Litenoyp "X°'g

‘DT YoIRIN

TIT0C

4 R

Title: A Filtering Algorithm for Constraints of Difference in CSPs
Author: J.-Ch. Régin

Proc.: AAAI 1994

Pages: 362367

Foundations of Constraint Processing
CSCE421/821, Spring 2011

www.cse.unl.edu/ " csed21

Berthe Y. Choueiry (Shu-we-ri)
Avery Hall, Room 360
choueiry@cse.unl.edu, Tel: (402)472-5444

Images scanned from paper by Nimit Mehta

N /

4 N

All-diffs constraint

Constraint: C
Variables: X¢o = {z1,22,...,26}

o /

B.Y. Choueiry 2 March 14, 2011

Litenoyp "X°'g

IT0Z ‘¥1 Y2IRIN

-

Context: finite CSPs
Goal: efficiency of arc consistency

Focus: All-diff constraints

Space : O(pd)
Time : O(p*d?)

p: #vars, d: max domain size

Result: efficient algorithm

Application: used in RESYN for subgraph isomorphism
(plan synthesis in organic chemistry)

N

Litenoyp "X°'g

IT0Z ‘¥1 Y2IRIN

-

N

Contributions

e An algorithm to establish arc consistency in an all-diff
constraint
— efficient

— powerful pruning

e An algorithm to propagate deletions among several all-diff

constraints

e Illustration on the zebra problem

-

Why?

e GAC4 handles n-ary constraints

— good pruning power
— quite expensive:
depends on size and number
of all admissible tuples = (df—!p)!

p: #vars, d: max domain size

Replace n-ary by a set of binary constraints,
then use AC-3 or AC-4
— cheap

— bad pruning

/

B.Y. Choueiry 5 March 14, 2011

-

Example

e n-ary constraint

X2 X3
GAC4: rules out a, b for x5

e Set of binary constraints
x1

X2 X3
AC-3/4 ends with no filtering

o

/

B.Y. Choueiry 6

March 14, 2011

Litenoyp "X°'g

IT0Z ‘¥1 Y2IRIN

/N otations \

CSP: P = (X, D,C)

C € C defined on X¢ = {z;,, %4y, ..., 25, } C© X
p: arity of C, p = | X (|
d: max |D,.|

e A value a; for z; is consistent for C, if 3 values for other all

variables in X such that these values and a; simultaneously
satisty C

e A constraint C is consistent, if all values for all variables X are

consistent for C

e A CSP is arc-consistent, if all constraints (whatever their arity)

are consistent

e A CSP is diff-arc-consistent iff all its all-diffs constraints are

@c—consistent /

-

Value Graph

Given C', an all-diff constraint,

the value Graph of C' is a bipartite graph

GV(C) = (X¢, D(Xc), E)

Vertices: D(X¢) = Uzexe(Dyz)
Edges: (z;,a) iff a€ D,

Space complexity?
Draw GV of the 3-node coloring example

o

N
o 5 x1
{1,2} {3.4,56} X2+ 72
i
\
/
\

Vertices: X¢ = AT Tiy,y T4,)

>3
4
5

-7

/

B.Y. Choueiry 8

March 14, 2011

Litenoyp "X°g

IT0Z ‘¥1 Y2IRIN

G)eﬁnitions: matching \

YO
xl</71
X2~ 72
x1-+—1 L
4
xk%
Sl —
X6
X3 ‘\‘3 __J ~ 7
~— N N

Matching: a subset of edges in G with no vertex in common
Max. matching biggest possible

Matching covers a set X: every vertex in X is an endpoint for
an edge in matching

- Left: M that covers X¢ is a max matching
- If every edge in GV(C') is in a matching that covers X¢, C is

Q)nsistent /

Litenoyp "X°'g

0T

‘T YoIRIN

TIT0C

-

Theorem 1
CSP: P = (X, D, () is diff-arc-consistent iff
for every all-diff C' € C

every edge GV(C') belongs to a matching
that covers X¢ in GV(C)

Task:

Repeat for each all-diff constraint,
- Build G (= GV) of all-diff constraint C
- Remove edges that do not belong to any matching covering X¢

N

/

11 Litenoyp "X°g

IT0Z ‘¥1 Y2IRIN

Algorithm 1:

- Compute one M(G), maximal matching in G
- If M(G) does not cover X, then stop
- Using M(G), remove edges that do not belong...

Algorithm 1: DIFF-INITIALIZATION(C)
% returns false if there is no solution, otherwise true
% the function COMPUTEMAXIMUMMATCHING(G) com-
putes a maximum matching in the graph G
begin

1 Build G = (X¢, D(Xe), E)

2 M(G) + COMPUTEMAXIMUMMATCHING(G)

if IM(G)| < |X¢| then return false

3 REMOVEEDGESFROMG(G,M(G))

return true

end

—— Hopcroft & Karp: Efficient procedure
for computing a matching covering X

— Or, maximal flow in bipartite graph (less efficient)

-

/

Litenoyp "X°'g

Gl

IT0Z ‘¥1 Y2IRIN

-

Our problem becomes

Given:

- an all-diff constraint C
- its value graph G = (X, Y, E)

- one maximum covering M (G)

Remove edges that belong to no matching covering X

N

4 N

Definitions
i
(x1=—")
X2 2
X3 3
) 4
x4
5
N el 6
ﬁjz
e

Given a matching M:
matching edge: an edge in M
free edge: an edge not in M

matched vertex: incident to a matching edge

free vertex: otherwise

alternating path (cycle): a path (cycle) whose
edges are alternatively matching and free

length of a path: number of edges in path

vital edge: belongs to every maximum matching

o /

B.Y. Choueiry 13 March 14, 2011

4 N

Questions
x1 a
X2 b
X3 C
Indicate:

- matching edges

free edges
matched vertices

a free vertex

an alternating path, length?

an alternating cycle, length?

a vital edge

o /

B.Y. Choueiry 14 March 14, 2011

Litenoyp "X°'g

GI

IT0Z ‘¥1 Y2IRIN

4 N

Property 1 (Berge)

An edge belongs to some of but not all maximum matchings, iff for
an arbitrary maximum matching M, it belongs to either:
- an even alternating cycle, or

- an even alternating path that begins at a free vertex

1
(qu\/‘
2
X2
x1 a 3
X3
4
X2 b x4
)
X 6
X3 C X6
-7

Litenoyp "X°'g

91

IT0Z ‘¥1 Y2IRIN

-

Thus:

The edges to remove should not be in:

- all matchings (vital)

- an even alternating path starting at a free vertex

- an even alternating cycle

x1 a
X2 b
X3 C

1
(qu\/‘
X2 2
x3 3
4
X4
)
X
6
X6
—~ 7
—

Litenoyp "X°g

L1

IT0Z ‘¥1 Y2IRIN

@iven:

-G =(X,Y,F)
- a matching M (G) covering X
- Build G, by orienting the edges

4 1 N
x1
s A 2 —_—
Xl a X2 -
X3 3
4
X2 b x4
5
X
6
X3 C X6 .
N\ J N J

- every directed cycle in G corresponds to an even alternating
cycle of GG, and conversely

- every directed simple path in G, starting at a free vertex
corresponds to an even alternating path of G starting at a free

kertex, an conversely

(1

a

o

" h

Given G, and M (G), remove edges that do not
belong to any matching covering X ¢

Algorithm 2

Build Gp
Mark all edges of Gp as unused

Identify all directed edges that belong to a
directed simple path starting at a free vertex
by a breadth-first search, mark them as used

Compute strongly connected components in
Go. Mark “used” any directed edge between
two vertices in the same strongly connected
component, as any such edge belongs to a

directed cycle and conversely

All remaining unused edges,
if they are in M (G), mark them as vital

else put them in RE and remove them from G

/

B.Y. Choueiry 18 March 14, 2011

s

Algorithm 2

Algorithm 2: REMOVEEDGESFrROMG (G,M(G))
% RE is the set of edges removed from G.
% M(G) is a matching of G which covers X
% The function returns RE
begin
1 Mark all directed edges in Go as “unused”.
Set RE to . '
2 Look for all directed edges that belong to
a directed simple path which begins at a free
vertex by a breadth-first search starting from
free vertices, and mark them as “used”.
3 Compute the strongly connected components
Mark as “used” any directed edge that joins t

4 for each directed edge de marked as “unused”
set e to the corresponding edge of de

if e € M(G) then mark e as “vital”

else

RE + RE U {e}
remove e from G

return K F
end

o

of Go.
WO

vertices in the same strongly connected component.

do

/

B.Y. Choueiry].9

March 14, 2011

o

x1 a
X2 b
\ X3 C

Algorithm 2

Identify all edges starting at a free vertex by a

breadth-first search, mark them as used

Compute strongly connected components in Go.

Mark “used” any directed edge between two
vertices in the same strongly connected
component, as any such edge belongs to a

directed cycle and conversely

All remaining unused edges,
if they are in M (G), mark them as vital

else put them in RE and remove them from G

/

B.Y. Choueiry 20 March 14, 2011

x1
X2 2
X3 3
4
x4
5
X
6
X6
- 7 J

Algorithm 2

e Identify all edges starting at a free vertex by a

breadth-first search, mark them as used

e Compute strongly connected components in Go.
Mark “used” any directed edge between two
vertices in the same strongly connected
component, as any such edge belongs to a

directed cycle and conversely

e All remaining unused edges,
if they are in M (G), mark them as vital

K else put them in RE and remove them from G /

B.Y. Choueiry 21 March 14, 2011

e Litenoyp "X°g

IT0Z ‘¥1 Y2IRIN

-

So far..

Given C, remove edges that are not consistent for C

. but,

A variable z may be in more than one all-diff constraints,
i.e. x may be in X¢, and X¢,, with C; and C; two all-diff

constraints
How to propagate the effect of filtering of C; on C;7

— start from scratch?
— propagate deletions more intelligently
use the fact that before deletion due to Cj,

a matching covering X, was known in GV(C})

-

Litenoyp "X°'g

€é

‘T YoIRIN

TIT0C

-

Assume we have C;, C;, and C}, involving a given variable

RE(C;), RE(C}), RE(Cy),
G=GV(C;), M(G), etc.

Compute

Idea
Consider C}

First remove from G deletions due to C;, Cy,

that covers X¢,
Finally, apply Algorithm 2

.. 1terate

N

Second, try to extend the remaining edges in M(G) into a matching

/

/Consider Ci, G = GV(C;), M(G)

o

~

Set RE «— RE(C;)
ER < RE(C;) U RE(Cy)

Algorithm 3: DIFF-PROPAGATION(G,M (G),ER,RE)
% the function returns false if there is no solution
% G is a value graph
% M (G) is a matching which covers X¢
% ER is the set of edges to remove from G
% RE is the set of edges that will be deleted by the
filtering
begin
computeMatching + false
for each e € ER do
if e € M(G) then
M(G) + M(G) - {e}
if e is marked as “vital” then return false
else compute Matching + true

| remove e from G

i

f computeMatching then
if -~ MATCHINGCOVERINGX (G, M (G),M') then

| return false
else

| M(G) « M’

RE + REMovEEDGESFrOMG(G,M(G))
return true
end

/

B.Y. Choueiry 24: March 14, 2011

4 N

Example: the Zebra problem

5 houses of different colors
5 inhabitants, different nationalities, different
pets, different drinks, different cigarettes

Consider the following facts:
1. The Englishman lives in the red house
2. The Spaniard has a dog
3. Coftee is drunk in the green house

4. The Ukrainian drinks tea

5. The green house is immediately to the right of

the ivory house

6. The snail owner smokes Old-Gold

7. etc.

Query: who drinks water?

who owns a zebra?

o /

B.Y. Choueiry 25 March 14, 2011

s

/

Cl red Bl coffee
Cz green |B; tea
Chaivoiry |Ba milk
C4 yellow|B4 orange
(s blue |Bswater

_

Z.ebra: formulation

5 house-color C1,Cs, ..., Cs
5 nationalities N1, No, ..., N5
25 variables: { 5 drinks By, Bs, ..., Bs

5 cigarettes 17,15,...,1T5
| O pets A1, As, ..., A5

N, Englishman
N3 Spaniard
N3 Ukranian
N4 Norwegian
N5 Japanese

Ty 0ld-Gold

T» Chesterfield
T3 Kools

T4 Lucky-Strike

Ts Parliament

Domain of each variable = {1,2,3,4,5}
(= {h1,h2,h3, h4,h5})
Constraints 2-157

A dog

Assnails

Aj fox

A4 horse

Agzebra

/

B.Y. Choueiry

26

March 14, 2011

Litenoyp "X°'g

LC

IT0Z ‘¥1 Y2IRIN

4 N

Formulating Constraint 1:
1. Binary constraint between any pair in each cluster: binary CSP
2. Five 5-ary all-diff constraints: non-binary CSP

3. The 5-ary constraints are replaced with their GV. Space?

N /

/Results (I) \

Formulation 1 solved with AC

2 (=) B3 ENEE]EEE] [7EE)][E =)
N CL [N2[AL|[BL[C2 | [Na[Bz [C2[C5 | [Ti [Az| [T3]C4
313 2 | o o B S 1 g

2 1
414|13|3[|5]5]/4|4(|5]4]|2
55|44 5|5 3
5|5 4

5

T ()] [12 (=D [13 (=)

v 2] As |[A4] T3 ||T4] Ba
(LR (e

20 1 A s DUl

213 3| 4 41 4

3|2 |I4] 3 [|5]5

31 4 ||4] 5

41 3 51 4

41 5

5| 4

Figure 4.

Formulation 2 solved with GAC-4

2(=)]13(=)|[4=)][s=)]6 D7 (=)]|[8(=)][9]
N1 |Ch | [N2| A1 |[B1][C2][Na] B2 | [C2[C3] [T1] A2 | [T3]C4] [B3]
333347422 /43|33 |[1]1
414 |14)14||5|5(|4|4|5]4||4]4
55|55 5|5 5|5

11 (D)) [12 &0 (13 =) [[E &3] [0 E0][]
Ta] As |[As] Ts |[Ta] Ba |[Ne] 75 | [Na] Cs |[As] [B5]

201 2z |22 {22 |1jf1]
4141133 3
5[5 |44

5)5 5] -

Figure 5.

EEE

T o e G2 BO DD

e O QO e QO

Formulation 3 solved with the new technique.

K Same results as 2. /

B.Y. Choueiry 28 March 14, 2011

4 N

Results (1I)

+# of binary constraints
size of a cluster
+# of clusters

+# of values in a domain

= 0% 8

O(ad?): complexity of AC on binary

Formulation 1 solved with AC
- number of binary constraint added is O(cp?)

- filtering complexity is O((a + cp?)d?)

Formulation 2 solved with GAC-4
- filtering complexity is (’)((di—!p)!p)

Formulation 3 solved with the new technique
- arc-consistency is O(ad?)
- all-diff filtering is O(cp?d?)
- total filtering is O(ad? + cp?d?)

o /

B.Y. Choueiry 29 March 14, 2011

0¢ Litenoyp "X°g

IT0Z ‘¥1 Y2IRIN

4 N

Extension

Improved bounds by J.-F. Puget (AAAI 99) for ordered domains

(e.g., time in scheduling).

Lesson

We can improve the performance of search by:

e identifying special structures in the constraint graph

(e.g., tree, biconnected components, DAG)

e identifying special types of constraints

(e.g., functional, anti-functional, monotonic, all-diffs)

N /

1¢ Litenoyp "X°'g

IT0Z ‘¥1 Y2IRIN

~

Improved arc-consistency Van Hentenryck et al. AIJ 92
Functional

A constraint C' is functional with respect to a domain D iff for all

v € D (respectively w € D) there exists at most one w € D
(respectively v € D) such that C(v,w).

Anti-functional

A constraint C' is anti-functional with respect to a domain D iff

—(C' is functional with respect to D.
Monotonic

A constraint C is monotonic with respect to a domain D iff there

exists a total ordering on D such that, for all values v and w € D,
C'(v,w) holds implies C'(v’,w’) holds for all values v" and w" € D

such that v/ < v and v’ < w.

N /

