Recitation 6

Created by Taylor Spangler, Adapted by Beau Christ

January 4, 2019

- Problem 2.2:31: Show that for A and B subsets of some universal set U,

$$
A \subseteq B \Leftrightarrow \bar{B} \subseteq \bar{A}
$$

$$
\begin{array}{rlr}
A \subseteq B \Leftrightarrow & & \\
\forall x, & x \in A \rightarrow x \in B & \text { Definitionof set inclusion } \\
& \Leftrightarrow x \notin A \vee x \in B \Leftrightarrow & \text { Implication rule } \\
& x \in B \vee x \notin A \Leftrightarrow & \text { Commutativity } \\
& x \notin B \rightarrow x \notin A \Leftrightarrow & \text { Implication rule } \\
\bar{B} \subseteq \bar{A} & x \in \bar{B} \rightarrow x \in \bar{A} \Leftrightarrow & \text { Definition of set complement } \\
& & \text { by definition of a set inclusion }
\end{array}
$$

- 2.2 .37 c : Show that if A is a subset of universal set U

$$
A \oplus U=\bar{A}
$$

$$
\forall x, \quad x \in A \oplus U \Leftrightarrow
$$

$$
((x \in A) \vee(x \in U)) \wedge \neg((x \in A) \wedge(x \in U)) \Leftrightarrow \quad \text { definition of symmetric }
$$ difference \oplus on page 137

$$
((x \in A \cup U)) \wedge \neg((x \in A \cap U)) \Leftrightarrow \quad \text { Definition set union, intersection }
$$

$$
(x \in U) \wedge \neg(x \in A) \Leftrightarrow \quad \text { Domination, identity laws }
$$

$$
\neg(x \in A) \wedge(x \in U) \Leftrightarrow \quad \text { Commutative law (logic) }
$$

$$
(x \notin A) \wedge(x \in U) \Leftrightarrow \quad \text { Moving negation inward }
$$

$$
x \in \bar{A} \quad \text { Definition of set absolute complement }
$$

We showed that $\forall x, x \in A \oplus U \Leftrightarrow x \in \bar{A}$. Thus, $A \oplus U=\bar{A}$.

- Suppose that $A \cup B=\emptyset$, what can you conclude?

Answer: we conclude that $(A=\emptyset) \wedge(B=\emptyset)$.
We formally prove that:

$$
A \cup B=\emptyset \Leftrightarrow(A=\emptyset) \wedge(B=\emptyset)
$$

First we consider prove the following statement:

$$
A \cup B=\emptyset \rightarrow(A=\emptyset) \wedge(B=\emptyset)
$$

The proof is by contradiction. We assume the antecedent and negate the conclusion.
(1) $A \cup B=\emptyset$ given
(2) $\neg((A=\emptyset) \wedge(B=\emptyset)) \quad$ negating the conclusion
(3) $(A \neq \emptyset) \vee(B \neq \emptyset) \quad$ moving negation inward
(4) $(A \neq \emptyset) \vee(B \neq \emptyset) \quad$ moving negation inward

We continue the proof using a proof by cases. Expression (4) states that, at least one of the following cases must hold and both can also hold:
(a) There is at least an element in A, assume we have $x \in A$
(b) There is at least an element in B, assume we have $y \in B$

Case (a) above: $x \in A \Rightarrow x \in\{A \cup B\}$ by definition of set union $A \cup B \neq \emptyset$, which contradicts the premise (1).
Case (b) can be shown to yield the same contradiction (exchanging A for B in the above case).
WLOG, we can conclude that

$$
A \cup B=\emptyset \Rightarrow(A=\emptyset) \wedge(B=\emptyset)
$$

Proving the implication in the opposite direction is straightforward by definition of set union:

$$
(A=\emptyset) \wedge(B=\emptyset) \Rightarrow A \cup B=\emptyset
$$

- Now let's look at functions, say we have the following function: $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=\left\lfloor\frac{x}{2}\right\rfloor$
- First what does the graph of this function look like?
- is f one-to-one (i.e., injective)? No, for example both 1 and 1.1 are assigned 0.
- Is f onto \mathbb{R} (i.e., surjective)? No, the floor function only maps to integers, so only integers would be mapped to.
- Let $A=\{1,2,3,4\}, B=\{a, b, c\}$, and $C=\{2,7,10\}$

Consider the following two functions: $g: A \rightarrow B$ and $f: B \rightarrow C$ where g : $\{(1, b),(2, a),(3, a),(4, b)\}$ and $f:\{(a, 10),(b, 7),(c, 2)\}$

- Find $f \circ g$. Answer: $\{(1,7),(2,10),(3,10),(4,7)\}$
- Find f^{-1}. Answer: $\{(10, a),(7, b),(2, c)\}$
- Is g^{-1} a function? Answer: No, because a has two pre-images but in a function, each element of the domain must be mapped to exactly one element in the codomain.
- Find $f \circ f^{-1}$. Answer: $\{(10,10),(7,7),(2,2)\}$
- Prove or disprove: $\forall x, y \in \mathbb{R},\lfloor x \times y\rfloor \leq\lfloor x\rfloor \times\lfloor y\rfloor$
- let $x=3.5$, and $y=1.5 .\lfloor 3.5 \times 1.5\rfloor=\lfloor 5.25\rfloor=5$, but $\lfloor 3.5\rfloor \times\lfloor 1.5\rfloor=4$
$-5 \neq 4$, therefore the statement does not hold. This is a proof with a counterexample.
- Prove or disprove for all $x, y \in \mathbb{R},\lceil x \times y\rceil \leq\lceil x\rceil \times\lceil y\rceil$
- Here the same example works $\lceil 3.5 \times 1.5\rceil=\lceil 5.25\rceil=6$, but $\lceil 3.5\rceil \times\lceil 1.5\rceil=4 \times 2=$ 8
- Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$where $f(x)=|x|$ is not invertible, but if the domain is restricted to the set of nonnegative real numbers (i.e., $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$), the resulting function is invertible.
For a function to be invertible, it must be bijective (i.e., a one-to-one correspondance). Therefore, we need to check if this is one-to-one (injective) and onto (surjective).

1. Injective: No, $f\left(x_{1}\right) \neq f\left(x_{2}\right) \Rightarrow\left|x_{1}\right| \neq\left|x_{2}\right| \Rightarrow \pm x_{1} \neq \pm x_{2}$

Now, if the domain is restricted to the set of nonnegative real numbers. Is $f(x)$ injective?
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow\left|x_{1}\right|=\left|x_{2}\right| \Rightarrow x_{1}=x_{2}$. Therefore, on the restricted domain $f(x)$ is injective.
2. Surjective: Every element in codomain $\left(\mathbb{R}^{+}\right)$is a positive number, then for $\forall b \in$ codomain $(f) \exists a \in \mathbb{R} b=|a|$. Thus, b has necessarily a preimage. Thus, the range and the codomain are equal, we can conclude that f is surjective.
3. Bijective: No, because it is not injective.

However, on the restricted domain, it is bijective because it is both injective and surjective.
4. Invertible: Again, only on the restricted domain.

- Now a quick review of membership, determine whether these statements are true or false:

1. $\{a, b\} \subseteq\{\{a, b\}\}$

False, because neither a nor b is an element in $\{\{a, b\}\}$.
2. $\{a, b\} \in\{\{a, b\}\}$

True, because there the element $\{a, b\}$ is in $\{\{a, b\}\}$
3. $\{a, b, c\} \subset\{a, b, c\}$

False, because the sets are equal, and the statement is wondering if it is a strict subset.
4. $\{a, b, c\} \subseteq\{a, b, c\}$

True, because the sets are equal.
5. $\} \subseteq\{a, b, c\}$

True, because the empty set $\emptyset=\{ \}$ is a subset of all sets.
6. $\emptyset \in\{a, b, c\}$

False, because the element \emptyset is not in the set $\{a, b, c\}$.
7. $\{a\} \subset\{a, a\}$

Trick question: watch out!
False, the set $\{a, a\}$ is really $\{a\}$ because, in a set, elements are not repeated. Therefore, $\{a\} \subset\{a, a\}$ is false because $\{a\} \not \subset\{a\}$ (Note that $\{a\} \subseteq\{a\}$ though).

