Homework/Mini projects: Four Ideas

April 6, 2020
Berthe Y. Choueiry
1-Tree Decomposition

- **Goal**: generate a tree decomposition and compute treewidth

- **Tasks**
 1. Implement the *min-fill heuristic* to triangulate a graph (report the number of fill-ins)
 2. Implement the Max Cardinality Ordering to get a PEO (or use the PEO provided by the min-fill heuristic)
 3. Implement the **Max-Clique Algorithm** for computing the maximal cliques (original algorithm available in Golumbic’s Perfect Graph)
 4. Using the max-cliques, build the joing tree (Dechter, Fig. 9.4)
 5. **Evaluation** on binary CSPs, report:
 1. \#minfill,
 2. number of max cliques
 3. size of largest clique
 4. largest number of variables in separators
2- AllDiff on Sudoku

• Implement GAC on All-Diffs
 • Value graph, maximum matching (one of 2 algorithms), strongly connected components, depth first search (on oriented graph)

• Propagation across several All-Diffs
 • Keeping the value graphs, augment the maximum matching, iterate until a fix point

• Evaluation: Solve simple Sudoku instances, report CPU time
3- Dom/wdeg

• Implement MAC (strictly stronger than FC) using AC-3. Compare performance on benchmark problems against FC
• Implement MAC using AC-2001. Compare to above and to FC.
• Implement dom/wdeg: every time Revise(.,..) yields a domain wipe-out, update the weight of the constraint
• Evaluate on benchmark problems
4- Binary Branching and Last-Conflict

• Implement search with binary branching
• Implement MAC with AC-3
• Implement Last-Conflict as a dependency directed backtracking
• Evaluate on bechmarl