
'&

$%
Title: A Filtering Algorithm for Constraints of Di�eren
e in CSPsAuthor: J.-Ch. RéginPro
.: AAAI 1994Pages: 362�367

Foundations of Constraint Pro
essingCSCE421/821, Spring 2011www.
se.unl.edu/~
se421

Berthe Y. Choueiry (Shu-we-ri)Avery Hall, Room 360
houeiry�
se.unl.edu, Tel: (402)472-5444Images s
anned from paper by Nimit Mehta

B.Y.Choueiry
1

Mar
h14,2011

'

&

$

%

All-di�s
onstraint
Constraint: CVariables: XC = {x1, x2, . . . , x6}

{ 3, 4, 5, 6 }

{ 6, 7 }

{ 2, 3 }

{ 1, 3}
{ 2, 4 }

{ 1, 2 }

x2

x1

x3
x4

x6

x5

B.Y. Choueiry 2 Mar
h 14, 2011

'&

$%
Context: �nite CSPsGoal: e�
ien
y of ar

onsisten
yFo
us: All-di�
onstraints

Result: e�
ient algorithm 





Spa
e : O(pd)Time : O(p2d2)

p: #vars, d: max domain sizeAppli
ation: used in RESYN for subgraph isomorphism(plan synthesis in organi

hemistry)

B.Y.Choueiry
3

Mar
h14,2011

'&

$%
Contributions

• An algorithm to establish ar

onsisten
y in an all-di�
onstraint

→ e�
ient

→ powerful pruning
• An algorithm to propagate deletions among several all-di�
onstraints
• Illustration on the zebra problem

B.Y.Choueiry
4

Mar
h14,2011

'

&

$

%

Why?
• GAC4 handles n-ary
onstraints
→ good pruning power
→ quite expensive:depends on size and numberof all admissible tuples = d!

(d−p)!

p: #vars, d: max domain size
• Repla
e n-ary by a set of binary
onstraints,then use AC-3 or AC-4
→
heap
→ bad pruning

{ 3, 4, 5, 6 }

{ 6, 7 }

{ 2, 3 }

{ 1, 3}
{ 2, 4 }

{ 1, 2 }

x2

x1

x3
x4

x5

x6

B.Y. Choueiry 5 Mar
h 14, 2011

'

&

$

%

Example
• n-ary
onstraint

{a, b, c }{ a, b }

{a, b}
x1

x2 x3GAC4: rules out a, b for x3

• Set of binary
onstraints
{a, b, c }{ a, b }

{a, b}
x1

x2 x3AC-3/4 ends with no �ltering
B.Y. Choueiry 6 Mar
h 14, 2011

'&

$%
NotationsCSP: P = (X ,D, C)

C ∈ C de�ned on XC = {xi1 , xi2 , . . . , xij
} ⊆ X

p: arity of C, p = |XC |

d: max |Dxi
|

• A value ai for xi is
onsistent for C, if ∃ values for other allvariables in XC su
h that these values and ai simultaneouslysatisfy C

• A
onstraint C is
onsistent, if all values for all variables XC are
onsistent for C

• A CSP is ar
-
onsistent, if all
onstraints (whatever their arity)are
onsistent
• A CSP is di�-ar
-
onsistent i� all its all-di�s
onstraints arear
-
onsistent

B.Y.Choueiry
7

Mar
h14,2011

'

&

$

%

Value GraphGiven C, an all-di�
onstraint,the value Graph of C is a bipartite graphGV(C) = (XC , D(XC), E)Verti
es: XC = {xi1 , xi2 , . . . , xij
}Verti
es: D(XC) = ∪x∈XC

(Dx)Edges: (xi, a) i� a ∈ Dx

{ 3, 4, 5, 6 }

{ 6, 7 }

{ 2, 3 }

{ 1, 3}
{ 2, 4 }

{ 1, 2 }

x2

x1

x3
x4

x6

x5
x2

x3

x1

x4

x5

x6

1

2

3

5

6

7

4

Spa
e
omplexity?Draw GV of the 3-node
oloring example
B.Y. Choueiry 8 Mar
h 14, 2011

'&

$%
De�nitions: mat
hing

x1

2

3

x2

x3

1

x2

x3

x1

x4

x5

x6

1

2

3

5

6

7

4

Mat
hing: a subset of edges in G with no vertex in
ommonMax. mat
hing biggest possibleMat
hing
overs a set X: every vertex in X is an endpoint foran edge in mat
hing- Left: M that
overs XC is a max mat
hing- If every edge in GV(C) is in a mat
hing that
overs XC , C is
onsistent
B.Y.Choueiry

9
Mar
h14,2011

'&

$%
Theorem 1CSP: P = (X ,D, C) is di�-ar
-
onsistent i�for every all-di� C ∈ Cevery edge GV(C) belongs to a mat
hingthat
overs XC in GV(C)

Task:Repeat for ea
h all-di�
onstraint,- Build G (≡ GV) of all-di�
onstraint C- Remove edges that do not belong to any mat
hing
overing XC

B.Y.Choueiry
10

Mar
h14,2011

'&

$%
Algorithm 1:- Compute one M(G), maximal mat
hing in G- If M(G) does not
over XC , then stop- Using M(G), remove edges that do not belong...

−→ Hop
roft & Karp: E�
ient pro
edurefor
omputing a mat
hing
overing XC

−→ Or, maximal �ow in bipartite graph (less e�
ient)

B.Y.Choueiry
11

Mar
h14,2011

'&

$%
Our problem be
omesGiven:- an all-di�
onstraint C- its value graph G = (X, Y, E)- one maximum
overing M(G)

Remove edges that belong to no mat
hing
overing X

B.Y.Choueiry
12

Mar
h14,2011

'

&

$

%

De�nitions
2

3

5

6

7

4

x2

x3

x1

x4

x5

x6

1

Given a mat
hing M :mat
hing edge: an edge in Mfree edge: an edge not in Mmat
hed vertex: in
ident to a mat
hing edgefree vertex: otherwisealternating path (
y
le): a path (
y
le) whoseedges are alternatively mat
hing and freelength of a path: number of edges in pathvital edge: belongs to every maximum mat
hing
B.Y. Choueiry 13 Mar
h 14, 2011

'

&

$

%

Questions
a

b

cx3

x2

x1

Indi
ate:- mat
hing edges- free edges- mat
hed verti
es- a free vertex- an alternating path, length?- an alternating
y
le, length?- a vital edge
B.Y. Choueiry 14 Mar
h 14, 2011

'&

$%
Property 1 (Berge)An edge belongs to some of but not all maximum mat
hings, i� foran arbitrary maximum mat
hing M , it belongs to either:- an even alternating
y
le, or- an even alternating path that begins at a free vertex

a

b

cx3

x2

x1
2

3

5

6

7

4

x2

x3

x1

x4

x5

x6

1

B.Y.Choueiry
15

Mar
h14,2011

'&

$%
Thus:

The edges to remove should not be in:- all mat
hings (vital)- an even alternating path starting at a free vertex- an even alternating
y
le
a

b

cx3

x2

x1
2

3

5

6

7

4

x2

x3

x1

x4

x5

x6

1

B.Y.Choueiry
16

Mar
h14,2011

'&

$%
Given:- G = (X, Y, E)- a mat
hing M(G)
overing X- Build GO, by orienting the edges

x3

x2

x1 a

b

c

x2

x3

x1

x4

x5

x6

1

2

3

5

6

7

4

- every dire
ted
y
le in GO
orresponds to an even alternating
y
le of G, and
onversely- every dire
ted simple path in GO, starting at a free vertex
orresponds to an even alternating path of G starting at a freevertex, an
onversely

B.Y.Choueiry
17

Mar
h14,2011

'

&

$

%

Task:Given G, and M(G), remove edges that do notbelong to any mat
hing
overing XC

Algorithm 2
• Build GO

• Mark all edges of GO as unused
• Identify all dire
ted edges that belong to adire
ted simple path starting at a free vertexby a breadth-�rst sear
h, mark them as used
• Compute strongly
onne
ted
omponents in

GO. Mark �used� any dire
ted edge betweentwo verti
es in the same strongly
onne
ted
omponent, as any su
h edge belongs to adire
ted
y
le and
onversely
• All remaining unused edges,if they are in M(G), mark them as vitalelse put them in RE and remove them from G

B.Y. Choueiry 18 Mar
h 14, 2011

'

&

$

%

Algorithm 2

B.Y. Choueiry 19 Mar
h 14, 2011

'

&

$

%

x3

x2

x1 a

b

cAlgorithm 2
• ...
• Identify all edges starting at a free vertex by abreadth-�rst sear
h, mark them as used
• Compute strongly
onne
ted
omponents in GO.Mark �used� any dire
ted edge between twoverti
es in the same strongly
onne
ted
omponent, as any su
h edge belongs to adire
ted
y
le and
onversely
• All remaining unused edges,if they are in M(G), mark them as vitalelse put them in RE and remove them from G

B.Y. Choueiry 20 Mar
h 14, 2011

'

&

$

%

x2

x3

x1

x4

x5

x6

1

2

3

5

6

7

4

Algorithm 2
• ...
• Identify all edges starting at a free vertex by abreadth-�rst sear
h, mark them as used
• Compute strongly
onne
ted
omponents in GO.Mark �used� any dire
ted edge between twoverti
es in the same strongly
onne
ted
omponent, as any su
h edge belongs to adire
ted
y
le and
onversely
• All remaining unused edges,if they are in M(G), mark them as vitalelse put them in RE and remove them from GB.Y. Choueiry 21 Mar
h 14, 2011

'&

$%
So far..Given C, remove edges that are not
onsistent for C

.. but,A variable x may be in more than one all-di�
onstraints,i.e. x may be in XCi

and XCj

, with Ci and Cj two all-di�
onstraintsHow to propagate the e�e
t of �ltering of Ci on Cj?

→ start from s
rat
h?
→ propagate deletions more intelligentlyuse the fa
t that before deletion due to Cj ,a mat
hing
overing XCi

was known in GV(Ci)

B.Y.Choueiry
22

Mar
h14,2011

'&

$%
Assume we have Ci, Cj , and Ck involving a given variable

Compute 





RE(Ci), RE(Cj), RE(Ck),G=GV(Ci), M(G), et
.IdeaConsider CiFirst remove from G deletions due to Cj , CkSe
ond, try to extend the remaining edges in M(G) into a mat
hingthat
overs XCiFinally, apply Algorithm 2... iterate
B.Y.Choueiry

23
Mar
h14,2011

'

&

$

%

Consider Ci, G = GV(Ci), M(G)Set RE ← RE(Ci)ER ← RE(Cj) ∪ RE(Ck)

B.Y. Choueiry 24 Mar
h 14, 2011

'

&

$

%

Example: the Zebra problem5 houses of di�erent
olors5 inhabitants, di�erent nationalities, di�erentpets, di�erent drinks, di�erent
igarettesConsider the following fa
ts:1. The Englishman lives in the red house2. The Spaniard has a dog3. Co�ee is drunk in the green house4. The Ukrainian drinks tea5. The green house is immediately to the right ofthe ivory house6. The snail owner smokes Old-Gold7. et
.Query: who drinks water?who owns a zebra?
B.Y. Choueiry 25 Mar
h 14, 2011

'

&

$

%

Zebra: formulation
25 variables:







































5 house-
olor C1, C2, . . . , C55 nationalities N1, N2, . . . , N55 drinks B1, B2, . . . , B55
igarettes T1, T2, . . . , T55 pets A1, A2, . . . , A5

Domain of ea
h variable = {1, 2, 3, 4, 5}(≡ {h1, h2, h3, h4, h5})Constraints 2�15?
B.Y. Choueiry 26 Mar
h 14, 2011

'&

$%
Formulating Constraint 1:1. Binary
onstraint between any pair in ea
h
luster: binary CSP2. Five 5-ary all-di�
onstraints: non-binary CSP3. The 5-ary
onstraints are repla
ed with their GV. Spa
e?

B.Y.Choueiry
27

Mar
h14,2011

'

&

$

%

Results (I)Formulation 1 solved with AC

Formulation 2 solved with GAC-4

Formulation 3 solved with the new te
hnique.Same results as 2.B.Y. Choueiry 28 Mar
h 14, 2011

'

&

$

%

Results (II)
a: # of binary
onstraints
p: size of a
luster
c: # of
lusters
d: # of values in a domain
O(ad2):
omplexity of AC on binary
Formulation 1 solved with AC- number of binary
onstraint added is O(cp2)- �ltering
omplexity is O((a + cp2)d2)Formulation 2 solved with GAC-4- �ltering
omplexity is O(d!

(d−p)!p)Formulation 3 solved with the new te
hnique- ar
-
onsisten
y is O(ad2)- all-di� �ltering is O(cp2d2)- total �ltering is O(ad2 + cp2d2)

B.Y. Choueiry 29 Mar
h 14, 2011

'&

$%
ExtensionImproved bounds by J.-F. Puget (AAAI 99) for ordered domains(e.g., time in s
heduling).

LessonWe
an improve the performan
e of sear
h by:
• identifying spe
ial stru
tures in the
onstraint graph(e.g., tree, bi
onne
ted
omponents, DAG)

• identifying spe
ial types of
onstraints(e.g., fun
tional, anti-fun
tional, monotoni
, all-di�s)

B.Y.Choueiry
30

Mar
h14,2011

'&

$%
Improved ar
-
onsisten
y Van Hentenry
k et al. AIJ 92Fun
tionalA
onstraint C is fun
tional with respe
t to a domain D i� for all
v ∈ D (respe
tively w ∈ D) there exists at most one w ∈ D(respe
tively v ∈ D) su
h that C(v, w).Anti-fun
tionalA
onstraint C is anti-fun
tional with respe
t to a domain D i�

¬C is fun
tional with respe
t to D.Monotoni
A
onstraint C is monotoni
 with respe
t to a domain D i� thereexists a total ordering on D su
h that, for all values v and w ∈ D,

C(v, w) holds implies C(v′, w′) holds for all values v′ and w′ ∈ Dsu
h that v′ ≤ v and w′ ≤ w.

B.Y.Choueiry
31

Mar
h14,2011

