})$
	$x_3 = 1$		$x_3 = 1$	$(x_1 \lor \neg x_2 \lor x_3) \land$
3	$x_4 = 0$	3	$x_4 = 0$	$(\neg x_7 \lor x_9) \land$
	$x_5 = 0$		$x_5 = 0$	$(\neg x_7 \lor \neg x_8) \land$
	$x_6 = 0$		$x_6 = 0$	$(x_4 \lor \neg x_5) \land$
4	$x_7 = 1$	4	$x_7 = 1$	$(x_4 \lor \neg x_6) \land$
	$x_8 = 0$		$x_8 = 0$	$(x_{10} \lor x_{11}) \land$
	$x_9 = 1$		$x_9 = 1$	$(\neg x_{10} \lor x_{11}) \land$
5	$x_{10} = 0$		$x_{10} = 1$	$(x_1 \lor \neg x_2 \lor x_4 \lor x_{10})$
	$x_{11} = 1$			
CSCE	235 $H = 0$		Claus	e Learning and Intelligent Backtracking

Intelligent Backtracking: New Implication Graph


DL	Assgn	DL	Assgn	$x_9 = 1$
1	$x_1 = 0$	1	$x_1 = 0$	$x_7 = 1$
2	$x_2 = 1$	2	$x_2 = 1$	
	$x_3 = 1$		$x_3 = 1$	$x_1 = 0$
3	$x_4 = 0$	3	$x_4 = 0$	
	$x_5 = 0$		$x_5 = 0$	$x_3 = 1$
	$x_6 = 0$		$x_6 = 0$	$x_2 = 1$
4	$x_7 = 1$	4	$x_7 = 1$	$x_5 = 0$
	$x_8 = 0$		$x_8 = 0$	$x_4 = 0$
	$x_9 = 1$		$x_9 = 1$	$x_6 = 0$
5	$x_{10} = 0$		$x_{10} = 1$	
	$x_{11} = 1$			$x_{10} = 1$
CSCE 23,5 ${ m H}_2=0$			Claus	e Learning and Intelligent Backtracking

Intelligent Backtracking: More Unit Clause Propagation, New Conflicting Clause


Clause Learning and Intelligent Backtracking

Intelligent Backtracking: Update Implication Graph

Backtracking

Intelligent Backtracking: Learn No-Good

Intelligent Backtracking: Identify Deepest Decision in Learned Clause

-	DL	Assgn	$(x_5 \lor x_6 \lor x_{10} \lor \neg x_{12}) \land \\$
	1	$x_1 = 0$	$(\neg x_3 \lor x_5 \lor \neg x_{11} \lor x_{12}) \land$
	2	$x_2 = 1$	$(\neg x_3 \lor x_6 \lor \neg x_{10} \lor \neg x_{11}) \land$
		$x_3 = 1$	$(x_1 \lor \neg x_2 \lor x_3) \land$
	3	$x_4 = 0$	$(\neg x_7 \lor x_9) \land$
		$x_5 = 0$	$(\neg x_7 \lor \neg x_8) \land$
		$x_6 = 0$	$(x_4 \vee \neg x_5) \land$
	4	$x_7 = 1$	$(x_4 \vee \neg x_6) \wedge$
		$x_8 = 0$	$(x_{10} \lor x_{11}) \land$
		$x_9 = 1$	$(\neg x_{10} \lor x_{11}) \land$
		$x_{10} = 1$	$(x_1 \vee \neg x_2 \vee x_4 \vee x_{10}) \wedge$
		$x_{11} = 1$	$(x_1 \vee \neg x_2 \vee x_4)$
5H			Clause Learning and Intelligent

CSCE 235H

Clause Learning and Intelligent Backtracking

Intelligent Backtracking: Backtrack and Propagate New Clause

DL	Assgn	DL	Assgn	$(x_5 \lor x_6 \lor x_{10} \lor \neg x_{12}) \land \\$
1	$x_1 = 0$	1	$x_1 = 0$	$(\neg x_3 \lor x_5 \lor \neg x_{11} \lor x_{12}) \land$
2	$x_2 = 1$	2	$x_2 = 1$	$(\neg x_3 \lor x_6 \lor \neg x_{10} \lor \neg x_{11}) \land $
	$x_3 = 1$		$x_3 = 1$	$(x_1 \lor \neg x_2 \lor x_3) \land$
3	$x_4 = 0$		$x_4 = 1$	$(\neg x_7 \lor x_9) \land$
	$x_5 = 0$			$(\neg x_7 \lor \neg x_8) \land$
	$x_6 = 0$			$(x_4 \lor \neg x_5) \land$
4	$x_7 = 1$			$(x_4 \vee \neg x_6) \land$
	$x_8 = 0$			$(x_{10} \lor x_{11}) \land$
	$x_9 = 1$			$(\neg x_{10} \lor x_{11}) \land$
	$x_{10} = 1$			$(x_1 \vee \neg x_2 \vee x_4 \vee x_{10}) \wedge$
				$(x_1 \vee \neg x_2 \vee x_4)$
CSCE	235H		Clause	Learning and Intelligent
	I			Backtracking

Summary

- Search
 - Assign variable, Propagate
 - Detect conflict? Intelligent backtracking
- Intelligent backtracking
 - Identify decision variables source of conflict
 - Add no-good clause so conflict cannot arise in the future
 - Backtrack the deepest variables in the learnt clause
 - Propagate new learnt clause by flipping assignment of deepest variable in learnt clause
 - Proceed
- Do you see any problem with this strategy?

Problem with Adding New Clauses

- At every conflict, we learn a new clause
- Even when backtrack, we keep all new clauses
- Number of learned clauses quickly grows
- Several strategies exist
 - Every so often, remove inactive/un-used learned clauses
 - Remove subsumed clauses
 - Assume we learn $(x_1 \lor x_2 \lor x_3)$
 - Then we learn $(x_1 \lor x_2)$
 - We can remove the first learnt clause because it is subsumed by the smaller one
 - Etc.