Recitation 7

Created by Taylor Spangler, Adapted by Beau Christ

January 4, 2019

- Properties of a relation R on a set A :

1. Reflexive: $(a, a) \in R$ for all $a \in A$
2. Symmetric: $\forall a, b \in A,(a, b) \in R \rightarrow(b, a) \in R$
3. Antisymmetric: $\forall a, b \in A,(a, b) \in R$ and $(b, a) \in R$ then $a=b$
4. Transitive: $\forall a, b, c \in A,(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$
5. Irreflexive: $\forall a \in A,(a, a) \notin R$
6. Asymmetric: $\forall a, b \in A(a, b) \in R$ then $(b, a) \notin R$
7. Equivalence Relation: A relation that is reflexive, symmetric, and transitive.

- Problem 9.1.3 a: Determine whether the following relation over the set $\{1,2,3,4\}$ is symmetric, antisymmetric, reflexive, and/or transitive,

1. $R=\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$
2. Is it reflexive? No, there is no $(4,4)$ element
3. Is it symmetric? No, there are no $(4,2)$, or $(4,3)$ elements
4. Is it Antisymmetric? No, $(2,3)$ and $(3,2)$ are elements
5. Is it Transitive? Yes

- How about 9.1.3 b: over $\{1,2,3,4\}$

1. $S=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$
2. Is it reflexive? Yes
3. Is it symmetric? Yes
4. Is it Antisymmetric? No, $(2,1)$ and $(1,2)$ are elements
5. Is it Transitive? Yes

- What is the relation $S \cup R$?

$$
S \cup R=\{(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,4)\}
$$

1. Antisymmetric?: No, no $(1,2)$ and $(2,1)$
2. Symmetric? No, no $(4,2)$ element
3. Reflexive? Yes
4. Transitive? No $(1,2)$ and $(2,4)$, but no $(1,4)$

- What is the relation $S \cap R$?

$$
S \cap R=\{(2,2),(3,3)\}
$$

1. Antisymmetric? Yes
2. Symmetric? Yes
3. Reflexive? No, missing $(1,1),(4,4)$. Neither reflexive nor irreflexive.
4. Transitive? Yes

- Represent S as a bit matrix: $M_{S}=\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
- Rosen 9.4.25(b). Use Algorithm 1 (Given on page 603) to compute the transitive closure of the relation $\{(2,1),(2,3),(3,1),(3,4),(4,1),(4,3)\}$ on the set $\{1,2,3,4\}$.
- We note the matrix of a relation R^{x} resulting from the composing the relation R with itself x times: $M_{R^{x}}$, alternatively: $M_{R}^{[x]}$.
- We note the relations composition operator \circ and the matrix product operator \cdot, alternatively, \odot.

$$
M_{R}=M_{R^{1}}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

$$
M_{R^{2}}=M_{R^{1} \circ R^{1}}=M_{R^{1}} \cdot M_{R^{1}}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

$$
M_{R^{3}}=M_{R \circ R^{2}}=M_{R^{2}} \cdot M_{R^{1}}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

$$
M_{R^{4}}=M_{R \circ R^{3}}=M_{R^{3}} \cdot M_{R^{1}}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
M_{R^{*}} & =M_{R^{1}} \vee M_{R^{2}} \vee M_{R^{3}} \vee M_{R^{4}} \\
& =\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \vee\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \vee\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \vee\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

- Rosen 9.4.27(b)

$$
\begin{gathered}
M_{R}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] W_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] W_{2}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] W_{3}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right] \\
W_{4}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right]
\end{gathered}
$$

So the transitive closure looks like $\{(2,1),(2,3),(2,4),(3,1),(3,3),(3,4),(4,1),(4,3),(4,4)\}$ Is this transitive? Yes

- The following are relations on $\{1,2,3,0\}$ are they equivalence relations?
- $\{(0,0),(1,1),(2,2),(3,3)\}$ Yes this one is fairly obvious, as everything just relates back to itself.
- $\{(0,2),(2,0),(2,2),(2,3),(3,2),(3,3)\}$ No, missing $(0,0)$ (I removed it this is not identical to $9.5 \# 1$), so not reflexive.
- $\{(0,0),(1,1),(1,2),(2,1),(2,2),(3,3)\}$ Yes
- Problem 9.5.47: $\{0\},\{1,2\},\{3,4,5\}$
- So here we'll have (a, b) iff a and b are in the same subset
- So, (0,0) is an element.
- $(1,1),(1,2),(2,1),(2,2)$ are elements.
- $(3,3),(3,4),(3,5),(4,3),(4,4),(4,5),(5,3),(5,4),(5,5)$ are also elements.
- Thus, our equivalence relation is

$$
\{(0,0),(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(3,5),(4,3),(4,4),(4,5),(5,3),(5,4),(5,5)\}
$$

