Unit Propagation (1): In a clause

- If a literal is true, the clause is true and can be removed
 - If $a \leftarrow true$, remove all clauses where it is positive
 \[a \lor b \lor c \]
 - If $a \leftarrow false$, remove all clauses where it is negative
 \[\neg a \lor b \lor c \]

- If a literal is false, it can be removed from the clause
 - If $a \leftarrow false$, remove it from all clauses where it is positive
 \[a \lor b \lor c \quad b \lor c \]
 - If $a \leftarrow true$, remove all clauses where it is negative
 \[\neg a \lor b \lor c \quad b \lor c \]
Unit Propagation (2)

• When a literal in a clause is true, the entire clause is true and can be removed

After assignment: \(a \leftarrow false \)

\[
\cdots \land C_i \land (\neg a \lor b \lor \neg c) \land C_{i+2} \land \ldots
\]

\[
\equiv \cdots \land C_i \land (true \lor b \lor \neg c) \land C_{i+2} \land \ldots
\]

\[
\equiv \cdots \land C_i \land true \land C_{i+2} \land \ldots
\]

\[
\equiv \cdots \land C_i \land C_{i+2} \land \ldots
\]
Unit Propagation (3)

• When a literal in a clause is false, the literal may be removed from the clause

After assignment: \(a \leftarrow true \)

\[
(\neg a \lor b \lor \neg c) \\
\equiv (false \lor b \lor \neg c) \\
\equiv (b \lor \neg c)
\]
Unit Propagation (4)

- Assignments may result in unit clauses
 \[a \leftarrow false \text{ and } a \lor b \text{ yield } b \]
- Unit clauses immediately force an assignment
 \[b \leftarrow true \]
- This can lead to a chain reaction as new assignments ‘propagate’ throughout the clauses
Unit Propagation: Example

- SAT formula with 1,000 variables
- Cycle of implications
 \[v_1 \rightarrow v_2 \]
 \[v_2 \rightarrow v_3 \]

 \[\vdots \]

 \[\land (\neg v_{999} \lor v_{1000}) \]
 \[\land (\neg v_{1000} \lor v_1) \]

- A single assignment results in unit propagation to solve the entire problem

\[(\neg v_1 \lor v_2) \land (\neg v_2 \lor v_3) \]
Unit Resolution

• Unit resolution or disjunctive syllogism

\[a, \neg a \lor b \]

\[\frac{}{b} \]

• Unit propagation has similarities to unit resolution
 – Assignments add unit clauses to the formula
 – When a new unit clause is added, it can be resolved with other clauses in the formula and the result added to the formula

\[(a) \land (\neg a \lor b \lor \neg c) \rightarrow (b \lor \neg c) \]
Thrashing in Search

- Repeatedly hitting conflict within a subtree of the search tree
- Thrashing is costly
Fail-First Principle (FFP)

- It is better to fail early than to waste time exploring a subtree with no solutions
- Want to handle potential conflicts earlier
Variable Ordering Heuristics

• The order in which variables are assigned
• Heuristic: good performance in general, not guaranteed to be optimal
• Static versus dynamic
 – Static: Assignment order is decided before search and maintained fixed throughout search
 – Dynamic: Variable ordering is adjusted during the course of the search
Activity-Based Heuristics

• Variables are assigned an ‘activity’ value
• Variables involved in a conflict have their activities increased
• Activities exponentially decay
• Select most ‘active’ variable

\[(\neg a \lor \neg c \lor d) \times \]

\[
\begin{align*}
\text{Activity}(a)^+ &= 1 \\
\text{Activity}(c)^+ &= 1 \\
\text{Activity}(d)^+ &= 1 \\
\end{align*}
\]
Activity-Based Heuristics Example

- UNSAT formula with 1000 variables
- Conflict occurs between v_{999} and v_{1000}

\[
\begin{align*}
&\land (v_{999} \lor v_{1000}) \\
&\land (\neg v_{999} \lor v_{1000}) \\
&\land (v_{999} \lor \neg v_{1000}) \\
&\land (\neg v_{999} \lor \neg v_{1000})
\end{align*}
\]

Lexicographic ordering

Activity-based ordering