Spring Semester, 2020 B.Y. Choueiry
CSCE 421/821: Foundations of Constraint Processing

Homework 2

Implementation of Arc Consistency

Assigned: Friday, Jan 31, 2020

Due: Initial AC-1 due Friday, Feb 7, 2020: Initial AC1. Full Assignment due Friday, Feb
14, 2020.

Total value: 100 points. Penalty of 20 points for lack of clarity and documentation in code.

Contents
1 General indications 3
2 Basic data structures for AC1/AC3 3

3 Main functions/methods 5
3.1 Basic functionalities L 5
3.2 Input 6
3.3 Outpub 7

4 Performance comparison 7

The goal of this homework is to implement two basic algorithms, namely AC1 and AC3,
for enforcing the arc-consistency property on a finite, binary CSP [2, 1]. You will also learn
to use Excel to report your results, compute averages, and generate plots of your results.

The various components of these algorithms will be used extensively by other components
of the CSP Solver that you will build during the semester. As such, you should pay special
attention to the following two issues:

1. The data structures of the algorithms that you implement need to be totally different
from the data structures that store the components of a CSP instances (i.e., variable,
values, domains). The latter can be accessed and checked, but should not be modified
by any of the functions or procedures of any solver algorithm.

1

2. Keep your implementation as modular as possible so that the various functions can
be reused, with the proper input, by more than one component of your solver. For
instance, the function CHECK can be used by arc consistency, path consistency, looka-
head in search, etc.

Again, you are advised to do this homework carefully as it will provide the building-blocks
to the following homework and perhaps even your project. The various components of the
homework will address the following issues:

e Implementing the data structures of the AC1/AC3 algorithm. Those are:

— The current-domains for copying and modifying (i.e., filtering) the domains of

the variables and 5 points

— Queue for storing the directed edges to be revised. 5 points

e Implement a node-consistency algorithm. 3 points
e Implement the revise, supportedBy, and check functions. 15 points
e Implement the arc-consistency algorithm ACI. 20 points
e Implement the arc-consistency algorithm AC3. 10 points

e Performance reporting: Reporting the results obtained for running NC then AC1/AC3
on the benchmark problems. 10 points

e Performance reporting: Reporting the results obtained for running NC then AC1/AC3
on randomly generated problems from the entry 17c in the page http://cse.unl.edu/
~choueiry/CSPTestInstances/. Use the Excel sheet provided on the wiki to store
the results, generate average values and plot your results. The instances provided
include 50 instances for each constraint tightness value, which will allow you to ‘see’

the so-called ‘phase transition.’ 10 points
e Your observations. 2 points
e Initial AC1 results: 10 points

Fill the Excel sheet provided on the wiki for AC1 on the benchmark problems and
make it available to your classmates. These are only initial results, and the results can
be updated.

e Fill the Excel sheet provided on the wiki for AC3 and make it available. 10 points

1 General indications

e All programs must be compiled, run, and tested on cse.unl.edu. Programs that do
not run correctly in this environment will not be accepted unless prior approval is
obtained. You must include a Makefile with your program so that your code can be
compiled by issuing ‘make’ while on cse.unl.edu. You also must include a script
called ‘runProgram.sh’ that contains the command to run your program.

e A README file must be submitted. Otherwise, the entire homework is declared
invalid. The README file should describe the content and purpose of the submitted
files, and have all the necessary steps to compile and run the program on cse.unl.edu.

e You are strongly encouraged to extensively discuss it with colleagues, but please do your
own implementation. If you receive help from anyone, you must clearly acknowledge
it. Always acknowledge sources of information (URL, book, class notes, etc.).

e Please make sure that you keep your code and protect your files. Your name, date, and
course number must appear in each file of code that you submit.

e You are encouraged to put your results (in terms of number constraint checks, number
of values removed, filtering effectiveness, and CPU time) as soon as possible on the
wiki page provided for this purpose and share them with colleagues for quick feedback
and debugging.

e Please inform instructor quickly about typos or other errors that may appear in the
specifications or the files made available online.

e To facilitate debugging and the expectations of the homework assignment, web grader
is set up to quickly evaluate the correctness of your program: https://cse.unl.edu/
~csed21/grade/. After you have files submitted through webhandin, you will be able
to run the web grader.

2 Basic data structures for AC1/AC3

If you have a better idea for implementing your code and data structures, then you should
experiment with it, and consider the data structures below as mere recommendations.
Below we specify (as best we can) the different fields required for the CSP solver class,

which is the AC1/AC3 in this homework.
e problem: A pointer to the CSP instance being solved.

e (optional) time-setup: The value of CPU time that the solver has spent on the set-up,
such as the creation and initialization of the data structures necessary for the solver.

e cpu-time: The value of CPU time that the solver has spent ‘working’ on the instance.

e cc: The number of times a constraint is accessed to check whether two variable-value
pairs are consistent. This number should not include the number of times a universal
constraint is accessed: When no constraint exists between two variables, #CC should
not be incremented.

e fval: The sum of the number of values removed by NC and AC1/AC3 from the
domains of all variables.

e iSize: The initial size of the CSP is the number of combinations of variable-value pairs
for all variables, it is the product of the initial domain sizes: Ily,cyp|Dy;|. (Remember,
the product rule in Discrete Math.) If those values are too large, you may want to
report the logarithm:

).

e fSize: If the problem is arc consistent, the size of the filtered CSP after enforcing
arc consistency Ily,ey| Dy, |. If those values are too large, you may want to report the
logarithm:

ln(HVieV|DV2

) = Yy,ev 1n(|DV¢

In(Ily;ev| Dy,

) = Svev In(| Dy,).
All arc-consistency algorithms should result in the same CSP, and thus the same size. If

the problem is not arc consistent, then this value is not defined (false, undetermined,
undefined).

e fEffect: If the problem is arc consistent, the value of filtering effectiveness if given by

filter as

| Dy,
Dy,

Dy,
) = E%EV(IH | Vi

D) = Zvevn Dy ~In Dy,

In(Iy;ey

otherwise it is false/undetermined.

Using the logarithm allows us to ‘curb’ or ‘reduce’ the numerical imprecision due to
too large or too small numbers. I am hoping that it works, I am not that it does, but
it is worth trying.

The information contained in the fields listed above should be printed at the end of every
program execution.
The following data structures are needed for the operation of the algorithms:

e current-domain: For each variable, some structure where to copy the initial domain
(initial-domain?) stored in the CSP data structures (which should not be modified).
This structure can be of the same type as the one storing the instance, but it should be
a copy, not the same, because current-domain will be modified and initial-domain
should not be modified. Note that other solvers we will implement will also require the
use of current-domain.

3

In order to ensure that your programs return comparable results to help you in the de-
bugging, I strongly recommend that you sort the domains of the variables lexicograph-
ically and iterate over them in that order. Otherwise, your results may slight differ in
terms of #CC especially if the CSP is not arc consistent (depending on whether we
encounter domain annihilation earlier or later).

Queue: A data structure that holds directed edges corresponding to the constraints in
the original problem. You could store the list (V;,V}, R;;) to facilitate access to the
constraint definition. Remember to store both (V;, V}, R;;) and (V},V;, R;;) because the
two ‘directed’ edges of a given constraint are handled in separation by the algorithm
AC3. The cardinality of the initial Queue is |Queue| = 2e, where e is the number of
constraints in the problem. Note that:

— The queue in AC1 is static.

— The queue in AC3 is dynamic: elements will be added and removed, which will
allow AC3 to have a better worst case complexity in practice.

You are free to implement Queue as you wish (e.g., a linked list, maphash, or other).

Main functions/methods

It is essential that you design the different modules of your program appropriately because
some of the modules that you implement here will be used in combination with others in the
next homework.

3.1 Basic functionalities

Consider implementing the following methods that will be used in this or next programming
tasks. These methods also enhance the modularity of your code.

o CHECK((V;,a),(V},b)): a function that determines whether two variable-value pairs

are consistent. The method should return true if it is, false otherwise. Further, it
should increment #CC if the constraint Cy, v, is not universal.

For extensional constraints, you are expected to implement your own check, which
uses your own data-structures. For intension constraints, you can either implement
your own evaluator for the predicate string, or you may use a library to eveluate
the predicate string. If you are using the Java parser, there is a pre-built evaluation
function (i.e., COMPUTECOSTOF) that you might want to consider using.

If there are multiple constraints over the same scope (e.g., zebra with green and ivory),
all of the constraints over the scope need to be consistent for the constraint check to

return consistent. Checking all of the constraints should be counted as one constraint
check.

e SUPPORTED((V;,a),V;): a function that returns true as soon as it finds a support for
(Vi,a) in Ry, v,. This function should stop right after encountering the first support,
otherwise, performance may be negatively affected. (Why look for more supports if
you have one?) This function is not included in your textbook or reference material
but it is included in Revise. I find it useful to factor out.

e REVISE(V;,V]): a function filters Dy, given Cy, v, so that V; is arc consistent according
to Cy;,y;. This function is the one that modifies Dy,

e AC1 and AC3: Relying on the description in the book, the paper, Bartak’s web site,
and/or the slides, implement the algorithms AC1 and ACS3.

It is important to check whether Dy, is annihilated every time Dy, has been updated
and return AC1, ACS at this point indicating that the problem is not arc consistent
and cannot possibly have a solution, and thus all processing should stop. We say that
the problem is globally inconsistent. 1t is interesting to note that a cheap, polynomial
time algorithm such as the arc-consistency algorithm AC1 or AC3 may sometimes be
able to discover by operating locally that an instance of an NP-complete problem is
globally inconsistent. Here is the entire ‘power’ of local consistency properties and their
algorithms. The heart of CP.

ACI1 revises each directed arc in the Queue, one at a time, from the beginning until the
end Queue, does not modify Queue, and restarts from scratch every time any domain
has been revised.

AC3 starts with the same queue as AC1. However, every time, it removes an element
from Queue when it revises it. However, if the domain is filtered, then all directed edges
that may be affected are added back into the Queue unless they are there already. You
may enjoy figuring out an efficient way to determine whether or not a given a directed
edge is already in Queue. However, at this stage of the course, performance is not so
central. So do not lose too much time on this issue.

3.2 Input

Implement NC, AC1, and AC3. Note that the execution of AC1 and AC3 should always be
preceded by NC. Your code should take the parameters specifying the algorithm and input
filename. You are required to use the following flags to specify the algorithm and filename:

o -f <filename> for the file of the CSP instance

e -a acl for AC1

e -a ac3 for AC3

Notice that exactly one -f and one -a flags are passed to the program. Failure to follow the
specification of the flags above may result in deduction of substantial amount of points.

3.3 Output
As output, your solver should return the following information on the screen:

e problem: The name of the problem
e time-setup, (optional)

® CC

e cpu

e fval

e iSize

e fSize

o fEffect

You might consider adding a flag to your program to output this information in a comma/tab
separated format, for ease of copying into excel.
The output format that web grader will check is in the following:

Instance name: XXX
cc: XXX

cpu: XXX

fval: XXX

iSize: XXX

fSize: XXX
fEffect: XXX

where the XXX should be replaced with the computed values for the loaded instance.

4 Performance comparison

Finally, run your code on the binary CSP instances you loaded in Homework 1, measuring
the parameters listed below for both AC1 and AC3. Note that running both AC1 and AC3
allows you to debug your code because both algorithms must find the same CSP for instances
that are arc consistent. Handin your documented code and results (e.g., in an Excel sheet)
as provided in the two sheets of the Excel file on the wiki. The first sheet should be used
to report the results on the benchmark problems tested in Homework 1. The second sheet
should be used to report the results of the randomly generated instances 17c, which should
be reported, then averaged and ploted.
Conclude with your observations.

References

[1] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[2] Alan K. Mackworth and Eugene C. Freuder. The Complexity of Some Polynomial Net-
work Consistency algorithms for Constraint Satisfaction Problems. Artificial Intelligence,
(25) 1:65-74, 1984.

