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1-Tree Decomposition

• Goal: generate a tree decomposition and compute 
treewidth

• Tasks
1. Implement the min-fill heuristic to triangulate a graph 

(report the number of fill-ins)
2. Implement the Max Cardinality Ordering to get a PEO 

(or use the PEO provided by the min-fill heuristic)
3. Implement the Max-Clique Algorithm for computing 

the maximal cliques (original algorithm available in 
Golumbic’s Perfect Graph)

4. Using the max-cliques, build the joing tree (Dechter, 
Fig. 9.4)

5. Evaluation on binary CSPs, report: 
1. #minfill,
2. umber of max cliques
3. size of largest clique
4. largest number of variables in seperators
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2- AllDiff on Sudoku

• Implement GAC on All-Diffs
• Value graph, maximum matching (one of 2 algorithms(, strongly connected 

components, depth first search (on oriented graph)

• Propagation across several All-Diffs
• Keeping the value graphs, augment the maximum matching, iterate until a fix 

point

• Evaluation: Solve simple Sudoku instances, report CPU time



3- Dom/wdeg

• Implement MAC (strictly stronger than FC) using AC-3.  Compare 
performance on benchmark problems against FC
• Implement MAC using AC-2001.  Compare to above and to FC.
• Implement dom/wdeg: every time Revise(.,.) yields a domain wipe-

out, update the weight of the constraint
• Evaluate on benchmark problems



4- Binary Branching and Last-Conflict 

• Implement search with binary branching
• Implement MAC with AC-3
• Implement Last-Conflict as a dependency directed backatracking
• Evaluate on bechmarl


