Recitation 10

Created by Taylor Spangler, Adapted by Beau Christ

January 4, 2019

- Induction: Example using triominoes for $2^{n} \times 2^{n}$ checkerboard missing one corner, see page 326.
- Problem 5.1.5: Using induction, prove:

$$
\forall n \geq 01^{2}+3^{2}+\ldots+(2 n+1)^{2}=\frac{(n+1)(2 n+1)(2 n+3)}{3}
$$

We prove the property using mathematical induction:

1. Let's state the property to prove:

$$
P(n): 1^{2}+3^{2}+\ldots+(2 n+1)^{2}=\frac{(n+1)(2 n+1)(2 n+3)}{3}
$$

2. We take $n_{0}=0$ and prove $P(0)$:

$$
P(0)=1=\frac{(1)(1)(3)}{3}
$$

We show that $\mathrm{P}(0)$ holds: $1=1 \cdot \frac{1 \cdot 1 \cdot 3}{3}=1$. Therefore, $\mathrm{P}(0)$ is true.
3 . What is the inductive hypothesis?

$$
P(k): 1^{2}+3^{2}+\ldots+(2 k+1)^{2}=\frac{(k+1)(2 k+1)(2 k+3)}{3}
$$

4. Assuming the base case and the inductive hypothesis, we want to prove:

$$
P(k+1): 1^{2}+3^{2}+\ldots+(2 k+3)^{2}=\frac{(k+2)(2 k+3)(2 k+5)}{3}
$$

5. We start from $1^{2}+3^{2}+\ldots+(2 k+1)^{2}+(2 k+3)^{2}$.
$1^{2}+3^{2}+\ldots+(2 k+1)^{2}+(2 k+3)^{2}$
$=\left(1^{2}+3^{2}+\ldots+(2 k+1)^{2}\right)+(2 k+3)^{2}$
$=\frac{(k+1)(2 k+1)(2 k+3)}{3}+(2 k+3)^{2} \quad$ using the inductive hypothesis
$=(2 k+3) \cdot\left(\frac{(k+1)(2 k+1)+6 k+9}{3}\right)$
$=(2 k+3) \cdot\left(\frac{2 k^{2}+9 k+10}{3}\right)$
$=\frac{(k+2)(2 k+3)(2 k+5)}{3}$
Thus, $P(k+1)$ holds.

Consequently, by the PMI, $\forall n \geq 01^{2}+3^{2}+\ldots+(2 n+1)^{2}=\frac{(n+1)(2 n+1)(2 n+3)}{3}$

- Now, prove the following: $3 \mid 2^{2 n}-1$ for $n \geq 1$.

1. First, we state the property to prove: $P(n): 3 \mid 2^{2 n}-1$.
2. Base case is $n_{0}=1$. So $P(1)=3 \mid 2^{2(1)}-1$. Clearly, $2^{2(1)}-1=4-1=3,3 \mid 3$, which is obvious. So, $P(1)$ holds.
3. Next, we state the inductive hypothesis: $P(k): 3 \mid 2^{2 k}-1$ and assume that $P(k)$ holds.
4. Now, we have to prove that $P(k+1): 3 \mid 2^{2 k+2}-1$ holds. We start from $2^{2 k+2}-1$. $2^{2 k+2}-1=4 \cdot 2^{k}-1=4 \cdot\left(2^{k}-1+1\right)-1$.
The inductive hypothesis gives that $3 \mid 2^{2 k}-1$ This, there is an integer t such that $2^{2 k}-1=3 t$. Thus, $2^{2 k+2}-1=4 \cdot(3 t+1)-1=12 t+4-1=12 t+3=3 \cdot(4 t+1)$.
Thus, $2^{2 k+2}-1$ is a multiple of 3 . Hence, $P(k+1)$ holds.
Consequently, by the PMI, $\forall n \geq 1,3 \mid 2^{2 n}-1$.

- A proof by strong induction.

$$
\text { Show that } \forall n \in \mathbb{N}, 12 \mid\left(n^{4}-n^{2}\right)
$$

1. First, we state the property:

$$
P(n): 12 \mid\left(n^{4}-n^{2}\right)
$$

2. Base Case:

(a) For $n=1: 1^{4}-1^{2}=0=12 \cdot 0$, so $P(1)$ is true.
(b) For $n=2: 2^{4}-2^{2}=16-4=12=12 \cdot 1$, so $P(2)$ is true.
(c) For $n=3: 3^{4}-3^{2}=81-9=72=12 \cdot 6$, so $P(3)$ is true.
(d) For $n=4: 4^{4}-4^{2}=256-16=240=12 \cdot 20$, so $P(4)$ is true.
(e) For $n=5: 5^{4}-5^{2}=625-25=600=12 \cdot 50$, so $P(5)$ is true.
(f) For $n=6: 6^{4}-6^{2}=1296-36=1260=12 \cdot 105$, so $P(6)$ is true.
3. Strong Inductive Hypothesis Let $k \geq 6 \in \mathbb{N}$ and assume that $12 \mid\left(m^{4}-m^{2}\right)$ for $1 \leq m<k$ where $m \in \mathbb{N}$.
4. We need to estalish $P(k)$.

Let $i=k-5$. Because $i<k$, we can assume that $P(i)$ holds.
Clearly $i+6=k+1$.
$(i+6)^{4}-(i+6)^{2}$
$=\left(i^{4}+24 i^{3}+180 i^{2}+864 i+1296\right)-\left(i^{2}+12 i+36\right)$
$=\left(i^{4}-i^{2}\right)+24 i^{3}+180 i^{2}+852 i+1260$
Because $P(i)$ holds, we have $i^{4}-i^{2}=12 \cdot t$.

Further, $24 i^{3}+180 i^{2}+852 i+1260=12\left(2 i^{3}+15 i^{2}+71 i+105\right)$.
Thus, $(i+6)^{4}-(i+6)^{2}=12 \cdot t+12\left(2 i^{3}+15 i^{2}+71 i+105\right)=12\left(t+2 i^{3}+15 i^{2}+\right.$ $71 i+105)$.
Hence, $(i+6)^{4}-(i+6)^{2}$ is a multiple of 12 and $12 \mid(k+1)^{4}-(k+1)^{2}$.
We can finally state that by the principle of strong induction, $\forall n \in \mathbb{N}, 12 \mid\left(n^{4}-n^{2}\right)$.

