CSE 235 Homework Template*

Robert Woodward

Spring 2010

Problem: (Levitin 2.1.1) For each of the following algorithms, indicate (i) a natural size matrix for its inputs; (ii) its basic operation; (iii) whether the basic operation count can be different for inputs of the same size.
a. Computing the sum of n numbers

Answer:
i. n
ii. addition of two numbers
iii. no
b. Computing n !

Answer:
i. $\lceil\log n\rceil$
ii. Multiplication of two integers
iii. no
c. Finding the largest element in a list of n numbers

Answer:
i. n
ii. Comparison of two numbers
iii. Nothing else.

[^0]Problem: Prove that $\frac{n\left(n^{2}\right)}{2} \in \Omega(n)$
Answer: We have the following theorem from Levitin, page 57:
Theorem 1. Let $f(n)$ and $g(n)$ be two monotonically increasing functions, then

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}= \begin{cases}0 & \Rightarrow f(n) \in \mathcal{O}(g(n)) \\ c & \Rightarrow f(n) \in \Theta(g(n)) \\ \infty & \Rightarrow f(n) \in \Omega(g(n))\end{cases}
$$

We set up our limit appropriately:

$$
\lim _{n \rightarrow \infty} \frac{\frac{n(n-1)}{2}}{n}=n-1=\infty
$$

Therefore, by Theorem $1, \frac{n\left(n^{2}\right)}{2} \in \Omega(n)$
Here is a mathematical expression: $(a+b)_{n_{i}}^{2 k} \frac{3 x}{7 y}$. Note that it is written in line, in the text.

The following mathematical expression is displayed on a new line, centered, but it is not assigned a number:

$$
(a+b)_{n_{i}}^{2 k} \frac{3 x}{7 y}
$$

The equation (1) has a number and a label, which can be referenced in the text.

$$
\begin{equation*}
(a+b) n_{i} \frac{3 x}{7 y} \tag{1}
\end{equation*}
$$

The set of equations below are listed as an array. Only two are numbered.

$$
\begin{align*}
(a+b)^{2} & =a^{2}+b^{2}+2 a b \tag{2}\\
(a+b)^{2} & =a^{2}+b^{2}+2 a b \tag{3}\\
(a+b)^{3} & =a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \tag{4}
\end{align*}
$$

Problem: Draw the graph K_{5}.

Answer: K_{4} is shown in Figure 1

Problem: Define the semantics of the logical connective \wedge in Propositional logic.

Figure 1: A complete graph with 5 nodes.

Table 1: Definition of the logical connective \wedge.

a	b	$\mathrm{a} \wedge \mathrm{b}$
0	0	0
0	1	0
1	0	0
1	1	1

Answer: Given two logical propositions a and b, the semantics of \wedge is defined in Table 1:

Problem: Give an algorithm to compute the sum of n integers stored in an array \mathcal{A}.

Answer: The Algorithm 1 computes the sum:

```
Algorithm 1: \(\operatorname{Summation}(\mathcal{A}[0 \ldots n-1)\)
    Input: an integer array \(\mathcal{A}\)
    Output: the summation \(\sum_{i=0}^{n-1} \mathcal{A}[i]\)
    \(\max \leftarrow a_{1}\);
    for \(i \leftarrow 0\) to \(n-1\) do
        sum \(\leftarrow\) sum \(+A[i] ;\)
    return sum;
```


Compiling Your Document

Now that our document is finished, we need to compile it. If you are on CSE or any other system that has $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ installed, then you compile this document from the command line as follows: latex hw_example.tex
$\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ will do its thing and report any errors that you may have, otherwise it will successfully compile in to a dvi file named hw_example.dvi. At this point you have several options. You can convert the dvi file into a pdf file or a postscript file by using either dvipdf or dvips respectively. Another alternative is to use pdflatex instead of latex, which automatically outputs a pdf file rather than a dvi file.

If you have labels like our label, \label\{theorem: asymptotics\}, you will need to run latex or pdflatex two or three times to compile the proper references.

Additional Tools

You can use a program called ispell from the command prompt to spell check your document. Conveniently, ispell ignores $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ markup!

If you are just getting used to the linux environment, one of the best text editors for $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ besides emacs and xemacs is nedit. This text editor recognizes $\mathrm{AA}_{\mathrm{E}} \mathrm{X}$ markup uses font and color offsets to help you out.

Additional Resources

The main source for $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ resources is the $T_{E} X$ Users Group: http://www. tug. org in particular, check out their page for beginners, Getting Started With $E^{A} T_{E} X$ at http://www.tug.org/begin.

One of the best tutorials is the Not So Short Introduction to $L_{A} T_{E} X$ 2e which can be found at http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf

Good Luck on your $\mathrm{EAT}_{\mathrm{E}}$ Xing

References

[1] Chris Bourke. Using LaTeX to Typeset Your Homework Example. 2004.
[2] Nobel Khandaker. CSE 235 Homework Template. 2010.

[^0]: *This document was created by Chris Bourke [1] and modified by Nobel Khandaker [2].

