
Homework/Mini projects:
Four Ideas

April 6, 2020
Berthe Y. Choueiry

1-Tree Decomposition

• Goal: generate a tree decomposition and compute
treewidth

• Tasks
1. Implement the min-fill heuristic to triangulate a graph

(report the number of fill-ins)
2. Implement the Max Cardinality Ordering to get a PEO

(or use the PEO provided by the min-fill heuristic)
3. Implement the Max-Clique Algorithm for computing

the maximal cliques (original algorithm available in
Golumbic’s Perfect Graph)

4. Using the max-cliques, build the joing tree (Dechter,
Fig. 9.4)

5. Evaluation on binary CSPs, report:
1. #minfill,
2. umber of max cliques
3. size of largest clique
4. largest number of variables in seperators

A
B

C

E

D

F

G

H

I

J

K
M

L

N

C1

C2

C7

C3

C4

C5
C6

C8

C9
{A,B,C,N},{R1}

{A,I,N},{} {B,C,D,H},{R6}

{I,M,N},{R2} {B,D,E,F,H},{R5}

C1
C2

C3

C7

C8
{A,I,K},{}

C4

{I,J,K},{R3}
C5

{A,K,L},{R4}
C6

{E,F,G,H},{R7,R8}
C9

http://consystlab.unl.edu/Documents/StudentReports/Working-Note1-2015.pdf
https://cse.unl.edu/~choueiry/F09-990-02/Slides/Peter-cjt.ppt

2- AllDiff on Sudoku

• Implement GAC on All-Diffs
• Value graph, maximum matching (one of 2 algorithms(, strongly connected

components, depth first search (on oriented graph)

• Propagation across several All-Diffs
• Keeping the value graphs, augment the maximum matching, iterate until a fix

point

• Evaluation: Solve simple Sudoku instances, report CPU time

3- Dom/wdeg

• Implement MAC (strictly stronger than FC) using AC-3. Compare
performance on benchmark problems against FC
• Implement MAC using AC-2001. Compare to above and to FC.
• Implement dom/wdeg: every time Revise(.,.) yields a domain wipe-

out, update the weight of the constraint
• Evaluate on benchmark problems

4- Binary Branching and Last-Conflict

• Implement search with binary branching
• Implement MAC with AC-3
• Implement Last-Conflict as a dependency directed backatracking
• Evaluate on bechmarl

