
Lecture Notes on C++ for Java Programmers

Jonathan G. Campbell
Department of Computing,

Letterkenny Institute of Technology,
Co. Donegal, Ireland.

email: jonathan dot campbell (at) gmail.com, jonathan.campbell@lyit.ie
URL:http://www.jgcampbell.com/cpp4jp/cpp4jp.pdf

Report No: jc/09/0011/r
Revision 3.0, minor edits, new references, new later chapters, 2009-08-12

12th August 2009

Contents

1 Introduction 1
1.1 Scope . 1
1.2 Recommended Reading . 1

1.2.1 Programming and Object-oriented Programming through C++ 1
1.2.2 Games Software Engineering . 2
1.2.3 General Software Engineering . 2
1.2.4 Design Patterns . 3
1.2.5 The C Programming Language . 3
1.2.6 Games Programming using C++ . 3
1.2.7 Cross Platform Windows Programming 3
1.2.8 Specification and Correctness . 3

1.3 Plan for the course . 3

2 Tutorial Introduction to C++ 1
2.1 Get Started . 1

2.1.1 Your First C++ Program . 2
2.2 Variables and Arithmetic . 6
2.3 Do While . 8
2.4 Exceptions . 8
2.5 For Loop . 10
2.6 Symbolic Constants and the Preprocessor . 11
2.7 Character Input and Output . 11

2.7.1 File copying . 12
2.7.2 Character counting . 14
2.7.3 Line Counting . 15
2.7.4 Word Counting . 16

2.8 Arrays . 18
2.9 Functions in more detail . 20

2.9.1 Declaration of functions . 22
2.9.2 Program Split into Modules . 24

2.10 Creation of Executables . 26
2.10.1 Some Basics – Compiling and Linking . 26
2.10.2 Other Libraries . 27
2.10.3 Static versus Shared Libraries . 27
2.10.4 Make and Makefile . 28
2.10.5 Interpreted Languages . 29
2.10.6 Java — Compiler AND Interpreter . 29
2.10.7 Java — Dynamic Linking . 30
2.10.8 Java Enterprise Edition (J2EE) and .NET 30

0–1

2.10.9 Ultimately, All Programs are Interpreted 30
2.11 Summary . 31

3 Variables, Types, etc. in C++ 1
3.1 Introduction . 1
3.2 Variable names . 1
3.3 Elementary Data Types and Sizes . 2

3.3.1 Integer types . 2
3.3.2 Floating-point types . 5
3.3.3 Implementation Dependencies . 5

3.4 References . 5
3.5 Arrays . 6
3.6 Pointers . 7

3.6.1 Introduction . 7
3.6.2 Declaration / Definition of Pointers . 8
3.6.3 Referencing and Dereferencing Operators 8
3.6.4 Pointers and Arrays . 10

3.7 Strings in C++ . 10
3.7.1 Introduction . 10
3.7.2 C-strings . 11

3.8 Standard String Class . 13
3.9 Vector . 14
3.10 Templates, brief introduction . 17

3.10.1 Template Functions . 17
3.11 Polymorphism – Parametric . 19
3.12 Constants and their Types . 20
3.13 Declaration versus Definition . 20
3.14 Arithmetic Operators . 20
3.15 Relational and Logical Operators . 20
3.16 Type Conversions and Casts . 21
3.17 Assignment Operators and Expressions . 21
3.18 Increment and Decrement Operators . 21
3.19 Conditional Expressions . 22
3.20 Bitwise Operators . 22
3.21 Precedence and Order of Evaluation of Operators 22

4 Control Flow 1
4.1 Introduction . 1
4.2 Statements and Blocks . 1
4.3 Selection . 2

4.3.1 Two-way Selection – if else . 2
4.3.2 Multi-way Selection - else if . 2
4.3.3 Multi-way Selection – switch - case . 3

4.4 Repetition . 3
4.4.1 while . 3
4.4.2 for . 4
4.4.3 do - while . 4

4.5 break and continue . 4
4.6 goto and Labels . 5

0–2

5 C++ Program Structure 1
5.1 Introduction . 1
5.2 Basics . 1
5.3 Declarations of Functions – Prototypes . 2
5.4 Function parameters . 3

5.4.1 Parameters . 3
5.4.2 Pass-by-value parameters . 3
5.4.3 Pass-by-reference parameters . 4
5.4.4 Programmed pass-by-reference via pointers 5
5.4.5 Semantics of parameter passing . 5
5.4.6 Arrays as Parameters . 6
5.4.7 Default parameters . 7

5.5 Function return values . 8
5.6 Overloaded function names . 8
5.7 Inline functions . 9
5.8 External variables . 10
5.9 Scope of variables . 10
5.10 Namespaces . 12
5.11 Heap memory management . 13

5.11.1 Introduction . 13
5.11.2 Operator new . 14
5.11.3 Operator delete . 15
5.11.4 Anonymous variables . 16
5.11.5 Garbage . 16

5.12 Lifetime of variables . 17
5.12.1 Lifetime of variables – summary . 18

5.13 Memory layout of a C++ program – a model . 20
5.14 Initialisation . 21
5.15 Register Variables . 22
5.16 Recursion . 22
5.17 The C++ Preprocessor . 24

5.17.1 File inclusion . 24
5.17.2 Symbolic constants and text substitution 24
5.17.3 Macro substitution . 25
5.17.4 Conditional compilation / inclusion . 25

6 Struct, class, union 1
6.1 Introduction . 1
6.2 A Point struct . 1
6.3 Operations on Structs . 2
6.4 Unions . 4

7 Introduction to Classes and Objects 1
7.1 Introduction . 1
7.2 A Memory Cell Class . 1

7.2.1 Informal Specification of the Class . 1
7.2.2 Class Cell . 2

7.3 Using Separate Files . 4
7.4 Exercises . 6

0–3

7.5 3D Affine Transformations . 8
7.5.1 Homogeneous 3D Vector — Vector4D.h 9
7.5.2 Homogeneous 3D Vector — Vector4D.cpp 10
7.5.3 Test for Vector4D.cpp . 12
7.5.4 Homogeneous 3D Vector Transformations — Transform4D.h 13
7.5.5 Homogeneous 3D Vector Transformations — Transform4D.cpp 14
7.5.6 Test for Transform4D.cpp . 17

8 Inheritance 1
8.1 Introduction . 1
8.2 Example 1: Class Cell extended via inheritance 2

8.2.1 First Attempt . 2
8.2.2 Protected . 4
8.2.3 Virtual Functions and Dynamic Binding 5

8.3 Overriding (virtual functions) versus Overloading 9
8.4 Strong Typing . 9
8.5 Inheritance & Virtual Functions — Summary . 9
8.6 Inheritance versus Inclusion, is-a versus has-a . 10
8.7 Inheritance & Virtual Functions and Ease of Software Extension 10
8.8 Example 2: a Person class hierarchy . 11
8.9 A Student Class . 14
8.10 Use of the Person Hierarchy . 15

8.10.1 PersonT1.cpp . 15
8.10.2 PersonT2.cpp . 18

8.11 Standard Library Vector . 20
8.12 Marks . 25

9 Classes that manage memory 1
9.1 Introduction . 1
9.2 A Heap-based Dynamic Array Class . 2

9.2.1 Class Declaration . 2
9.2.2 Class implementation code . 4
9.2.3 Assertions . 8
9.2.4 A simple client program . 9

9.3 The ’this’ pointer . 13
9.4 Copy Constructors and Parameter Passing and Value Return 13

9.4.1 Näıve member-wise constructor, shallow copy 13
9.4.2 Proper ’deep’ copy constructor . 14
9.4.3 Copy constructor and parameter passing and return 14

9.5 Assignment . 15
9.6 Destructor . 15
9.7 The Big-Three . 16
9.8 Reference parameters and reference return . 16
9.9 Privacy is class-based, not object-based . 18

10 Operator Overloading 1
10.1 Introduction . 1
10.2 Lead-in — Add Functions for Array . 1
10.3 Chaining calls to member functions . 6

0–4

10.4 Operators . 7
10.5 Member versus Non-member Functions, Conversions 14

10.5.1 Introduction . 14
10.5.2 A String Class . 14
10.5.3 Member versus Non-member functions 19
10.5.4 Coercion of Arguments . 22
10.5.5 Constructors for conversion — explicit 22

11 Templates 1
11.1 Introduction . 1
11.2 Template Functions . 2

11.2.1 Overloaded Functions recalled . 2
11.2.2 Template Function . 2

11.3 Polymorphism – Parametric . 4
11.4 Template Array . 4

11.4.1 Class declaration and implementation . 4
11.4.2 A simple client program . 7

12 Array Containers 1
12.1 Introduction . 1
12.2 An Array class . 1

12.2.1 Major points to note in Array.h . 8
12.2.2 Iterators . 10

12.3 A Simple Client Program for Array . 12
12.4 The Big-Three . 16

12.4.1 Defence against naive defaults . 16
12.5 Overloading the Stream Output Operator . 17
12.6 std::vector . 17

12.6.1 Points to note in vectort1.cpp . 20

13 Linked Lists 1
13.1 Introduction . 1
13.2 A Singly Linked List . 3

13.2.1 Class Declaration . 3
13.2.2 Dissection of List . 5
13.2.3 Class Implementation . 7

13.3 A simple List client program . 11
13.4 Doubly Linked List . 15

13.4.1 Brief Discussion of the Doubly Linked List 19
13.4.2 Simple Test Program, ListT1.cpp . 20
13.4.3 Doubly Linked List Implementation . 24

13.5 Arrays versus Linked List, Memory Usage . 31
13.6 Arrays versus Linked List, Cache issues . 31

14 Case Study — Person, Student class hierarchy 1
14.1 Introduction . 1

0–5

A Where do procedural programs come from? 1
A.1 Introduction . 1
A.2 Patterns and Programs . 4
A.3 Sequence . 5
A.4 Repetition . 6

A.4.1 Sequence of Repetitions . 6
A.4.2 Repetitions of Repetitions — Nested Loops 8

A.5 Procedures — aka Subprograms, Methods, . . . Functions 10
A.5.1 Without Parameters . 10
A.5.2 Procedures with Parameters . 11

A.6 Selection . 17
A.7 Exercises . 18

B Analysis of Algorithms 1
B.1 O Notation (Big-oh) . 2
B.2 Estimating the Growth Rate of an Algorithm . 3

B.2.1 Simple Statements . 3
B.2.2 Decision . 3
B.2.3 Counting Loop . 4

0–6

Chapter 1

Introduction

1.1 Scope

These are course notes for a lecture series on C++ for Java Programmers, given in second year of
of the course BSc in Computer Games Programming, School of Computing, Letterkenny Institute
of Technology.

This course originated in a course on Object-oriented Programming using C++ developed at
University of Ulster during 1997—1999. In revising the course during 2006–2009, I have done my
best to modernise the C++ to include more the standard library (STL) and other additions to
C++ that have occurred since 1999. In that respect, the course is strongly influenced by (Koenig
& Moo 2000) and (Stroustrup 2009).

We note that the C++ standard library allows one to program at a much higher level. Roughly
translated, higher level means that program statements: (a) do a lot more than the equivalent low
level statement; (b) are less error prone; (c) are easier for humans to read and understand. Our
chief encounter with standard library features will be in the use of collections like vector and with
algorithms with which one can operate on those collections. Java programmers who have used
List and ListArray and algorithms such as sort will have no difficulty becoming familiar with
this aspect of C++.

The earlier course contained a few chapters on the principles of object-oriented programming
(OOP); I’m leaving those out, preferring to believe that students of this course will already know
that, or know nothing other than OOP, or will get a dose of OOP theory from some other lecturer.
If you participated in the Games Programming 1 team project, you have encountered nearly as many
principles of OOP as you will ever need.

1.2 Recommended Reading

1.2.1 Programming and Object-oriented Programming through C++

If I had to recommend a teach-yourself modern C++ book, I’d go for either (Stroustrup 2009) or
(Koenig & Moo 2000). (Glassborow 2006) is also useful. (Dawson 2004) is a good introduction
to the basics from a games point of view,

1–1

If you need a reference on C++, see (Stroustrup 1997a), (Lippman 2005), and (Lischner 2003).
The C++ FAQ (Cline, Lomow & Girou 1999a) is useful, and there is an online version (use Google
to find it).

I have learned a lot of what I know about OOP and C++ from (Budd 1997a). Budd produces
very fine books. I can also recommended his book on Java (Budd 1999b) and his book on general
object-orientation (Budd 1997b).

Budd’s book on conversion from C++ to Java (Budd 1999a) is useful for this course.

You will already be familiar with Horstmann’s book Java Concepts (Horstmann 2005) (or Big Java
which is the same with four chapters added). Horstmann’s (with Budd) Big C++ (Horstmann &
Budd 2005) is a fine book.

We note Horstmann’s handy website (Horstmann accessed 2006-08-28b) provides another good
reference for those who need to move between C++ and Java; and Horstmann’s C++ Pitfalls
website at (Horstmann accessed 5006-08-28a), though some of the items paint C++ is a very bad
light.

There are very useful guidelines in: (Meyers 2005) and (Meyers 1996); a companion book (Meyers
2001) covers now the C++ standard library.

Regarding the standard library and algorithms, I note that we have a third year module on Algorithms
and Data Structures for Games Programmers (Campbell 2009); two of the chapters at the end of
these notes overlap with the beginning chapters of the notes for that module.

Standard Library (STL) When I’m using the C++ Standard Library (STL) I always have (Reese
2007), (Josuttis 1999), and (Lischner 2003) at my right hand.

Other Books Other top class C++ books that I regularly use are (in no particular order): (Sutter
& Alexandrescu 2005) (Dewhurst 2005) (Wilson 2004) (Romanik & Muntz 2003) (Sutter 1999)
(Sutter 2002) (Sutter 2004) (Dewhurst 2003) (Josuttis 1999) (Eckel 2000) (Eckel 2003).

If you want fancy (general programming) ideas for a final year project and to see the way C++
and OOP is headed, see: (Alexandrescu 2001) and (Czarnecki & Eisenecker 2000).

1.2.2 Games Software Engineering

The following cover software engineering and design principles applied to games: (McShaffry 2005)
(Dickheiser 2007) (O’Luanaigh 2006).

1.2.3 General Software Engineering

Apart from the good advice in the programming books, see (McConnell 2004) and (Maguire 1993).

1–2

1.2.4 Design Patterns

Software design patterns are important. Horstmann’s (Horstmann 2006) and (Freeman & Freeman
2004) are good, even though the examples are in Java. See also (Budd 1999b, chapter 5), the
original gang-of-four book (Gamma, Helm, Johnson & Vlissides 1995) and (Vlissides 1998).

1.2.5 The C Programming Language

When we come to OpenGL we will sometimes write C programs; C and C++ are different. The way
we will do it is learn C++ first and then pint out the major differences. (Kernighan & Ritchie 1988)
is the bible of C; (Harbison & Steele 2005) is a good reference.

1.2.6 Games Programming using C++

The following are as much on principles and software engineering as on construction of specific
games and game components: (McShaffry 2005), (O’Luanaigh 2006) and (Dickheiser 2007).

(Dawson 2004) would be a good way to learn basic C++ (i.e. just plain text programming) before
getting into the difficulties of video games.

(Penton 2003) is a good way to learn simple video game programming; at the end of this course
we will work on a simple 2D sprite game from that book.

1.2.7 Cross Platform Windows Programming

wxWindows (Smart & Csomor 2005) and Qt (Blanchette & Summerfield 2008); (Blanchette &
Summerfield 2008) contains a nice chapter on using OpenGL (the API that we use for our graphics
modules) in a Qt framework.

1.2.8 Specification and Correctness

For future reference, I note that specification and correctness are important issues. Meyer uses
the contract metaphor — Design by Contract (Meyer 1996); see also (Mitchell & McKim 2002),
(Tennent 2002) and (Fitzgerald & Larsen 1998).

1.3 Plan for the course

The first thing to be done is get comfortable with the basics of C++ and with whatever C++
compiler we choose; we will probably be Visual Studio Express, see chapter 2 and we will use the
examples in chapter 2.

We will have a quick look at designing procedural programs, see Appendix A.

1–3

Then we will look at some more details of C++ up to programming simples classes; then more
complex classes: a dynamic array and a linked list.

Finally we will look at a C++ version of the game software we finished off with last year, for
example Sprites and Animations — just to see how C++ handles objects, rather than develop real
game code.

1–4

Chapter 2

Tutorial Introduction to C++

This chapter is based on the first chapter of Kernighan & Ritchie’s book on C (Kernighan &
Ritchie 1988), but with the code changed to C++. In this chapter and the next few, you will be
exposed to the basic syntax of C++ – mostly the underlying imperative language features.

In the early days, most programmers had learned C before they came to C++, hence, it was often
assumed that the best way to learn C++ was to first learn C. It is fairly clear now that this is
not ideal; indeed, there is reason to believe that object-oriented programming can be quite difficult
for experience imperative language programmers to grasp. Moreover, there are difficult parts of C
that can be avoided until much later in C++ – and if proper design is used, they can be fairly well
hidden in localised parts of the code.

2.1 Get Started

Objectives

• Get used to editor, compiler, linker etc. In our case the Visual Studio Express IDE (free) or
Visual Studio Professional.

• Get a simple C++ program running.

• Dissect this simple C++ program.

All the programs in these notes and programs mentioned in practicals and assignments, plus other
bits & pieces will be available in my public folder. For example, programs from this chapter will be
in P:/cpp4jp/progs/ch02.

2–1

2.1.1 Your First C++ Program

The program hello.cpp is a C++ program that prints a simple message on the screen.

//----- hello.cpp ----------------------------------

//Your first C++ Program illustrating stream output.

//---

#include ¡iostream¿

/* this is a begin-end comment*/

int main()

–

std::cout ¡¡ ”Hello from C++.“n”;

std::cout ¡¡ ”Hello from C++.” ¡¡ std::endl;

return 0;

˝

Dissection of hello.cpp

1. Every program must have a function called main, execution starts there. main may call other
functions. As with Java or any other high-level language, these functions can be taken from
one of the following sources:

• As written by the programmer in the same file as main.
• As written by the programmer in separate file(s).
• Called from predefined libraries.

2. C++ allows you to create programs without any class; thus the function main above does
not need to be enclosed in a class called Hello;

3. C++ takes the view that main is called by the operating system; the operating system may
pass arguments to main, as well as receive return values (e.g. return 0;); however, above,
we choose to make main take no arguments – either main(), or “verbmain(void)+ means
’takes no arguments. Note, in C, the explicit void is essential if that is what you want.

4. /*... */ is a comment that has start and end delimiters. The C++ standard says that
comments cannot be nested. Also, comments like these must be terminated explicitly, i.e.
newline does not terminate them – this is a common source of compiler errors, and, for the
unwary, can be very difficult to trace.

5. // comments end at end of line.

6. iostream is the header for the hierarchy of stream classes which handle buffered and un-
buffered I-O for files and devices. cout is an object, corresponding to the standard output
stream.

7. Although you #include ¡iostream¿ which contains declarations of cout and endl, these
are contained in what is called a namespace; that namespace is std, for standard library.

8. A namespace is a bit like a Java package, but not completely.

2–2

9. If you want to avoid using the std:: qualifier, you can insert a using namespace std;
directive at the top of your program. using namespace std; has some similarities to a
Java import.

10. #includes like #include ¡iostream¿ occur rather like Java imports, but, deep down, they
are quite different.

11. We’ll not go into the full details of #include and namespace here; they full story will
eventually become clear.

12. The topic we are touching on here, but avoiding for the meantime, is called scope; we’ll
address that in detail in a later chapter (chapter 5); essentially, the scope of a variable or
of a function is the parts of a program where the name of the variable can be used (i.e. is
meaningful). Because std is a namespace all the variables and functions in it are hidden
to the outside world, except if one uses the qualifier std::, or gives the overall directive
using namespace std.

13. So the following program is equivalent to the previous hello.cpp.

//----- hello.cpp ----------------------------------

#include ¡iostream¿

using namespace std; // brings whole std namespace into scope

int main()

–

cout ¡¡ ”Hello from C++.“n”;

cout ¡¡ ”Hello from C++.” ¡¡ endl;

return 0;

˝

14. C++ allows you to write functions as operators; so, for example, you can write your own +
operator instead of a function called plus.

15. The operator ¡¡ is one such operator; note, it is nothing to do with bit shifting; the bit shifting
operator has the same name but it does something very different; the program context allows
the compiler to select between operators of the same name — as context allows resolution
between functions of the same name.

16. The operator ¡¡ (call it put to) takes the value that follows it (the string) and puts it to
the object cout.

17. Recall Java’s System.out.print.

cout ¡¡ ”Hello from C++.“n”;

is very similar to

System.out.print(”Hello from C++.“n”);

where cout is equivalent to System.out and the method (function) print is equivalent to
(the operator) ¡¡.

2–3

18. Pronounce ¡¡ as put to.

19. The two output lines are equivalent, except that endl ensures that the stream buffer is
flushed.

20. The default extension for C++ program source files is .cpp; you will also see .cc used.

21. Header files, e.g. iostream contain function declarations and the like.

22. #include ¡filename¿ simply inserts the contents of filename, replacing the include pre-
processor statement.

23. ¡filename¿ tells the pre-processor to search for filename in a system directory.

24. ”filename” tells the pre-processor to search in the current directory, where this source file
is.

25. The pre-processor acts on the source file before the compiler.

26. Typically, one has a xxx.h file which contains the declarations for the xxx.cpp file, which
contains the executable code (implementation).

27. The xxx.h file is included. It is not compiled separately, though, obviously, it is compiled
as part of the program into which it is included.

28. The xxx.cpp file is compiled, and its object code linked.

29. For your own sanity the heading comment should include:

• Name of the program – to correspond to the filename,
• Authors name – even if copied!
• Date.
• Brief indication of function and purpose of the program, e.g. assignment number, or
project, and what it does.

30. (You already know all this.) Program layout is very important; I suggest two spaces inden-
tation for each block; I suggest that you avoid tabs because the width of tabs are different
according to different editors and printers. Certainly avoid having the program pressed up
against the right margin, with all the white space on the left hand side,

31. In the definition of a function, () encloses the argument list; in this case main expects no
arguments; (void) denotes takes no arguments, or, as mentioned, empty brackets, () signify
the same thing..

32. However, empty parenthesis () is taken to signify the same thing. Beware, not the case in
C!.

33. “n represents a single new-line character.

34. “ is an escape character – announces a control character.

35. Other control characters are:

• “t tab.

2–4

• “a alert – beep, bell.
• “” double-quote.
• “r carriage-return.
• ““ backslash itself.

36. return 0; As mentioned above, in C++, programs can return values to the operating
system; in UNIX, 0 signifies that the program terminated normally; other values indicate
error conditions. This is useful if you intend putting your program in a UNIX shell script;
likewise DOS, Windows .bat files.

Exercise 1.

This may look trivial and boring, but youmust complete it before you proceed; doing so will advance
you significantly far up the C++ learning-curve. In fact, when you need to do C programming on
an unfamiliar system, it is always a good idea to get hello.cpp working first — just to make sure
that you and the system are operating on the same wavelength!

• Type in the program hello.cpp;

• Compile it;

• Build (link) it; notice: link, this is something new in C++; we’ll discuss that, and the related
differences between C++ and Java, in a later chapter.

• Or, compile & build together;

I think we will decide to use the Microsoft Visual Studio Express compiler; Microsoft Visual Studio
Professional will also be available, but the advantage of Express is that it is free and therefore
available to those of you who have your own computers.

I’ll give more detailed instructions in the handouts for the first few practicals.

I use Linux and so use the GNU C++ compiler. All programs mentioned in this course will be
compilable on any system.

Safety and Warnings Most compilers issue both error messages and warning messages.

Error signifies a serious flaw in the source code, which the compiler cannot circumvent. In the
event of any error, the compiler can produce no usable object code.

Warning, as the name suggests, is the compilers way of saying are you sure about this; examples
are: variables defined but never used (fairly benign), type conversions that look a bit flaky, etc.

I maintain that C and C++ compiler warnings must never be ignored, and insist that students heed
this principle, e.g. I refuse to help to check faulty code until the code compiles without warnings.

The good news is that C++ has much stricter type checking than C, so that many warnings in C,
become errors in C++.

2–5

2.2 Variables and Arithmetic

Program ptog.cpp shows some simple arithmetic, involving a function, and a while loop.

//----- ptog.cpp ----------------------------

//Convert pounds to grams

//---

#include ¡iostream¿

using namespace std;

const double pToG = 453.592; // const == Java final

double convert(double p)

–

return p*pToG;

˝

int main()

–

int pds = 0; //good idea to always initialise variables

cout ¡¡ ”Input pounds: ”¡¡ endl;

//really, we should handle input more carefully than this

//if you type a number with a fractional part, e.g. 2.5

//you will get an error and odd things will happen

//we’ll sort out this later

cin ¿¿ pds;

while(pds ¿ 0)–

double g = convert(pds);

int gint = int(g); // could have used simply gint = g;

cout ¡¡ ”“nWeight = ”¡¡ gint ¡¡ ” grams.”¡¡ endl;

double k = g/1000;

cout ¡¡ ”“nWeight = ”¡¡ k ¡¡ ” Kg.”¡¡ endl;

cout ¡¡ ”Input pounds: ”¡¡ endl;

cin ¿¿ pds;

˝

return 0;

˝

Dissection of ptog.cpp

1. All variables must be declared. They may be declared anywhere – before they are used. They
stay in scope until the end of the function or block – ... ˝ in which they were declared.

2. In C declaration can be done only at the beginning of a function or block.

3. Some programmers retain the C style (declarations at beginning); however, when large objects
are involved, which may use large complex constructors, declaration at the beginning may

2–6

avoid duplication of effort because, at the beginning, appropriate initialisation may not be
available, and the object will be initialised twice.

4. Built-in types in C++:

• int: integer, can be 16-bits, usually 32-bits.
• float: floating point, normally IEEE format, 32 bits.
• char: single text character; really it is a small integer taking on values in [0..255]; also
C++ allows arithmetic on chars.

• short: short integer, possibly 8 bits, maybe 16.
• long : long integer – 32 bits.
• double: double precision floating point – more significant digits, larger exponent.
• C++ allows you to qualify integer types a unsigned, meaning that they range from
0 to some large value; for example a 16-bit unsigned int would range 0 to 65536,
whereas a 16-bit int (signed) would range −32768 to +32767.

5. const qualifier means compiler disallows modification.

6. pToG is declared outside any function; it has global scope; it also has static lifetime; we’ll
discuss lifetime in some detail later.

7. Stream I/O can handle a variety of simple values without needing additional formatting
information.

8. Pronounce ¿¿ as get-from – standard-input stream, cin.

9. Assignment statement uses =; note possible confusion with test for equality — which is ==
in C++; but, unlike Java, something like if(x = y) is in fact syntactically legal, but most
likely a logical error; more later about that.

10. while loop:

• condition is tested;
• if condition is true – body is executed;
• go back to beginning;
• if condition is false – execution continues at the statement following the loop.

11. Note the textual layout style used: as mentioned earlier, my suggestion is to indent each
block by 2 characters – some use the next tab, but with that you very quickly get to the
right-hand side of the page; on the other hand, we have to be able see what is part of a block
and what isn’t.

12. For me it is essential that the closing brace lines up with w of while.

13. Some like to move the begin “– to the next line – to line up with the w of while; Okay by
me.

14. Mixing of operands is allowed in C++, e.g. gint=g;; most compilers will generate a warning.
Normally, it is good practice to make type conversion explicit, this can be done with a type
cast, thus: gint=int(g);

15. More about casts later.

2–7

2.3 Do While

ptog.cpp is better written using do ... while; we can cut out repetition of the input and output.

//----- ptogdw.cpp ----------------------------

//Convert pounds to grams -- do .. while

//---

#include ¡iostream¿

using namespace std;

const double ptog = 453.592;

double convert(double p)

–

return p*ptog;

˝

int main()

–

int pds;

do –

cout ¡¡ ”Input pounds: ”¡¡ endl;

cin ¿¿ pds;

double g;

g = convert(pds);

cout ¡¡ ”“nWeight = ”¡¡ g ¡¡ ” grams.”¡¡ endl;

˝ while (pds ¿ 0);

return 0;

˝

2.4 Exceptions

I doubt if you have covered exceptions yet in Java, but it will happen soon.

As I mentioned, if in ptogdw or ptog you type something like 2.5, the program will probably give
the answer for 2 and then fail in some way; that is because it attempts to decode ” . ” as an int
and consequently get confused.

The least we can do is detect the failure and inform the user. Later we will show how to make
programs like this detect the error and request a new input.

2–8

//----- ptogdwe.cpp ----------------------------

//Convert pounds to grams -- do .. while, exception

//---

#include ¡iostream¿

using namespace std;

const double ptog = 453.592;

double convert(double p)–

return p*ptog;

˝

int main()–

try–

int pds = 0;

do –

cout ¡¡ ”Input pounds: ”¡¡ endl;

cin ¿¿ pds;

if(not cin) throw std::exception();

double g = convert(pds);

cout ¡¡ ”“nWeight = ”¡¡ g ¡¡ ” grams.”¡¡ endl;

˝ while (pds ¿ 0);

˝ catch(...)–

cerr¡¡ ”An exception was thrown.“n”;

˝

return 0;

˝

Brief Dissection

1. if(not cin) throw std::exception(); As well as getting data from the input stream,
decoding it, and assigning the result to pds, cin also returns a boolean value that is true
when cin is in an error-free state; false if in an error state — like when it attempts to decode
a decimal point in an expected int.

2. if(not cin) tests to see if what is returned is false.

3. if(cin==false) is equivalent;

4. if(!cin) is equivalent; not is relatively new to C++; before we always used !.

5. The two possible values of a boolean variable are true, false. bool is the type name.

6. The exception message is not very helpful, but it’s a lot better than the program acting like
a dog whose toe you trod on.

7. Exceptions are relatively new to C++, so some textbooks may not contain them.

2–9

2.5 For Loop

A variation on the pounds-to-grams program is shown in program ptogf.cpp.

//----- ptogf.cpp ----------------------------

//Convert pounds to grams - for loop - table

//---

#include ¡iostream¿

using namespace std;

const double ptog = 453.592;

double convert(double p)

–

return p*ptog;

˝

int main()–

cout¡¡ ”Pounds “t“tgrams “t“t kg.”¡¡ endl;

for(int pds = 0; pds ¡ 10; pds++)–

double g=convert(pds);

int gint = int(g);

cout ¡¡ pds ¡¡ ”“t“t”¡¡ gint¡¡ ”“t“t”¡¡ g/1000 ¡¡ endl;

˝

return 0;

˝

Dissection

1. Note use of tab “t to align the table; this is one occasion where tabs are actually useful.

2. Nothing new here for Java programmers; however, I’m going to go into detail just in case
people need revision.

3. For statement and loop:

4. There are three statements contained within the (.,.,.) in a for statement:

1 int pds=0 – initialisation.

2 pds¡10 – loop continuation test; evaluate the condition – if true execute the body –
otherwise finish.

3 pds++ – iteration; do this after the first iteration; for subsequent loops, do it before
evaluation of the continuation condition;

5. That is, for(initialisation; continuation test; iteration);

6. The for(...) body may be a single statement or a block / compound-statement –...˝.

2–10

2.6 Symbolic Constants and the Preprocessor

Traditional C would have replaced

const float ptog = 453.592;

with

#define ptog 453.592

The general form of a symbolic definition is:

#define ¡symbolic-name¿ ¡replacement-text¿.

Note, no = or ;

The C++ preprocessor replaces all occurrences of ¡symbolic-name¿ with ¡replacement-text¿
– just like an editor global-replace command.

The source code is passed through the preprocessor before it reaches the compiler proper. You
can do mighty funny things with the preprocessor, but its wide use is not encouraged in C++. In
fact, probably the only valid use is in in connection with header files and the #include directive:

2.7 Character Input and Output

(We’ll see how much of this section we need to cover; we may run through it rather rapidly. Also,
for brevity, I’m leaving exceptions out of these programs.)

As with C, C++ input-output, including files, deals with streams of characters, or text-streams.
This is the UNIX model of files — which includes keyboard and screen.

• A text-stream is a sequence of characters divided into lines.

• A line is zero or more characters followed by a newline character, “n.

• The standard input-output librarymust make each input-output stream conform to this model
– no matter what is in the physical file.

Buffered and Echoed Input On most computers, input from the keyboard is echoed, and
buffered.

• Echoed input. When you type a character on the keyboard, the computer input-output
system immediately echoes it to the screen; immediately means before it is presented to the
reading program, see buffered, below. Incidentally, this means that the input-output system,
itself, does not display the typed character – what is displayed is what is echoed from the
host computer).

• Buffered input. While a program is reading from a keyboard – or a file, the computer stores
all the input characters in a buffer (array) and presents the array (line) of characters to the
reading program only after Enter has been typed.

2–11

• Buffered output. While output is being produced, the computer stores all the characters in
a buffer (array) and presents the array (line) of characters to the output device only after
new − l ine or endl has been reached.

Terminal input-output and I-O Redirection C++, C, and UNIX have unified view of text input-
output. Reading from the keyboard is like reading from a file device – stdin in C. So, when we
talk about file I/O below, we include terminal I/O. NB. ctrl-d is end-of-file for a Linux / UNIX
keyboard; I think it might be ctrl-z on Windows cmd.

If you want to test the programs using files, you can use input-output redirection.

Then, $$ prog ¡ test.dat (assuming the prompt is $$).

reads from test.dat; i.e. the ¡ redirects the program to read from the file instead of the keyboard.

If you want to send the output to a file, say testout.dat,

prog ¡ test.dat ¿ testout.dat

2.7.1 File copying

Program cio1.cpp shows how to copy from an input file (or keyboard) to an output file (or
screen).

//----- cio1.cpp ------------------------------------

// copy input to output, version 1.

// j.g.c. 1/2/97, 2006-09-06

//---

#include ¡iostream¿

using namespace std;

int main()–

char c;

while(cin.get(c))–

cout¡¡ c;

˝

return 0;

˝

You can execute it simply by cio1 and typing characters. Terminate by ctrl-d – end-of-file, but
make sure the program is executing before you do this – otherwise ctrl-d logs you out!

Alternatively, create a file test.dat, e.g. simply use

copy cio1.cpp test.dat

and then use input-output redirection, see 2.7:

cio1 ¡ test.dat ¿ testout.dat

2–12

Dissection

1. while(cin.get(c)) both reads the next character into c and tests whether cin.get()
returns true – OK, or false, indicating some problem, e.g. end-of-file.

2. When false is returned, we quit the loop.

3. C programmers please note, it’s char c;, not int c;, since in C++, there is no need to
code end-of-file in the character itself.

What is the problem with cin ¿¿c as in cio2.cpp?

If you run cio2.cpp you will find that cin ¿¿ c loses white-spaces, i.e. newline, tab, and space
itself.

//----- cio2.cpp ------------------------------------

// copy input to output, version 2, wrong!

// j.g.c. 1/2/97, 2006-09-06.

//---

#include ¡iostream¿

using namespace std;

int main()–

char c;

while(cin ¿¿ c)–

cout¡¡ c;

˝

return 0;

˝

2–13

2.7.2 Character counting

Program ctch1.cpp shows how to count the characters in the input stream, stopping at end-of-file
and presenting the count.

//----- ctch1.c -------------------------------------

//counts input chars; version 1

// j.g.c. 1/2/97, 2006-09-06

//based on K&R p.18.

//---

#include ¡iostream¿

using namespace std;

int main()

–

char c;

long nc=0; //long to make sure it is 32-bit int.

while(cin ¿¿ c)–

++nc;

˝

cout¡¡ nc;

return 0;

˝

Dissection

1. ++ operator – increment by one; -- is decrement by one. On their own, post-increment ++nc
and pre-increment nc++ are equivalent, but give different values when used in expressions.
E.g.

int i,n=6;

i=++n; /*POST-increment gives i==7, and n==7*/

but

int i,n=6;

i=n++; /*POST-increment gives i==6, and n==7*/

2. long (int) is at least 32 bits long.

2–14

2.7.3 Line Counting

Program clines.cpp shows how to count the lines in the input stream, stopping at end-of-file
and presenting the count.

//----- clines.cpp ------------------------------------

// count lines in input.

// j.g.c. 1/2/97, 2006-09-06.

//---

#include ¡iostream¿

using namespace std;

int main()

–

char c;

int nl = 0;

while(cin.get(c))–

if(c==’“n’)++nl;

˝

cout¡¡ nl ¡¡endl;

return 0;

˝

Dissection

1. if statement:

• Tests the condition in (..).
• If true executes statement or group –..˝ following.
• Otherwise (false) skips them.
• Or, can add else, e.g. else cout¡¡ ”char not a newline”;

2. == denotes comparison operator is-equal-to. Caution: = in place of == can be syntactically
correct and so need not trapped by compiler – a nasty hard-to-find error results!

3. Character constants, e.g. ’“n’ represents a char value equal to the value of the character
in the machine’s character set; In ASCII, e.g.: “n == 10 decimal, ’A’ == 65 decimal. You
should never use numeric values, they might change, and render your program non-portable.

2–15

2.7.4 Word Counting

For the purposes of this program, a word is any sequence of characters that does not contain a
white-space character – i.e. blank-space, tab, or new-line.

Program clwc.cpp shows how to count lines, words, chars in the input stream, stopping at end-
of-file and presenting the counts.

//----- clwc.cpp ------------------------------------

// count lines, words, and chars in input.

// as in K&R -- a word is simply some chars delimited by

// whitespaces

// j.g.c. 1/2/97

//---

#include ¡iostream¿

using namespace std;

int main()

–

char c;

int nl,nw,nc;

bool out = true; //outside a word

nl = nw = nc = 0;

while(cin.get(c))–

++nc;

if(c==’“n’)

++nl;

if(c==’ ’——c==’“n’——c==’“t’)

out=true;

else if(out)–

out=false;

++nw;

˝

˝

cout¡¡ nl¡¡” ”¡¡ nw ¡¡” ”¡¡ nc ¡¡endl;

return 0;

˝

Dissection

1. nl = nw = nc = 0; In C++, an assignment has a value, i.e. nc=0; has the value 0, which
is, in turn, assigned to nw etc..

2. —— denotes Boolean or

3. && denotes Boolean and

4. Note form of if...then...else – you do not write then.

2–16

if(expression)

¡statement1¿

else

¡statement2¿

As usual ¡statement¿ can be a compound statement –..˝.

2–17

2.8 Arrays

Program cdig.cpp shows a program to count the occurrences of each numeric digit, of white-
spaces and of all other characters together – without using 12 named counters!

//----- cdig.cpp ------------------------------------

// counts digits, white-spaces, others

// after K&R chapter 1

// j.g.c. 2/2/97, 2006-09-06.

//---

#include ¡iostream¿

using namespace std;

int main()–

char c;

int i, nWhite = 0, nOther = 0;

int nDigit[10];

for(i = 0; i¡ 10; i++)–

nDigit[i] = 0; //variable need to be explicitly initialised

˝

while(cin.get(c))–

if(c¿=’0’ && c¡=’9’) //is it a digit?

++nDigit[c-’0’];

else if(c==’ ’——c==’“n’——c==’“t’) // a white space?

++nWhite;

else

++nOther; //otherwise!

˝

cout¡¡ ”digit counts = ”;

for(i = 0;i ¡ 10; ++i) cout¡¡ nDigit[i]¡¡ ”, ”;

cout¡¡”“nWhite spaces ”¡¡ nWhite¡¡”“nothers ”¡¡nOther¡¡ endl;

return 0;

˝

Dissection

1. int ndigit[10]; defines an array of 10 ints.

2. Unlike in Java, C++ array is not an object;

3. Notice no int[] nDigit = new int[10];

4. for(...) loops must go 0,1 . . . 9, since, in C++, array subscripts must start at 0; same as
Java.

5. The C++ code pattern to loop over the first n elements of an array is:
for(int i=0; i¡n; i+)+.

2–18

6. && denotes logical and ; same as Java.

7. c-’0’ assumes that 0, 1, ... 9 have successive values. Actually, there is a func-
tion isdigit(char c) which is a better way. If you use isdigit(), you must have
#include ¡ctype.h¿.

8. c-’0’ is an integer expression – so it’s OK for a subscript.

9. The following is the model for a multi-way decision; you can have any number else if. Note
the default.

10. Note: there is no elsif, it is just else followed by another statement, which may be if.

if(condition1)

statement1;

else if(cond2)

stmt2;

.........

else

stmtn; //default -- if none of above true

11. There is another switch-case multi-way construct that we will encounter later. But, any-
thing you can do with it, you can do with an if...else ladder.

12. Note indenting style; all the elses are of equal status, hence they should be aligned; and, we
don’t want to run off the right-hand edge of the paper.

2–19

2.9 Functions in more detail

Program Tr5a.cpp shows a program based on Tr5.cpp from Appendix A, with a few modifications.
We’ll use it as a case-study to exemplify many aspects of the use of functions.

/*----- Tr5a.cpp ---------------------------------

j.g.c. 2003/11/29, 2006-09-06.

based on Tr5.cpp, see that program for proper comments

and analysis

--*/

#include ¡iostream¿

using namespace std;

void nl()–

cout¡¡ ’“n’;

˝

int stars(int n)–

int nc = 0;

for(int i= 0; i¡ n; i++)–

cout¡¡ ’*’; nc++;

˝

n = n + 10; //just to demonstrate pass by value

return nc;

˝

int spaces(int n)–

for(int i= 0; i¡ n; i++)–

cout¡¡ ’ ’;

˝

return n;

˝

int main()–

int h = 5;

int nSp = 0;

int nSt = 0;

int nNl = 0;

for(int j= 0; j¡ h; j++)–

nSp += spaces(h - 1 - j);

nSt += stars(j + 1);

nl(); ++nNl;

˝

int nc = nSp + nSt + nNl;

cout¡¡ ”Number of characters = ”¡¡ nc¡¡ endl;

return 0;

˝

2–20

Dissection

1. A function definition consists of:

return-type function-name(parameter list -- if any)

–

definitions of local variables;

statements;

˝

2. If the function has no parameters, you may use either (void) or ()

3. The functions may be all in the same file, along with main, or may be spread across many
files.

4. The variable nc is local to stars; it is invisible elsewhere. It is quite distinct from the int nc
in main.

5. Unless the function returns a value (some don’t) return is not essential, but if the function
declaration indicates that the function returns a value, then there must be an appropriate
return statement.

6. The calling function may ignore the returned value.

7. The default for arguments in C++ is pass-by-value. Notice that

n = n + 10; // ’pass-by-value’+ has no effect on the variables in main

Of course, this is the same as C++. When we get to objects, we will see that C++ passes
by value too (the full object); that will be discussed in detail later.

2–21

2.9.1 Declaration of functions

Program Tr5b.cpp shows a version with altered layout; here we’ve kept main at the beginning,
and functions at the end; consequently, we’ve had to declare functions stars etc. before they are
called.

C++ demands that functions be declared before they are called.

/*----- Tr5b.cpp ---------------------------------

j.g.c. 2003/11/29, 2006-09-06.

based on Tr5a.cpp

--*/

#include ¡iostream¿

using namespace std;

void nl();

int stars(int n);

int spaces(int n);

int main()–

int h = 5;

int nSp = 0;

int nSt = 0;

int nNl = 0;

for(int j= 0; j¡ h; j++)–

nSp += spaces(h - 1 - j);

nSt += stars(j + 1);

nl(); ++nNl;

˝

int nc = nSp + nSt + nNl;

cout¡¡ ”Number of characters = ”¡¡ nc¡¡ endl;

return 0;

˝

void nl()–

cout¡¡ ’“n’;

˝

int stars(int n)–

int nc = 0;

for(int i= 0; i¡ n; i++)–

cout¡¡ ’*’; nc++;

˝

n = n + 10; //just to demonstrate pass by value

return nc;

˝

int spaces(int n)–

for(int i= 0; i¡ n; i++)–

2–22

cout¡¡ ’ ’;

˝

return n;

˝

Dissection

1. int stars(int n) declares the type of stars; this is called the prototype for stars;

2. int stars(int n) is a declaration; declares the type of stars;

3. On the other hand,

int stars(int n)–

int nc = 0;

for(int i= 0; i¡ n; i++)–

cout¡¡ ’*’; nc++;

˝

return nc;

˝

is a definition of stars; defines what it does; like assigning a value to a variable;

4. int i declares the type of i; i = 10 gives it a value (defines it).

5. stars has type: int -¿ int; it takes an int and returns an int;

6. nl has type: void -¿ void; takes an empty argument list and returns nothing;

7. Parameter names in prototypes are neither significant nor necessary. But, they can provide
good documentation.

8. e.g. int stars(int n) and int stars(int) are equivalent.

9. Normally, it is a good idea to split a program into modules (different files), e.g. the stars and
spaces functions we’ve written may be tested and stable, whilst the main program is subject
to change; it’s nonsensical to have to re-compile the functions each time, and while they are
in a file that’s subject to change, we have no guarantee that errors or other changes could
be introduced to them; so we’ll put them in a separate file funs.cpp.

2–23

2.9.2 Program Split into Modules

Program Tr5c.cpp shows the new main program; here, we “#include the function declarations
in funs.h, but N.B. not their definitions / implementations).

Now, the program and functions are compiled and loaded using:

Notice that .cpp files are compiled, and not #included. .h files, on the contrary, are #included,
but not separately compiled; (a compiler may choose to (pre-)compile .h header files, but that’s
an optimisation that we’ll ignore here.

/*----- Tr5c.cpp ---------------------------------

j.g.c. 2003/11/29, 2006-09-06.

based on Tr5b.cpp, split into modules / files.

--*/

#include ”funs.h”

using namespace std;

int main()–

int h = 5;

int nSp = 0;

int nSt = 0;

int nNl = 0;

for(int j= 0; j¡ h; j++)–

nSp += spaces(h - 1 - j);

nSt += stars(j + 1);

nl(); ++nNl;

˝

int nc = nSp + nSt + nNl;

cout¡¡ ”Number of characters = ”¡¡ nc¡¡ endl;

return 0;

˝

Files funs.h and funs.cpp show, respectively, the function declarations and the definitions (im-
plementations).

/*------ funs.h ---------------------

used by Tr5c.cpp

j.g.c. 2006-09-06

------------------------------------*/

#ifndef FUNS˙H

#define FUNS˙H

#include ¡iostream¿ //good idea to have this here, funs.cpp needs it

void nl();

int stars(int n);

int spaces(int n);

#endif

2–24

/*------ funs.cpp ---------------------

used by Tr5c.cpp

j.g.c. 2006-09-06

------------------------------------*/

#include ”funs.h”

using namespace std;

void nl()–

cout¡¡ ’“n’;

˝

int stars(int n)–

int nc = 0;

for(int i= 0; i¡ n; i++)–

cout¡¡ ’*’; nc++;

˝

n = n + 10; //just to demonstrate pass by value

return nc;

˝

int spaces(int n)–

for(int i= 0; i¡ n; i++)–

cout¡¡ ’ ’;

˝

return n;

˝

Dissection

1. When using a library or external module, you must get into the habit of producing a header
.h file that contains declarations of the functions.

2. Not unreasonably, C++ demands that you declare functions before you call them.

3. The prototypes of standard library functions and standard classes are contained in header
files, e.g. iostream is just an ordinary text file containing the stream classes and functions.

4. .h files get compiled as part of any file in which they are included. Recall, the C++ Prepro-
cessor executes all # commands before the compiler proper sees the source code.

When you have separate modules or compilation units, obviously, the compilation & linking proce-
dure must be modified.

More of this in section 2.10.4.

I’m going to use command line here; the same will happen in Visual Studio, but the details will be
hidden.

2–25

2.10 Creation of Executables

2.10.1 Some Basics – Compiling and Linking

Source programs like Tr5b.cpp, Tr5c.cpp etc. are not directly executable. There are a number
of stages in creation of the executable, and executing it.

Compilation The first stage of creating an executable is to compile Tr5c.cpp into object code.

g++ -c Tr5c.cpp

g++ -c funs.cpp

This compiles and puts the object code into a files Tr5b.o and funs.o. This object code is
essentially machine code. It has most the building blocks, except the system code, which is in
libraries.

Linking The second stage is to link the machine code in Tr5c.o with appropriate library code:
the — put the building blocks together.

This produces the executable file Tr5c, or Tr5c.exe in Windows.

Execution Finally, to execute Tr5c.exe, you type

Tr5c.

This reads the contents of exe into memory, and starts execution at an appropriate start address.

Compilation & Linking – Summary The situation may be made more clear-cut if we look at
the two module program Tr5c.cpp, funs.cpp. Recall,

g++ -c Tr5c.cpp # yields Tr5c.o

g++ -c funs.cpp # -¿ funs.o

Now link g++ -o Tr5c Tr5c.o funs.o # yields executable Tr5c

2–26

The following figure describes the process.

+----------+

— library —

— —

+----------+

compiler —

+---------+ g++ -c +--------+ —

— Tr5c. +-----------------------¿— Tr5c.o — —

— cpp— — — —

+---------+ +--------+ —

— —

+---------+ g++ -c +--------+ — —

—funs.cpp +---------¿— funs.o— — —

— — — — — —

+---------+ +--------+ — —

— — —

— — —

V V V

+--------------------------------+

— linker —

— —

+--------------------------------+

—

V

executable: Tr5c.exe

2.10.2 Other Libraries

Not all system functions are in the default libraries that are searched by g++ and ld. For example,
maths functions like sqrt. If you were to call sqrt in Tr5c, you would have to explicitly mention
the mathematics library, using -lm:

g++ -o Tr5c.exe Tr5c.cpp funs.cpp -lm

You must also remember to #include the appropriate header file, e.g. #include ¡math.h¿.

Likewise for libraries to do with OpenGL functions.

2.10.3 Static versus Shared Libraries

In section 2.9.2, the code for stars, spaces, and nl is linked statically, i.e. the object code for
each of the functions is copied into the file Tr5c.exe. For common functions like cin.get this
can become wasteful; hence shared libraries, in which the linker inserts just a pointer to shared
code that is already in the operating system. Windows DLLs are a bit like this.

2–27

2.10.4 Make and Makefile

When you get to more complicated systems of multi-module programs, the utility make can become
useful. In fact, IDEs like Visual Studio often use make to do a build.

make is like Ant that we used with Java projects.

make executes the file Makefile; i.e. the same as Ant executing build.xml; but maybe you never
noticed that.

The following shows a Makefile for Tr5c.cpp.

CC = g++ -W -Wall -ansi -pedantic -Wformat-nonliteral “

-Wcast-align -Wpointer-arith -Winline -Wundef “

-Wcast-qual -Wshadow -Wconversion -Wwrite-strings “

-ffloat-store -O2

all: Tr5c

funs.o: funs.cpp funs.h

Tr5c.o: Tr5c.cpp funs.h

Tr5c: Tr5c.o funs.o

test: all

./Tr5c

clean:

rm -f *.o *˜ *.t *.gch *.exe Tr5c

The standard practice is to name this file Makefile, then invoking

make

causes exe to be built: all programs compiled and linked. Make takes care of dependencies, e.g. if
funs.o and funs.o already exist, make will not recompile them. On the other hand, if they exist,
but if, say, Tr5c.cpp has changed since the last compilation to Tr5c.o, then make will recompile
Tr5c.cpp, but not funs.c.

In the example above,

make clean

will delete the .o files, and other temporaries and executables.

Make is very much part of UNIX and Linux; it’s handy to know that it exists, for if you ever
download a program for Linux as source (need to be compiled and built), you will encounter a
Makefile.

Another point, because of its complex syntax, people rarely create a Makefile from scratch; find
a template Makefile (one that works!) that is close to what you require and change bits to suit.
Be careful with the places where the TAB syntax matters.

2–28

2.10.5 Interpreted Languages

The chief difference between a compiler and an interpreter is as follows. A compiler translates
from one language source to some other object language. At its simplest, an interpreter takes a
program and executes it.

When you create an interpreted language program (lets call the language Basic, you get a choice:
you can compile and create an .exe file much as described above.

If you run the Basic program in interpreted mode, then something quite different happens. There
is an interpreter program (let’s call it basinterp) which reads the source and executes it directly.
basinterp has its own fetch-decode-execute cycle running.

We have something like the following, grossly simplified, assuming that we are dealing only with
instructions of the form result = num1 operation num2 .

int operand1, operand2, result;

String line;

f= open(prog1.bas);

while(NOT end-of-file(f))

line = readLine(f); /*fetch next line*/

decode ’line’ to produce:

- operation

- operand1, operand 2

/* execute */

if(operation==’+’)result= operand1 + operand2;

else if(operation==’-’)result= operand1 - operand2;

else if(operation==’/’)result= operand1 / operand2;

else if(operation==’*’)result= operand1 * operand2;

else if(operation==’F’)result= fred(operand1, operand2);

else /* etc */

assign ’res’ to actual result variable.

and go back for more ...

˝

2.10.6 Java — Compiler AND Interpreter

Java is interpreted, but its interpretation is a little different from that described for Basic. Java
programs go through a compiler and an interpreter. When you compile a Java program (e.g.
prog1.java), you produce a file prog1.class which contains Java byte-code. Java byte-code

2–29

is sort-of like machine code, which is interpreted by a Java interpreter program called Java Virtual
Machine(JVM).

So, we have a Java compiler, which produces the byte-code; then we have the Java interpreter
program, the JVM, which applies its version of the fetch-decode-execute cycle; Of course, the
Java Virtual Machine is software.

Since the JVM is software, any computer can execute Java byte-code as long as they have the
JVM interpreter program.

From the point of view of Operating Systems, you could think of the JVM as another layer on top of
the operating system, and below the applications. Indeed, the JVM provides operating-system-like
facilities, like support for concurrency (multitasking).

Another operating-system-like facility provided by the JVM is its treatment of applets. Applets
are Java byte-code (executable) programs meant primarily for downloading over the Internet by
web-browsers and executed directly by the browser running the JVM. Now, this would normally
be a recipe for disaster, and you would fear all sorts of viruses and malicious programs. However,
rather like an operating system with its privileged and user modes, the JVM has a special mode
for executing applets. For example, applets may not access disk files.

2.10.7 Java — Dynamic Linking

You will notice that a Java .class file may be a lot smaller than the equivalent C++ executable.
This is because Java does not build a great big executable that contains everything — including
local and system library code; Java keeps the class files separate and loads them into memory only
as needed — dynamic linking.

2.10.8 Java Enterprise Edition (J2EE) and .NET

A JVMs runs on a single machine. In these days of the Internet, people and enterprises often want
to do something called distributed computing, i.e. a set of cooperating processes, (see Operating
Systems course), executing on separate machines connected via a network (such as the Internet).
This is all the easier if the processes are all running on JVMs. Add a bit of Internet glue and you
have J2EE.

Where are Microsoft in all this? When Java (developed and owned by Sun Microsystems) became
successful, Microsoft did not like it. They attempted to create an extended Java of their own; but
Sun forbade them. Then came the success of Java distributed computing. So Microsoft designed
their own version of J2EE — called .NET. C# (pronounced “C-sharp”) is Microsoft’s attempt at
Java. Like Java, C# is compiled to a sort of byte-code, and executed on a virtual machine. The
is a .NET version of VisualBasic.

2.10.9 Ultimately, All Programs are Interpreted

If you think about it, in computing, interpreters (in general) crop up everywhere. In addition to
the examples we have mentioned:

2–30

• The operating system shell (e.g. Windows cmd) fetches and decodes your commands, and
then gets the kernel to do the executing;

• The hardware processor itself is an interpreter; in fact, if you look at the microprogram that
runs Mac-1, you will clearly see that the program performs a fetch-decode-execute cycle.
And even if the processor is controlled by hardware rather than a microprogram, then the
hardware will, in its own way, be performing interpretation.

2.11 Summary

This chapter has given a quick tour of C++ syntax, certain basic facilities, and compilation and
linking and make.

2–31

Chapter 3

Variables, Types, etc. in C++

3.1 Introduction

This chapter discusses the elementary types provided by C++ (int, float etc.), together with
operators and expressions involving them. We call these built-in types to distinguish them from
types formed by classes.

We mention also the standard library types (C++ classes) string (very like Java’s String) and
vector (very like Java’s ArrayList).

We leave record (aggregate) types, i.e. structs), until a later chapter.

3.2 Variable names

A variable name is made up of letters and digits; it must start with a letter; underscore ˙ is also
allowed. Note C++ keywords, you cannot use them for names, though they can be part of names.

The world of programming is sharply divided by people’s preferences in variable naming, especially,
multi-word names; some choices:

(i) Underscore separators, e.g. multi˙word˙name;

(ii) Uppercase for inner names, e.g. multiWordName;

(iii) Hungarian notation – favoured by Microsoft, which is a special case of (ii), with the first few
letters used to code the type and any special use of the variable.

I now prefer (ii), with partial use of (iii) for pointers – each pointer name begins in p.

Note that style and consistency affect readability – and that is as important as syntactic correctness.

C++ is case sensitive. Although case has no syntactic significance, typical uses of case are:

• As above, lower-case for first word, upper-case for leading letter of remaining words – if any;

3–1

• Upper-case for leading letter of class names.

• Upper-case for all letters of #define symbolic-constant, e.g. #define BIGNUM 1000.

For class data members, I follow the FAQ (Cline, Lomow & Girou 1999b) and use a trailing
underscore, e.g. int sec˙;.

3.3 Elementary Data Types and Sizes

The C++ built-in type system is less rich than some other programming languages. If we ignore
pointers, there are just two basic categories:

• Integer types, which represent whole numbers, both positive and negative.

• Floating point types, which represent numbers that have fractional parts.

Within these two categories, the different types differ only by the range of numbers represented
— which depends on the size of the representation (number of bytes / bits used) and whether the
representation is signed or unsigned. In allowing the signed qualifier, C++ departs from what you
are accustomed to in Java.

3.3.1 Integer types

Integer types can be either signed (default) or unsigned. A signed type has the range [-
min..max], e.g. signed char [-128..+127]; an unsigned has the range [0..max], signed char
[0..+255].

signed is the default, so that char c has the range [-128..127].

• char. Typically represented by a byte (8-bits). Suitable for holding single text characters or
small integers. Hence, there is nothing to stop you doing arithmetic on them.

• int. Typically represented by either 16-bits (range [-32,768..+32,767]) or 32-bits. Again,
signed is the default, so that signed int i; is equivalent to int i;

• long int, or simply long. Typically represented by 32-bits. As usual, signed is the default.

• bool. Also an integer type. Although bool has values false, true, C++ does little to disguise
that these are represented by values 0, 1, respectively. If you assign a bool to an int, you
get either 0 or 1. If you assign an int to a bool, any value other than 0 will convert to
true, while 0 will convert to false. This is demonstrated by program bool.cpp.

3–2

//----- bool.cpp ----------------------------------

// tests bool type.

// j.g.c. 9/2/97, 7/2/99, 2006-09-13

//---

#include ¡iostream¿

using namespace std;

int main()

–

bool b; int i;

b = true;

cout¡¡ ”bool b = true: ”¡¡ b¡¡ endl;

b = false;

cout¡¡ ”bool b = false: ”¡¡ b¡¡ endl;

b += 22;

cout¡¡ ”b+=22: ”¡¡ b¡¡ endl;

i = false + 22;

cout¡¡ ”i=false+22: ”¡¡ i¡¡ endl;

i = true + 22;

cout¡¡ ”i=true+22: ”¡¡ i¡¡ endl;

return 0;

˝

Output.

bool b = true: 1

bool b = false: 0

b+=22: 1

i=false+22: 22

In general, in C++ you must be careful about overflowing integer types. In the example shown in
program char.cpp, the variable unsigned char u increments satisfactorily between 0 and 255.
But char c and signed char s go badly wrong at 127; if you are careless of problems like this,
they can lead to very confusing errors.

//----- char.cpp ----------------------------------

// tests overflow of char, unsigned char and signed char.

// also shows some limits

// j.g.c. 2006-09-13

//---

#include ¡iostream¿

3–3

#include ¡climits¿

#include ¡cfloat¿

using namespace std;

int main() –

char c,x; unsigned char u; signed char s;

int i;

cout¡¡ ”CHAR˙MAX = ”¡¡ CHAR˙MAX¡¡ endl;

cout¡¡ ”CHAR˙MIN = ”¡¡ CHAR˙MIN¡¡ endl;

cout¡¡ ”SCHAR˙MAX = ”¡¡ SCHAR˙MAX¡¡ endl;

cout¡¡ ”SCHAR˙MIN = ”¡¡ SCHAR˙MIN¡¡ endl;

cout¡¡ ”UCHAR˙MAX = ”¡¡ UCHAR˙MAX¡¡ endl;

cout¡¡ ”SHRT˙MAX = ”¡¡ SHRT˙MAX¡¡ endl;

cout¡¡ ”SHRT˙MIN = ”¡¡ SHRT˙MIN¡¡ endl;

cout¡¡ ”INT˙MAX = ”¡¡ INT˙MAX¡¡ endl;

cout¡¡ ”INT˙MIN = ”¡¡ INT˙MIN¡¡ endl;

cout¡¡ ”INT˙MAX = ”¡¡ UINT˙MAX¡¡ endl;

cout¡¡ ”FLT˙MAX = ”¡¡ FLT˙MAX¡¡ endl;

cout¡¡ ”FLT˙MIN = ”¡¡ FLT˙MIN¡¡ endl;

cout¡¡ ”DBL˙MAX = ”¡¡ DBL˙MAX¡¡ endl;

cout¡¡ ”DBL˙MIN = ”¡¡ DBL˙MIN¡¡ endl;

for(i=s=c=u=0; i¡16;i++)–

for(int j=0;j¡16;j++,u++,c++,s++)–

cout ¡¡ ”u = ”¡¡ int(u);

cout ¡¡ ”, c = ”¡¡ int(c);

cout ¡¡ ”, s = ”¡¡ int(s)¡¡ endl;

˝

cout¡¡ ”type any char + enter:”; // just to pause the loop

cin¿¿ x;

˝

return 0;

˝

At the beginning, everything goes fine:

u = 0, c = 0, s = 0

u = 1, c = 1, s = 1

u = 2, c = 2, s = 2

...

3–4

u = 14, c = 14, s = 14

u = 15, c = 15, s = 15

type any char + enter:

But when we get to 127 odd things happen:

u = 125, c = 125, s = 125

u = 126, c = 126, s = 126

u = 127, c = 127, s = 127

type any char + enter:c

u = 128, c = -128, s = -128

u = 129, c = -127, s = -127

u = 130, c = -126, s = -126

3.3.2 Floating-point types

• float. Typically 32-bit IEEE floating point.

• double. Typically 64-bit IEEE floating point.

These are always signed.

3.3.3 Implementation Dependencies

¡climits¿, ¡cfloat¿ contain symbolic constants that specify the limits and sizes of the integer
and floating point types on the current implementation, see char.cpp above. If you really want
to bullet-proof your software against differing representations — to make it portable — you may
need to know about these.

3.4 References

A reference, serves as an alternative name for the object with which it has been initialised. The
definition of a reference must specify an initialisation.

Example:

int x = 10; //’plain’ int

int& r = x; //reference

x is defined as an ordinary int; subsequently, r is defined as a reference, and initialised with x.

Think back to Java.

3–5

String s = new String(”Hello”); // s is a reference to an object

// containing ”Hello”;

String t = s; // t is a reference to the same object

Defining a reference without initialisation results in a compiler error:

int& r; //compiler error: reference not initialised

All operations applied to the reference act on the variable to which it refers, i.e. the same as with
Java objects:

r = r+ 2;

adds 2 to x, now x == 12.

Thus, a reference is a true alias; since most computer science warns of the problems of aliases,
why references? The only valid use for references that I have come across is in reference parameter
passing in functions.

Recall that C++ defaults to pass-by-value / pass-by-copy, so that in the example below, the
parameters a, b are copies of the actual arguments: any alteration of a, b will not be reflected
in the calling program. However, c is different, it is a reference which is initialised with the actual
parameter. Hence, c is an alias for the actual parameter, and any changes to c, will also be
changes to the actual argument – in the calling program.

void addf(float& c, float a, float b)

–

c = a + b;

˝

float x= 1.3, y= 4.5, z= 10.2;

addf(z, x, y);

// now z== 5.8

Reference parameters have an additional advantage that they remove any performance penalty
caused by passing (copying) large objects. In such a case, some safety can be ensured: if a reference
parameter is not modified within the function, it can be declared with the const modifier.

3.5 Arrays

For any type T, the definition

T a[n];

defines an array containing n elements of type T.

e.g. float x[10];//10 floats.

Array elements are indexed as, e.g x[5] = 5.0 places 5.0 in the fifth element of x[]; but fifth
only if you start counting at zeroth: the indices of float x[10] go 0, 1, . . . , 8, 9. The C++
idiom for traversing such an array is:

3–6

for(int i=0; i¡10; i++)–

x[i] = float(i); //for example

˝

Multi-dimensional arrays int j[4][15];

declares an array with 4 elements, and each of these is itself an array of 15 ints.

The tenth element of the second (again counting from zero!) is indexed as:

j[2][10]

N.B. NOT j[2,10].

Unfortunately, the latter is legal, but a different thing altogether.

Arrays and functions Arrays passed to functions are always passed by reference, see above.

Pointers and arrays As noted in section 3.6.1, in C++ pointers and arrays are very closely
related. In fact, the previous fragment can legally be replaced by

for(int i=0; i¡10; i++)–

*(x+i) = float(i);

˝

But try to avoid this style – it makes your program hard to read, and it does not make it run faster.

Arrays as function parameters When an array, e.g. int a[10] is passed to a function, e.g.
fred(a), it decays to a pointer; this is one way of viewing the fact that arrays are not passed by
value.

3.6 Pointers

3.6.1 Introduction

In any high-level language, pointers are something of a necessary evil. In some languages, their
role is quite restricted: they are used only as a method of accessing memory allocated dynamically
off the heap, the pointer is used as a reference for the allocated memory — which is otherwise
anonymous. Java has managed to avoid them altogether — because, in Java, all identifiers, except
those which identify elementary variables (int, float, etc.) are references (rather than values).

In C++, a pointer can point to any sort of memory, they are the C++ embodiment of machine
language addresses. It is common to use the term address as a synonym for pointer ; nevertheless,
taken literally, this is usually unhelpful.

3–7

For many reasons, including the syntax for declaring them, pointers in C++ and C are known to
be difficult and error prone.

There are two primary uses for pointers in C++:

• As references for anonymous memory allocated dynamically off the heap – using operator
new; in C, the equivalent is malloc.

• In C++, as in C, pointers are closely related to arrays. For example, as already mentioned
in the previous section, when an array is passed to a function the array reference decays to a
pointer. There are other cases where arrays and pointers are indistinguishable, but to dwell
on this matter would introduce unnecessary detail and possibly recommend bad habits.

In C, pointers had to be used to provide a sort of programmed pass-by-reference for functions.
Fortunately, C++ has references, see above, which are much more suitable for this purpose.

3.6.2 Declaration / Definition of Pointers

Pointers are defined as in the example below:

int* pi; // pi is of type: pointer-to-int

float* pf; // pf is of type: pointer-to-float

char* s; // s is of type: pointer-to-char

It is most important to realise that there are two parts to a pointer type declaration:

• The fact that it is a pointer.

• Its base type, e.g. pi pointer-to-int.

3.6.3 Referencing and Dereferencing Operators

Reference Operator & When applied to a variable, & generates a pointer-to the variable. Some
books say ’address-of’ – Okay so long as you don’t take it too literally, e.g. attempt to use the
’address’ as a numeric address; this may be more natural, owing to the aampersand sign.

Example:

int* p;

int c;

p = &c; // causes p to point-to c.

3–8

Dereference operator * * dereferences a pointer, i.e. it obtains the value of variable / object
that a pointer points-to – it simply reverses the action of &; i.e. d = *(&c); is equivalent to
d = c;.

Example:

int* p; int c, d;

p = &c;

d = *p; //d now has the same value as c.

Beware of Confusion The overloading of *, with two quite separate uses:

• Declare pointer-to – in a declaration, e.g. int* p;. p is a pointer.

• Dereference – in an expression, e.g. int i = *p;. p is a pointer, but *p is an int!

is most confusing to those new to C++ and C.

Uninitialised and dangling pointers Defining a pointer creates the pointer itself, but it does not
create the object pointed-to. Moreover, defining a pointer does not initialise it, hence it can point
anywhere. Thus,

int *p;

creates a pointer, which is initialised to some random value, i.e. it could point at a location in free
memory, part of your program, or anywhere. Now,

*p=10;

causes the value 10 to be written to the location p points to. Unless this is free memory, this may
cause your world as you know it may come to an abrupt end. Fortunately, the memory management
of Linux will usually trap a severe violation, resulting in program halt and the message segmentation
error.

A dangling pointer is similar in effect. Consider the function fred:

int* fred(int a) /*fred returns a ’pointer to int’ */

–

int* p; int b;

b=a+33;

p=&b; /*p ’points to’ b */

return p;

˝

caller:

3–9

int*pa; int c,d;

...

pa=fred(c);

This looks fine, but, whenever control returns from fred to its calling point, b gets destroyed;
consequently, pa points to something that doesn’t exist.

3.6.4 Pointers and Arrays

As mentioned in section 3.6.1, pointers are sometimes used interchangeably with arrays; not the
best thing, but it happens and you must be able to read code that does it.

Example.

int* pi;

int x, z[10];

pi = &z[0]; /*pi points to the first element of z*/

x = *(pi+2); /*same as x=z[2]*/

pi = pi+4; /*pi now points at z[4]*/

x = *pi; /* x gets z[4] */

It is crucial to understand that pi=pi+4 doesn’t add 4 to whatever address value of pi; if you
must think in addresses, it adds 4 x sizeof(int) to pi, where sizeof(int) gives the size of
the memory cell used by int.

So, if you increment a pointer p that points to a float (say), or. more properly an array of float,
then the compiler will increment p appropriately.

Note: &z[4] and z+4,

have exactly the same pointer values.

3.7 Strings in C++

3.7.1 Introduction

In C, there is no native ‘text-string’ type; and that was also the case in C++ until ten years ago.
The was a convention to use a null-terminated (’“0’) array of char; these we call a ‘C-strings’;
C-strings present some problems, all of them to do with C’s (and C++’s) low level view of arrays,
see section 3.6.1.

The C++ standard library has improved the situation by including a string class, which provides
a much safer and higher-level text-string implementation. I will introduce standard string in the
subsection following.

I advise that standard string be used where possible, but for the sake of tradition and because
there are situations where they may still be heavily used, I’d better cover C-strings in some detail.

3–10

3.7.2 C-strings

We note again that C-string, e.g. ”this is a string”, is not a native type. There are two sets
of support for this convention:

• The strXXX functions, whose prototypes are in ¡cstring¿, that use null-terminated char-
acter arrays as strings, eg. strlen(s) returns the length of s, i.e. the number of characters
up to the null terminator.

• Strings delimited by double-quotes, e.g. ”qwerty”, are accepted as string constants.
char s[] = ”qwerty”; is represented in memory as seven characters:

q w e r t y “0; don’t forget the “0 – a very common error.

We have not yet covered pointers, but it is worth pointing out that char *s;

has a lot in common with

char s[7];

Example:

char s[10];

s[0]=’a’; s[1]=’b’; s[2]=’“0’;

cout¡¡ s¡¡ endl;

causes ab to be printed on the screen.

Note that,

string = ”ab”;

is not allowed, because whole arrays cannot be assigned, instead, you must use

strcpy(string,”ab”);

The following example implementations of strcpy, show, not only how null-terminated char arrays
as used as strings, but also how

char s[]; and char* s;

are used interchangeable. char* == string is such an idiom in C++ and C that char * is
synonymous with string. Nevertheless, we will have cause to develop a String class, with more
secure properties.

Simple char array.

/*--- copies f(from) to t(to) ----*/

void strcpy(char t[], char f[])

–

int i=0; char c;

3–11

c=f[i];

t[i]=c;

while(c!=’“0’)–

c=f[i];

t[i]=c;

i=i+1;

˝

˝

Using a common C / C++ idiom.

void strcpy(char t[], char f[])

–

int i=0;

while((t[i]=f[i])!=’“0’)

i++;

˝

Using pointers.

void strcpy(char *t, char *f)

–

while((*t=*f)!=’“0’)–

t++; f++;

˝

˝

Fancier still, and more cryptic.

void strcpy(char *t, char *f)

–

while((*t++=*f++)!=’“0’)

;

˝

Finally – making use of the fact that ’“0’ has the value 0 and that 0 is false.

void strcpy(char *s, char *t)

–

while(*s++=*t++)

;

˝

When using character arrays as strings, you must take the utmost care to ensure that you do not
overflow the array. Indeed, it is a common error to treat an uninitialised char pointer (see above)
as a character array / string – the problem is that, whilst it is acceptable as the equivalent to an
array, it is of zero length!

3–12

3.8 Standard String Class

As mentioned in the previous subsection, standard string is now, with the advent of the Standard
Library, becoming a more common way of handling text-strings.

Since string is a class, we again touch on classes before we have dealt with them in detail. But
don’t worry, except for a minor point, string can be treated largely like a native type. In chapter
13, we will mention the development of our own string class.

Program hellostd.cpp shows a version of Hello, world!” that uses the standard string.

//----- hellostd.cpp ------------------------------

//Hello, World using Std lib. ’string’

//j.g.c. 5/1/98

//---

#include ¡iostream¿

using namespace std;

int main()

–

string s1=”Hello”;

string s2=”world”;

string s3;

cout¡¡ s1¡¡ endl;

cout¡¡ s2¡¡ endl;

cout¡¡ s3¡¡ endl;

s3= s1 + s2;

cout¡¡ s3¡¡ endl;

s3+= s1;

cout¡¡ s3¡¡ endl;

return 0;

˝

Dissection of hellostd.cpp

1. string s1=”Hello”; defines an object s1 that is an instance of standard class string.
It initialises it with ”Hello”. ”Hello” happens to be a C-string, but C++ can handle the
conversion – just as it can convert int to float.

2. string s3; defines a string s3 and initialises it to an empty string.

3. cout¡¡ s1¡¡ endl; writes s1 to the screen. We will see more details of this later, but
suffice to say that string provides an overloading of the operator ¡¡; similarly ¿¿.

4. s3= s1+ s2; and s3+= s1; are further examples of operator overloading, in this case + is
overloaded as a concatenation operator.

3–13

3.9 Vector

The name vector here has almost nothing to do with the vectors that we use in graphics.

In addition to string and a pile of other useful types, the C++ standard library includes an array
class called vector. Java programmers should think of ArrayList. In general, vector is a lot
safer to use than a built-in array.

When you declare a vector container you must declare the type of its contents, for example,
vector¡double¿ v1;, i.e. the declaration has a type parameter. The use of the type parameter is
an example of something called template in C++ and generic in Java. The next section contains
a brief introduction to templates.

The program below gives a comparison of built-in arrays with vectors; it show also how to use
iterators and the sort algorithm.

//------ VectorTest2.cpp --------------------------

// tests of std::vector

// j.g.c. 2003/02/20, 2006-09-13

//---

#include ¡iostream¿ // for cout¡¡ etc.

#include ¡algorithm¿ // for sort

#include ¡vector¿

#include ¡cstdlib¿ // for rand

using namespace std;

int main()

–

const int n= 10; unsigned int rnseed= 139;

double d[n];

srand(rnseed); // initialise random number generator.

//cout¡¡ ”Max. random number= ”¡¡ RAND˙MAX¡¡ endl;

for(int i= 0; i¡ n; i++)–

d[i]= (double)rand()/(double)RAND˙MAX; // numbers in 0.0 to 1.0

˝

cout¡¡ ”“nArray of random numbers“n”¡¡ endl;

for(int i= 0; i¡ n; i++)–

cout¡¡ d[i]¡¡ ” ”;

˝

cout¡¡ endl;

vector¡double¿ v1;

for(int i= 0; i¡ n; i++)–

v1.push˙back(d[i]);

˝

cout¡¡ ”“nIterating through vector, one way “n”¡¡ endl;

vector¡double¿::iterator iter;

3–14

for(iter = v1.begin(); iter!= v1.end(); iter++)–

cout¡¡ *iter¡¡ ” ”;

˝

cout¡¡ endl;

cout¡¡ ”“nIterating through vector, another way “n”¡¡ endl;

for(int i = 0; i¡ n; i++)–

cout¡¡ v1[i]¡¡ ” ”;

˝

cout¡¡ endl;

sort(v1.begin(), v1.end());

cout¡¡ ”“nSorted vector“n”¡¡ endl;

for(int i = 0; i¡ n; i++)–

cout¡¡ v1[i]¡¡ ” ”;

˝

cout¡¡ endl;

reverse(v1.begin(), v1.end());

cout¡¡ ”“nReverse sorted vector“n”¡¡ endl;

for(int i = 0; i¡ n; i++)–

cout¡¡ v1[i]¡¡ ” ”;

˝

cout¡¡ endl;

cout¡¡ ”“nFront, back elements of vector, and size()“n”¡¡ endl;

cout¡¡ v1.front()¡¡ ” ”¡¡ v1.back()¡¡ ” ”¡¡ v1.size();

cout¡¡ endl;

cout¡¡ ”“nYou can modify the vector (x 10.0)“n”¡¡ endl;

for(int i = 0; i¡ n; i++)–

v1[i] = v1[i]*10.0;

˝

for(unsigned int i = 0; i¡ v1.size(); i++)–

cout¡¡ v1[i]¡¡ ” ”;

˝

cout¡¡ endl;

cout¡¡ ”“nYou can have vectors of strings“n”¡¡ endl;

vector ¡string¿ v2;

v2.push˙back(”The”); v2.push˙back(”quick”);

v2.push˙back(”brown”); v2.push˙back(”fox”);

v2.push˙back(”jumped”); v2.push˙back(”over”);

v2.push˙back(”the”); v2.push˙back(”lazy”);

v2.push˙back(”dog’s”); v2.push˙back(”back”);

for(unsigned int i = 0; i¡ v2.size(); i++)–

cout¡¡ v2[i]¡¡ ” ”;

3–15

˝

cout¡¡ endl;

sort(v2.begin(), v2.end());

cout¡¡ ”“nSorted“n”¡¡ endl;

for(unsigned int i = 0; i¡ v2.size(); i++)–

cout¡¡ v2[i]¡¡ ” ”;

˝

cout¡¡ endl;

cout¡¡ ”“nYou can assign vectors “n”¡¡ endl;

vector¡string¿ v12 = v2;

for(unsigned int i = 0; i¡ v12.size(); i++)–

cout¡¡ v2[i]¡¡ ” ”;

˝

cout¡¡ endl;

cout¡¡ ”“nYou can remove elements from vectors “n”¡¡ endl;

remove(v12.begin(), v12.end(), ”lazy”);

for(unsigned int i = 0; i¡ v12.size(); i++)–

cout¡¡ v12[i]¡¡ ” ”;

˝

cout¡¡ endl;

cout¡¡ ”“nYou can search vectors “n”¡¡ endl;

vector¡string¿::iterator it;

it= find(v12.begin(), v12.end(), ”fox”);

cout¡¡*it¡¡ endl;

cout¡¡ ”“n... and then erase that element “n”¡¡ endl;

v12.erase(it);

for(unsigned int i = 0; i¡ v12.size(); i++)–

cout¡¡ v12[i]¡¡ ” ”;

˝

cout¡¡ endl;

vector¡string¿ v22;

cout¡¡ ”“nYou can copy using copy, but use resize first “n”¡¡ endl;

v22.resize(4);

copy(v12.begin(), v12.begin()+3, v22.begin());

for(unsigned int i = 0; i¡ v22.size(); i++)–

cout¡¡ v22[i]¡¡ ” ”;

˝

cout¡¡ endl;

vector¡ vector¡string¿ ¿ vv;

cout¡¡ ”“nYou can have vectors of vectors, but use ¿ ¿ in decl. “n”¡¡ endl;

vv.push˙back(v2);

vv.push˙back(v12);

3–16

vv.push˙back(v22);

for(unsigned int i = 0; i¡ vv.size(); i++)–

cout¡¡ ”vector ”¡¡ i¡¡”: ”;

for(unsigned int j = 0; j¡ vv[i].size(); j++)–

cout¡¡ vv[i][j]¡¡ ” ”;

˝

cout¡¡ endl;

˝

cout¡¡ endl;

return 0;

˝

3.10 Templates, brief introduction

When you declare a vector container you must declare the type of its contents, for example,
vector¡double¿ v1;, i.e. the declaration has a type parameter. The use of the type parameter
is an example of something called template in C++ and generic in Java. This section contains a
brief introduction to templates.

The major use of templates is in collection classes; we are not yet ready to develop our own
collection class, so for the meanwhile we’ll have to get by with the template examples here and in
the section that introduces vector (section 3.9).

3.10.1 Template Functions

Overloaded Functions

The two overloaded swap functions shown below clearly invite use of a type parameter.

void swap(int& a, int& b)–

int temp = a; a = b; b = temp;

˝

void swap(float& a, float& b)–

int temp = a; a = b; b = temp;

˝

Overloading function names – Ad Hoc Polymorphism The overloading of function names is
yet another example of polymorphism, in this case called ad hoc polymorphism. It is called ad hoc
because, even though the name of the function (swap) is the same, there is nothing to ensure that
they are similar in other than name; e.g. we could define int swap(String s) which gives the
length of the String!

3–17

Template Function

A template version of swap is shown below:

template ¡class T¿ void swap(T& p, T& q)

–

T temp = p; p = q; q = temp;

˝

The program swapt.cpp shows use of this swap. Here, we are able to swap ints, floats, and
String objects. In the case of user defined classes, the only requirement is that the assignment
operator = is defined.

//--- swapt.cpp ----------------------------

// j.g.c. 10/4/97, 2/5/98, 14/1/99

//--

#include ¡iostream¿

#include ¡string¿ // using std string

template ¡class T¿ void swap(T& p, T& q)–

T temp = p; p = q; q = temp;

˝

int main()

–

int a = 10, b = 12;

float x = 1.25, y = 1.30;

cout¡¡ ”a, b = ”¡¡ a¡¡ ” ” ¡¡ b¡¡ endl;

swap(a, b);

cout¡¡ ”a, b (swapped) = ”¡¡ a¡¡ ” ” ¡¡ b¡¡ endl;

cout¡¡ ”x, y = ”¡¡ x¡¡ ” ” ¡¡ y¡¡ endl;

swap(x, y);

cout¡¡ ”x, y (swapped) = ”¡¡ x¡¡ ” ” ¡¡ y¡¡ endl;

string s1(”abcdef”), s2(”1234”);

cout¡¡ ”s1 = ”¡¡ s1¡¡ endl; cout¡¡ ”s2 = ”¡¡ s2¡¡ endl;

swap(s1, s2);

cout¡¡ ”swapped: ”;

cout¡¡ ”s1 = ”¡¡ s1¡¡ endl; cout¡¡ ”s2 = ”¡¡ s2¡¡ endl;

return 0;

˝

3–18

3.11 Polymorphism – Parametric

Templates are another form of polymorphism; using templates one can define, for example a
polymorphic List – a List of int, or float, or string, etc... Likewise we can define a polymorphic
swap. Unlike the polymorphism encountered in chapter 11 (Person and Cell class hierarchies),
the type of each instance of a generic unit is specified at compile time – statically.

Hence, the polymorphism offered by templates is called parametric polymorphism.

3–19

3.12 Constants and their Types

• 1234 is an int; 123456L (or l) is long.

• 0x42 is hexadecimal ; 037 is octal.

• ’x’ is signed char.

• ”x” is a string constant, see above.

• Mixing up ’x’ and ”x” is a common error – and can be difficult to trace.

• 123.4 is double, i.e. floating-point constants default to double.

3.13 Declaration versus Definition

In C++ and C, it is common to make a distinction between declaration and definition.

• A declaration declares the properties of a variable or function.

• A definition both declares and allocates space for variables, or declares a function and defines
it what does.

const qualifier Declaring a variable const means it cannot be the target of an assignment; eg.
const int limit = 999;, any later statement of the form limit = ... will generate a compiler
error.

3.14 Arithmetic Operators

+, -, *, /, %+;

% is modulus — remainder after division; e.g. 5%3 -¿ 2.

/ is division; it means something different (or sort of different) whether we are using it on int or
float; in integer, it truncates the result; e.g. 5/3 -¿ 1.

3.15 Relational and Logical Operators

Relational operators between arithmetic types:

¿, ¿=, ¡, ¡=, ==, !=

3–20

Logical operators on logical (bool):

• —— – inclusive or.

• && – and.

• ! – unary complement. !true -¿ false.

3.16 Type Conversions and Casts

C, and to a lesser extent, C++, are quite liberal about mixed-mode expressions, there
is automatic promotion from narrower to wider ; the promotion ranking is something like:
char, int, long, float, double.

In an expression, or a sub-expression delimited by (...), all components are implicitly cast to
the widest type that is present in the expression.

It is often better, from the point of view of readability and for debugging, to use an explicit type
conversion, e.g. float(2).

Casts versus conversion functions Whilst C used cast operators, e.g (float)2, C++ has, in
addition, conversion functions, e.g. float(2). C++ has other casts that we will deal with later.

3.17 Assignment Operators and Expressions

For most binary operators, e.g. +, -, *, /, there is a corresponding assignment operator.

Thus, i+=2; is equivalent to i=i+2;.

The general form is ¡op¿=,

where ¡op¿ is one of:

+, -, *, /, %, ¡¡, ¿¿, &, ˆ, —.

3.18 Increment and Decrement Operators

The pre-increment expression ++n is equivalent to n+=1 (see above), which in turn is equivalent to
n = n + 1.

Recall: any assignment statement is also an expression, e.g. a = b = 0;

The post-increment expression n++ is different, but only subtly. Compare:

3–21

n = 5; n = 5;

x = n++; x = ++n;

//here x==5 the old value //here x==6 the new value of n

//n==6 in both cases

There are also -- (decrement) operators.

3.19 Conditional Expressions

if(a¿b)

z = a;

else

z = b;

can be replaced with:

z = (a ¿ b) ? a : b;

The general form for a conditional expression is:

(¡logical expression¿) ? ¡expr1¿:¡expr2¿

If the logical expression is true, the value of the expression is expr1, otherwise the value is expr2.

3.20 Bitwise Operators

• Bitwise and : &.

• Bitwise or : —.

• Bitwise exclusive-or : ˆ.

• Bitwise unary ones-complement: ˜.

• Shift left by n bits: ¡¡n.

• Shift right by n bits: ¿¿n.

Bitwise operators can be used only on operands of the integer family. Be careful to distinguish
from logical - boolean operators: &&, ——.

3.21 Precedence and Order of Evaluation of Operators

My advice is, if in the slightest doubt, use brackets. If necessary, see (Stroustrup 1997b).

Note: when you overload an operator in a class, e.g. + (covered later), the operator retains its
original precedence.

3–22

Chapter 4

Control Flow

4.1 Introduction

I think that this chapter has very little that is new for Java programmers.

As in Java and other block structured programming languages, we normally have the following flow
of control constructs:

Sequence The normal stepping through from one statement to the next;

Selection To enable selection, for the next statement or block, from amongst a number of possi-
bilities.

Repetition Repetition of a single statement or of a block. These may be deterministic, such as
for(...)), or non-deterministic, such as while(...), and do...until.

C++ also has goto, break, and continue which can be used for unstructured interruptions of
control flow.

4.2 Statements and Blocks

Block A block, or compound-statement is a group of statements enclosed in –...˝. Syntacti-
cally, a block may replace a single statement. Actually, in C++, as in C, a block has an associated
activation and scope; in that sense it is like a function, but without parameters.

In what follows, we will tend to use the term statement to signify either compound or single
statement – always understanding that a compound statement can take the place of a single
statement.

In addition, statement includes selection and repetition statements – including the statements or
blocks that they govern.

It is worth noting too that, syntactically, ; is a statement – a null statement, that does nothing.

4–1

4.3 Selection

4.3.1 Two-way Selection – if else

if (¡logical expression¿)

¡statement1¿ //performed if expression true

else

¡statement2¿ //performed if false

Remark: recall that C++ doesn’t really differ between numeric values and logical values: any
non-zero (including negative) value is taken as true, a zero value (including a NULL pointer value)
is taken to be false.

4.3.2 Multi-way Selection - else if

Actually, else if is not a separate construct, it is just an else that happens to be governing an
if statement,

The following is a multi-way selection: if ¡expr1¿ is true, ¡stmt1¿ gets executed; then ¡expr2¿
is evaluated and if true, ¡stmt1¿ gets executed;

. . .

Finally, if none of the previous is true, ¡stmt4¿ gets executed.

if(¡expr1¿)

¡stmt1¿

else if (¡expr2¿)

¡stmt2¿

else if (¡expr3¿)

¡stmt3¿

else

¡stmt4¿ //otherwise -- default

The previous construct – a so-called if-else ladder is well worth learning off – many programmers
prefer it to the more obvious, but more difficult to use switch, see below.

Note the indentation style suggested; since each rung of the ladder is essentially equal, even though
they are evaluated sequentially, there is no reason to further indent each else, indeed, to my mind,
to do so would confuse the reader of the program.

4–2

4.3.3 Multi-way Selection – switch - case

switch (¡expr¿)–

case ¡const-exp1¿: ¡stmnt(s)1¿ [break;]

case ¡const-exp2¿: ¡stmnt(s)2¿ [break;]

case ¡const-exp3¿: ¡stmnt(s)3¿ [break;]

default: ¡stmnt(s)d¿; [break;]

˝

¡expr¿ must evaluate to an integer; in addition, the case expressions must be a constant integer.

The switch is much the same as the if-else ladder in the previous section; there is, however, one
big difference, and one that can be a big trap to the unwary: upon executing (say) ¡stmnt(s)1¿,
above, control will fall-through into ¡stmnt(s)2¿ and ¡stmnt(s)3¿, etc. It will execute these
without evaluating any condition: it is not the case expressions that alter the flow of control, but
the switch.

If you don’t want this to happen, you must use the break; statement, which causes control to
jump to the end of the switch – to just outside the ˝ at the end.

4.4 Repetition

4.4.1 while

while(¡expr¿)

¡statement¿

First, ¡expr¿ is evaluated, if true ¡statement¿ is executed, then ¡expr¿ is evaluated again, and
so on

while(true) is do-forever – normally with a selection involving some form of exit, e.g. break.
This often appears as while(1).

The following program sums the first n integers,

#include ¡iostream¿

int main()

–

int i=1;sum=0;n=4;

while(i¡=n)–

4–3

sum+=i;

++i;

˝

cout¡¡ sum¡¡ endl;

˝

4.4.2 for

for(¡expr-init¿;¡expr-continue¿;expr-iter)

¡statement¿

is equivalent to

¡expr-init¿

while(¡expr-continue¿)–

¡statement¿

¡expr-iter¿

˝

for(;;)–...˝ is allowable and often used for do-forever, i.e. the same as while(true).

int a[n],i;

for(i = 0; i ¡ n; i++)a[i] = 0;

is the C++ idiom for traversing n elements of an array – since the array indices go
0, 1, 2, ..., n-1.

4.4.3 do - while

do

¡statement¿

while (¡expr¿);

¡statement¿ is always executed at least once;

4.5 break and continue

break causes the innermost enclosing repetition loop or switch to be exited immediately — to just
outside the ˝ at the end of the block.

continue causes the remainder of an iteration block to be bypassed and the next iteration to be
started immediately, i.e. avoiding the remainder of the current repetition.

4–4

4.6 goto and Labels

goto can cause a jump to any labelled statement, anywhere in the entire function. For example,

goto label1;

...

label1: i = 0;

...

In case you haven’t heard, goto is frowned upon, and in the vast majority of cases it can be avoided.

4–5

Chapter 5

C++ Program Structure

5.1 Introduction

As we know already, a C++ program can be constructed entirely of functions, i.e. unlike Java,
which requires all functions/methods to be members of classes. Java also requires execution to
proceed via object creation and object method calls; in C++ we can call functions on their own.

This chapter covers the definition, declaration and calling of functions.

5.2 Basics

We have covered most of this in Chapter 2, but some of it is worth repeating.

The syntax of the definition of a function is:

¡return-type¿ ¡function-name¿(¡parameter declarations¿)

–

¡declarations of local variables¿

¡statements¿

˝

Example.

int add(int a, int b) // a and b are also local variables

–

int value; //local variable

value = a + b;

return;

˝

5–1

return ¡expression¿;

returns the value of ¡expression¿ to the calling point, with ¡expression¿ being converted to
¡return-type¿ as necessary.

The caller can ignore the returned value – it is not a compilation error. Hence,

int x= 10,y= 20;

p = add(x, y);

add(x, y); //syntax okay, but not much use!

are both legal, i.e. syntactically correct, but the second isn’t very sensible — semantically.

In a definition, you must explicitly state void for ¡return type¿ if no value is returned; in this
case, return; is optional.

If there are no parameters, the parameter list can be replaced by and empty parameter list – () –
or by explicit (void). In C, the (void) is essential.

5.3 Declarations of Functions – Prototypes

In C++, all functions must be declared before they are called – analogous to variables.

Syntax:

¡return-type¿ ¡function-name¿(¡parameter declarations¿);

Example.

int add(int a, int b); //note the ; in the declaration

i.e. it has no implementation / body.

Function prototypes are a a bit of a nuisance, i.e. having to declare and define; as we know Java
eliminates the separate declaration. But it’s part of C++ and it won’t change.

Header Files for Libraries and Classes It’s a nuisance to have to declare many functions at the
top of a program, so it’s common practice to include all prototypes for a library or class in a header
file, and #include the appropriate header file where any of the functions is used.

In Chapter 2, we have already encountered a small library of functions contained in a source file
funs.cpp. In that case we put our prototypes in funs.h.

Then, we #include ”funs.h” at the declaration part of all source files that use any of the
functions in funs.

Thus, (a) you are saved a lot of typing, but more importantly, (b) you need maintain only one set
of prototypes.

5–2

5.4 Function parameters

5.4.1 Parameters

You can pass to functions values of the following types:

• All elementary types int, char, float, etc. . . .

• Pointers — to any type.

• References

• Records — structs

• Objects

• Arrays

There is no limit to the number of parameters that a function can have.

5.4.2 Pass-by-value parameters

In C++, the default parameter passing method is pass-by-value or sometimes called pass-by-copy.

The following function adds two floats and returns the result in a float:

float addf(float a, float b)

–

float c=a+b;

a = a + 10; // to demonstrate ’pass-by-value’

return c;

˝

I have deliberately inserted the nonsense instruction

a = a + 10;

for demonstration purposes; whilst this has an effect on the local variable a it has no effect on the
argument in the caller. Thus:

float x=10, y=20, z=0;

z = addf(x, y);

cout¡¡ x¡¡”, ”¡¡ y¡¡”, ”¡¡ z ¡¡ endl;

will result in 10, 20, 30

5–3

5.4.3 Pass-by-reference parameters

The following function swap uses reference parameters:

void swap(int& a,int& b)

–

int temp=a;

a=b;

b=temp;

˝

swap has an effect on the variables x, y in the caller as it must do if it is to be of any use. Thus:

int x = 10, y = 20, z = 0;

swap(x, y);

cout¡¡ x¡¡”, ”¡¡ y¡¡ endl;

will result in 20, 10

Notice that the caller need not make any special indication of the reference nature of the arguments
— that is all handled by the definition of the function: int& a, int& b.

There is no equivalent in Java; in Java all primitive types are pass-by-value.

Just to drive the point home, let us examine a wrong swap which uses pass-by-value.

void swapSilly(int a, int b) //wrong, pass by value

–

int temp=a;

a=b;

b=temp;

˝

Now, swapSilly does not have an effect on the arguments x, y in the caller, and the function
has no effect. Thus:

int x = 10, y = 20, z = 0;

swapSilly(x, y);

cout¡¡ x¡¡”, ”¡¡ y¡¡ endl;

will result in 10, 20

5–4

5.4.4 Programmed pass-by-reference via pointers

Just for completeness, we will include a version of swap which demonstrates how pass-by-reference
can be programmed via pointers. This is how it must be done on C, which does not have a
reference type qualifier.

The following function pswap uses pointer parameters:

void pswap(int* pa, int* pb)

–

int temp = *pa;

*pa = *pb;

*pb = temp;

˝

Notice that it is what pa, pb point-to that are swapped, not pa, pb themselves, i.e. *pa, *pb
— dereferenced.

pswap has an effect on the variables pointed-to by the caller arguments. Thus:

int x = 10, y = 20;

pswap(&x, &y);

cout¡¡ x¡¡”, ”¡¡ y¡¡ endl;

will result in 20, 10

Note that in this case the caller must pass pointers to the variables, i.e. &x, &y are passed. In
addition to the extra complexity of the function, this programmed pass-by-reference error-prone
and generally less satisfactory than proper pass-by-reference.

It is worth noting that in the case of pswap the pointer values are still passed-by-value — it’s just
that the values are pointers, and so can be dereferenced to access the variables that they reference
— in the caller!

5.4.5 Semantics of parameter passing

The distinctions between the previous examples can be clearly defined by considering the detailed
semantics of parameter passing by value and by reference.

Pass-by-value Recall the example of pass by value. Here x, y are local variables in the caller;
when they are created, they are initialised with the values 10, 20.

int x = 10, y = 20;

When swapSilly is called, swapSilly(x, y); the following happens: variables local to
swapSilly are created (int a, int b) and these are initialised with the values of x, y —
almost as if we had the definition: int a = x, int b = y. Hence, computations involving a, b
are on these entirely separate and local variables.

5–5

Pass-by-reference Using the same example, x, y are local variables in the caller; when they are
created, they are initialised with the values 10, 20. Now we can define a reference int& rx and
initialise it with x – not the value of x, rx is an alias for x – whatever is assigned to rx is assigned
to x: x and rx refer to the same object in memory.

int x = 10, y = 20; int& rx = x;

Likewise when void swap(int& a, int& b) is called, swap(x, y); the following happens: ref-
erence variables are created (int& a, int& b) and these are initialised with variables x, y —
almost as if we had the definition: int& a = x, int& b = y. Hence, computations involving
a, b also involve x, y.

Pass-by-reference via pointer Again using the same example, x, y are local variables in the
caller; when they are created, they are initialised with the values 10, 20.

Likewise when void pswap(int* pa, int* pb) is called, pswap(&x, &y); the following hap-
pens: temporary pointer variables are created, and these are initialised with pointers to variables
x, y, i.e. as if (int *px = &x, int* py = &y).

Pointer variables local to pswap are created (int* pa, int* pb) and these are initialised with the
values of temporaries px, py — almost as if we had the definition: int* pa=px, int* pb=py.

Computations involving pa, pb are on these entirely separate and local pointer variables, but,
being pointer variables, they can be dereferenced to access the actual variables x, y. Hence,
computations involving *pa, *pb also involve x, y.

Java pass by value only Well, sort-of. All elementary types, e.g. int, float, double are
passed by value only. Thus, a function like swap cannot be done in Java.

On the other hand, just like arrays in the next section, in Java all non-elementary objects are always
references.

5.4.6 Arrays as Parameters

Arrays are always pass-by-reference — though implicitly so.

When passing arrays as parameters, you need declare only that it is an array – you need not give
its length. For example, a function getline which reads a line of characters:

int getline(char s[],int lim)

–

...

s[i]=c;// or *(s+i)= c;

...

˝

As we have already noted in chapter 6, C++ arrays are closely related to pointers, hence the
following is entirely equivalent:

5–6

int getline(char *s, int lim)

–

...

*(s+i)=c; // or, s[i]=c;

...

˝

Function getline can be called either as:

int nchars;

const int n=100;

char s[101];

nchars = getline(s, n); // or

nchars = getline(&s[0], n);

5.4.7 Default parameters

In a function definition a parameter can be given a default value.

Example.

void init(int count=0, int start=1, int end=100)

–

// body ...

˝

Call:

init(); //is equivalent to

init(0, 1, 100)

//or

init(22, 23); //is equivalent to

init(22, 23, 100);

Only trailing parameters can be defaulted:

void init(int count=0, int start, int end); //ILLEGAL

In normal programming you should use default parameters only if you have a compelling reason to
do so. However, they can be very useful in some class member functions, see later chapters.

5–7

5.5 Function return values

Functions can return the following values:

• All elementary types: int, char, float, etc.

• Pointers – to anything, but beware of dangling pointers, see Chapter 3.

• References – but beware of dangling references, see Chapter 3.

• Structs.

• Objects.

• They cannot return arrays, but, of course, they can return a pointer to an array.

• Only one value can be returned.

5.6 Overloaded function names

Consider the following function addf, which adds floats.

float addf(float a, float b)

–

return a + b;

˝

If we want to provide an integer version of addf, we might define:

int addi(int a, int b)

–

return a + b;

˝

However, in C++, through overloading of function names, we can use the more natural name
add for both, and the linker will bind the appropriate version — according to the types of the
arguments:

float add(float a, float b)

–

return a + b;

˝

int add(int a, int b)

–

return a + b;

˝

5–8

Caller:

int i,j,k;

float x,y,z;

...

z = add(x, y); // float add(float a, float b) is called

k = add(i, j); // float add(int a, int b) is called

Function name overloading is made possible by allowing the parameter types to become part of
function’s identity. Note: the return type is not used in this disambiguation.

Function name overloading finds extensive use in classes:

• A class may have a number of constructors, all with the same name, but each having a
different parameter list.

• To enable classes, especially within a class hierarchy, to exhibit uniformity of behaviour; e.g.
trivially, many classes can have an overloaded print function.

5.7 Inline functions

When function add is called, a certain processing overhead is incurred: local variables a, b must
be created and initialised, and, likewise, the return value must be copied to the point of call. In
the case of add this overhead may amount to more than the simple a + b. With larger objects,
the overhead may be more severe.

int add(int a, int b)

–

return a + b;

˝

C++ was developed with one eye on efficiency and performance, and allows the specifier inline
as a recommendation to the compiler. If we have

inline int add(int a, int b)

–

return a + b;

˝

a call to add(.,.) may cause add to be expanded at the point of call; i.e. a + b is inserted at
the point of call, instead of a call.

Programmers are always warned about overly liberal use of inline; apparently small functions can
involve large amounts of code, which, if inline is used, would be replicated at each call, leading
to a large executable program.

Notice: inline allows trade-off of space – code replicated – for efficiency – lack of call / return
overhead.

5–9

5.8 External variables

An external variable is defined once, and once only, outside any function, e.g. int globalx;

Then, declared anywhere it must be used, it is brought into scope by declaring it, e.g.
extern int globalx;

Example. A program in two files prog.cpp, funs.cpp:

file prog.cpp:

int globalx; /*defined OUTSIDE any function*/

#include ”funs.h”

int main()

–

extern int globalx; /* can declare here but not

essential, as ’globalx’ is in

SCOPE from its DEFINITION -- above,

until the end of the file*/

f1();

return 0;

˝

File funs.cpp, separate from prog.cpp:

void f1(void)

–

extern int globalx; //bring globalx into SCOPE

globalx=1;

˝

External / global variables have static lifetime, see section 5.12, i.e. they are created before the
program starts executing, and are not destroyed until the execution is completed.

5.9 Scope of variables

The scope of a variable (or function) is those parts of a program where the name can be used to
access the variable (or function); simply, scope is the range of instructions over which the name is
visible.

Lifetime is a related but distinct concept, see section 5.12.

5–10

The scope of automatic / local variables defined in a function or block is from the definition
beginning until the end of the function or block: they have local scope, they are private to that
function; thus, functions have a form of encapsulation.

Local names that are reused, in the same or different source files, or in different functions or blocks,
are unrelated.

Example.

int add(int, int);

int main()

– —

int x,y,z,a,b; /* (1)*/ —scope of x, y ..a, b

—

x=1;y=1;a=32;b=33; —

z=add(x,y); —

return 0; —

˝

int add(int a, int b)

– —

int value; — scope of a, b, value

—

value=a+b; — these a,b NOT related to above a,b

return value; —

˝

Blocks are scope units Like functions, blocks are scope units. Thus, within a block, you can
declare a variable and its scope will be from the point of declaration to the end brace (˝) of the
block.

Thus:

int fred(int a)

–

int b;

– //c is in scope only in this little block

int c; c = 22;

˝

b= a + 10;

return b;

˝

Scope Hiding Consider:

void fred(int n, float b)

–

5–11

int c = 33, d = 16,i;

for(i = 0; i ¡= n; i++)–

float d; // note these d, c are different from outer

d = 22.5;

int c = 49;

˝

// here c==33, d==16.

˝

The outer d — the one declared first — is hidden in the block governed by the for, by the inner
declaration.

Scope of functions All functions, everywhere (at least in libraries that are included in the linking
process and which are declared in the program file (e.g. in a ‘.h’ file)), are in scope in every part
of all functions. This is called external (or global) scope. So, functions have external / global
scope by default, whereas variables are local by default.

Note: functions have global scope independent of declarations by #include.

Java has a much more uniform and safe approach to scope: no externals are in scope, unless they
are imported from their package/class;

This global scope can cause name clash problems where you are using libraries from multiple
vendors; it has been addressed by the recent introduction of namespace, see section 5.10.

Class scope C++ classes offer their own form of encapsulation and scope, see later chapters,
that is more or less the same as Java.

Class members that are declared private are in scope only in member functions of the class, or
in functions or classes which have been declared friends of the class — see later sections.

On the other hand, classes themselves have the same external scope as functions.

5.10 Namespaces

As we have mentioned in the previous section, the global scope of functions and classes may cause
problems where you are using library software from multiple sources and in which the name name
has been used.

For example, we have already used class string which is declared using #include ¡string¿. In
a later chapter, we develop our own class String. Now the fact that one is string and the other
is String is sufficient to avoid a name clash.

But let us assume that our string is also called string and, moreover, that we want to use them
together — e.g. to test relative performances. In that case, the declarations:

5–12

#include ¡string¿

#include ”string.h”

will cause the compiler to complain about multiple declarations of string.

The way around it is to declare our own string within its own namespace:

//---- string.h -------------------------------------

// string class.

// j.g.c. ... 23/3/97

//--

#ifndef STRINGH

#define STRINGH

#include ¡iostream¿

namespace bscgp2–

class string –

public:

String(const int len=0);

//etc...

˝

˝ // end of namespace

In addition, all standard library stuff will have been declared under namespace std.

Now, we can use the two strings together and use the scope resolution operator :: to discriminate
between them:

#include ¡string¿

#include ”string.h”

std::string s1; // standard lib string

bscgp2::string s2; // our own string

The use of the scope resolution operator :: may appear clumsy, so, in cases where we are not
troubled with name conflicts, we can use the declaration using namespace in the user program.

using namespace bscgp2;

// now no need for bscgp2::

5.11 Heap memory management

5.11.1 Introduction

Up to now, we have become used to memory management being done automatically. Thus:

5–13

int fred(int a)

–

int b; //here b created automatically

// auto int b; -- is equivalent declaration; auto = automatic

b = a*10 + 2;

return b;

//here the value of b is returned, and b is deleted (destroyed)

˝

Sometimes, but only in very special cases, we may need to take direct control of the creation and
deletion. In the example, b – and a – is allocated on the stack.

Two significant and related factors differentiate so-called heap or free memory, and the more
familiar so-called stack memory used by local variables.

Here, also, we find the primary use of pointers in C++ – as references for (initially anonymous)
memory created on the heap.

• Unlike stack variables, which are created and destroyed automatically, heap the memory
management (creation/deletion) of heap variables must be programmed.

• Once created, heap memory continues to exist until it is deleted by an explicit delete com-
mand.

Heap variables are created using operator new, and are destroyed using operator delete.

5.11.2 Operator new

new is similar to Java’s new; Java’s new returns a reference to the object that was created (on the
heap); C++’s new returns a pointer.

Operator new creates a variable on the heap and returns a pointer to it. Here is a somewhat toy
example:

int* readAndCreate()

–

int n;

cout¡¡ ”Give size:”¡¡ endl;

cin¿¿ n;

int* p = new int[n];

// prompt read n ints

for(int i = 0; i¡n; i++)–

cout¡¡ ”Enter an int:”;

cin ¿¿ *(p+i); //or p[i]

˝

return p;

˝

int* pa = readAndCreate();

5–14

Function readAndCreate() creates an int array variable of size n, and returns a pointer to the
caller.

Although p is destroyed upon return from readAndCreate(), what it points to is not, and pa in
the caller, can legitimately continue to reference the array.

In fact, once created, this array variable continues to exist until explicitly de-allocated, using delete.
Consequently, the lifetime of a heap variable is from its explicit creation, until its explicit deletion.

If new cannot accomplish the creation, e.g. if a larger block of memory is needed, than is available,
then new will return the NULL pointer 0. Or, if #include ¡new.h¿ is present, it will call an error
function specified in that – typically resulting in an error message followed by termination of the
program. Generally, programmers must be careful to consider the consequences of running out of
heap memory.

Dangling Pointers At this point you should very carefully note the complete inadequacy of the
following version of readAndCreate():

int* readAndCreateDangling()

–

int n;

cout¡¡ ”Give size:”¡¡ endl; cin¿¿ n;

int ar[1000]; // we assume 1000 is always greater than n

// prompt and read n ints

...

// this is partially okay; 1. a pointer to the first element of ar

// will be returned

// but 2. ar[] will be deleted as soon as that happens!

return ar; //or return &ar[0]

˝

5.11.3 Operator delete

Operator delete de-allocates heap memory – destroys heap variables. Thus:

int* readAndCreate()

–

int* p = new ...

// etc...

return p;

˝

int* pa = readAndCreate();

// do something useful with the array

delete [] pa;

5–15

The [] is necessary to signify to delete that the target is an array. In the case that the variable
is not an array, the [] must be avoided.

int* p = new float;

delete p;

5.11.4 Anonymous variables

In

int* p = new float;

the variable initially created by new is anonymous — it has no name — however new returns a
pointer by which it may be referenced, and, of course, this is assigned to the pointer p, which
subsequently may be used to reference the variable.

5.11.5 Garbage

Garbage refers to the situation of anonymous heap memory, see section refsec:anon, whose refer-
ence has been deleted before the heap variable itself. Once this reference is lost, the heap memory
may never again be accessed, even to de-allocate it!

Java has automatic garbage collection — Java can detect when an object can no longer be refer-
enced and it then deletes the object. C++ does not have garbage collection.

Thus, garbage is in some ways the opposite to dangling or uninitialised references — in which the
reference exists, but what it references does not.

Again in comparison to dangling references, garbage may be more benign – it can cause program
failure only by repeated memory leak leading eventually to the supply free memory becoming
exhausted.

Note: do not be confused by the English connotation of the word, garbage does not refer to
uninitialised variables or incorrect data.

Java In Java, all non-elementary variables (all objects and arrays — arrays are considered to be
objects) are allocated on the heap. A consequence of this is that objects obey reference semantics
rather than value semantics; beware, this is more subtle than may appear at first – for the references
are passed-by-value to functions!

In addition, Java has garbage collection. Thus, whilst you need to create objects with new you
do not delete them. When the connection between a Java reference and its object is eventually
broken – by the reference going out of scope, or by the reference being linked to another object –
the object is subjected to garbage collection.

5–16

5.12 Lifetime of variables

The lifetime of a variable is the interval of time for which the variable exists; i.e. the time from
when it is created to when it is destroyed; duration, span, or extent are equivalent terms for the
same thing.

It is common to find confusion between scope and lifetime – though they are in cases related,
they are entirely different notions: lifetime is to do with a period of time during the execution of a
program, scope is to do with which parts of a program text. In C and C++, lifetime is dynamic –
you must execute the program (or do so in a thought experiment) in order to determine it. Scope
is static – determinable at compile time, or by reading the program text.

In the case of local variables (local to blocks or functions), and where there are no scope-holes,
lifetime and scope correspond: scope is the remainder of the block / function after the variable
definition; lifetime is the whole time that control is in that part of the program from the definition
to the end of the block / function.

Example, local / automatic variables.

int fred(int a, int b)

–

int c; /*when control passes into ’fred’: local (AUTOMATIC)

variables a,b, c are created at this time -- their

LIFETIME starts then*/

c= 22;

...

˝ /*when control reaches here, locals are destroyed*/

.

Thus, c, and a, b exist only for the duration of the call to function fred. For each call, entirely
new variables are created and destroyed.

If you wanted to retain the value of c from call to call, you would have to use the static type
modifier.

Static lifetime Example, static variable.

int fred(int a, int b)

–

static int c; /*when control passes into ’fred’: local

variables a,b, are created at this

time -- their LIFETIME starts then; however,

since c is static, it was already created at

5–17

compile / link time, and it lives on until the

program stops*/

c = 22;

...

˝ /*when control reaches here, locals are destroyed but

statics live on*/

Many meanings of static Most unfortunately, there are three overloadings of the static qual-
ifier:

1 Internal static. In a function, a static variable provides permanent storage within the
function; i.e. as in the example above. This is by far the most common.

2 External static. Applied to an otherwise global / external variable or a function in a source
file, static limit the scope of that variable or function to the remainder of that source.
Thus, this use of –static signifies private.

3 Static class member. In a class definition, a data member (variable) can be declared static,
in which case this variable is shared amongst all instances of the class! Normally avoid!

Of course, all global /external variables have static lifetime – they exist for the full life of the
program; they are created before the program starts executing, and destroyed only when it halts.

5.12.1 Lifetime of variables – summary

It is possible to summarise the various lifetime classes by classifying them according to increasing
degrees of persistence, from transient – very short lifetime – to persistent – very long lifetime:

Temporary variables Used in evaluation of an expression, e.g.

y = x * (x + 1.0) + 2.0 * x;

will almost certainly involve temporary variables, e.g. a, b and c, which exist only during
the evaluation of the expression:

a = x + 1.0; b = x * a; c = 2 * x;

y = a + b + c;

Local variables Their lifetime is from entry to their definition to exit from their block / function.
These are called automatic in C / C++.

Heap variables Their lifetime is from allocation to de-allocation. Sometimes called dynamic vari-
ables.

Static variables – including global. Their lifetime is from the start of execution of the complete
program, until it stops.

5–18

Variables held in files Their lifetime is over many program executions; they are persistent. Persis-
tence of objects is of significant interest for database applications – object-oriented databases.

Some readers may gain a better understanding of lifetime by reading section 5.13 which gives a
model of the run-time structure of a C++ program.

5–19

5.13 Memory layout of a C++ program – a model

See (Sethi 1996), (Louden 1993). This is a model ; exact implementation detail may differ de-
pending on compiler, machine architecture and operating system.

The diagram below shows the overall structure.

Low memory address

0 +-----------------------------+ ---

— Program — ˆ

— — —

— — —

— — —

+-----------------------------+ static,

— Global and —compile / link-time

— Static Data, — part

— constants, — —

— literals — v

+-----------------------------+ ---

— Stack — — ˆ

— — — —

— V — —

— grows up — dynamic,

— ˆ — run-time

— Heap grows — down — part

— — — —

— — v

+-----------------------------+ ---

Top of memory

Memory Layout of a C++ Program

Program Executable code.

Global data etc. See sections 5.8, 5.12 and 5.9. These variables have static lifetime, that
is their lifetime extends from when (or before) the program starts executing, until it stops
executing. Hence, their lifetime is the same as that of the program code.

Stack Local variables are created on the stack. The stack grows as functions and blocks create
local environments, and diminishes when these functions / blocks are exited. An Environment
is typically implemented using an activation record, probably via a stack-frame, see the stack-
frame diagram below.

Heap Heap memory is created by allocate command (new in C++), and is not destroyed until
an appropriate de-allocate command (delete in C++) is executed. Insufficient care to
de-allocate heap variables can lead to garbage and memory leak.

5–20

Next, we show a typical function environment – as implemented using an activation record, probably
via a stack-frame.

+-----------------------------+

— . . . —

— incoming parameter 2 —

— incoming parameter 1 —

+-----------------------------+

— Saved state -- caller: —

— program counter —

— + other registers —

Frame Pointer-¿+-----------------------------+

— local variables —

— —

+-----------------------------+

— temporary variables —

— —

+-----------------------------+

— return value —

— —

+-----------------------------+

A Stack Frame -- Activation Record

It is a matter of opinion whether a stack-frame model of an environment is helpful, useful discussions
of environments that avoid any notion of implementation detail, and given in (Bornat 1987).

5.14 Initialisation

Only extern and static are guaranteed to be initialised implicitly — to some base value, e.g. for
numbers, zero; Automatic or register will contain arbitrary data unless they are explicitly initialised.

If extern or static are initialised in the definition statement, the initialiser must be a constant
expression, e.g.

int x=1; char c=’a’;

For auto or register storage classes there is no restriction to constant..

In array initialisation, the compiler will fill [] (array size) according to size of the list, if no array
length specified, e.g.

int dayPerMonth[]=–31,28, ...,30,31˝;

will define an array of 12 ints.

5–21

5.15 Register Variables

It is possible to advise the compiler that a variable, e.g. x will be heavily used and should, if
possible, be placed in scratch-pad register storage.

Example.

register int x;

This may be ignored by the compiler; without register declaration the compiler will make up its
own mind; in my (JC) opinion it’s best to leave it that way! On such matters, most compilers are
cleverer than most programmers.

5.16 Recursion

C++ functions may be called recursively. File fac.cpp shows set of factorial functions in two
styles:

• Non-recursive.

• Recursive.

/*----- fac.cpp --------------------------------

j.g.c. 6/3/95 j.g.c. 14/2/97

comparison of functional and procedural styles

and erroneous use of static variable in a recursive function

--*/

#include ¡iostream¿

int facp(int n) //imperative style

–

int i,f= 1;

for(i=1;i¡=n;i++)f=f*i;

return f;

˝

int fac1(int n) // functional style

–

if(n¡=0)return 1;

else return n*fac1(n-1);

˝

int main()

–

int n,ff;

5–22

cout¡¡ ”“nGive n:”; cin¿¿ n;

ff=facp(n); cout¡¡ ff¡¡ endl;

ff=fac1(n); cout¡¡ ff¡¡ endl;

ff=fac2(n); cout¡¡ ff¡¡ endl;

return 0;

˝

Factorial -- comparison of styles

You should note that a function creates a new environment every time it is called; thus, in fac1(),
we have a new int n for every call – indeed you should consider that there is a completely new
copy of fac1() for each call.

5–23

Consider fac1(3): 3x2x1 = 6; the execution of it proceeds as:

fac1(3)

6¡--

n=3

calls n*fac1(n-1)

2¡-----------------------------------

3 2

n’=2

calls n’*fac1(n’-1)

1¡-----------------------

2 1

n’’=1

calls n’’*fac1(n’’-1)

1 ¡------------+

1 0 —

n’’’=0 —

returns 1 ----+

By a similar tracing, you will find that fac2 always gives the result 0 – because the static i N.B.
only one copy gets overwritten by 0 in the last call; it is then 0 when it is multiplied in all of the
statements return i*fac2(.).

5.17 The C++ Preprocessor

The C pre-processor (cpp) used to be very much part of C, though reliance on it is greatly diminished
in C++.

The pre-processor is quite distinct from the compiler; all files are run through the pre-processor
before they are submitted to the compiler. There are four main features offered by the pre-
processor.

5.17.1 File inclusion

#include ¡stdio.h¿ replaces that line with the contents of stdio.h.

¡..¿ tells the compiler to look in some standard include directory,

#include ”mylib.h” would search the current logged directory.

5.17.2 Symbolic constants and text substitution

e.g.

5–24

#define true 1

#define false 0

In fact you can define any replacement text:

#define BEGIN –

#define END ˝

would allow you to partially pretend you were using Modula-2.

5.17.3 Macro substitution

Recall the conditional expression:

e = a¿b ? a:b; // e gets max of a, b

A MAX macro can be defined:

#define MAX(A,B) ((A) ¿ (B) ? (A) : (B))

then

e=MAX(a,b);

behaves like a inline function call – the macro is inserted at the point of call. However, macros
may carry certain safety penalties, and inline should normally be used instead.

C provides a lot of functions this way, e.g.

putchar(c); is actually a macro of

putc(stdout,c);

where stdout is a file pointer to the user standard output stream.

5.17.4 Conditional compilation / inclusion

You can effectively program the preprocessor to skip sections of code. You will become very
familiar with this in header files.

Example.

#ifndef HDR

#define HDR

//declarations here.

#endif

5–25

The scheme above could be used to ensure that a header file, if invoked more than once, will have
effect only on the first invocation.

Conditional compilation is also very useful for building in portability across a number of compilers
or target computers. E.g.

#ifdef WINDOWS

// WINDOWS code

#elif LINUX

//Linux code

#endif

5–26

Chapter 6

Struct, class, union

6.1 Introduction

Long before we had object-oriented programming and classes, we had records or aggregate types;
i.e. type which allowed you to group together more than one value; records contained only data
values. Object-oriented programming extended records to contain also functions/methods.

In C++, records (aggregate types) are called struct or class.

Essentially, in C++, class and struct are equivalent except for an insignificant detail: in a struct
members default to public, whilst, in a class, members default to private; this will not matter
to most programmers, for the normal practice is to explicitly include private / public as required.
In this usage, class, struct are entirely equivalent.

In this chapter we describe the use of struct as record, i.e. without member functions and
encapsulation.

6.2 A Point struct

In two-dimensional computer graphics, a point is defined by an x-coordinate (horizontal), and
y-coordinate (vertical).

We can define a Point record, and define instances p1, p2:

struct Point –int x;

int y;

˝;

Point p1, p2;

defines two ’points’ (pairs of int coordinates).

We can then assign values to the members:

6–1

p1.x = 150; p1.y = 50;

and the result is as follows:

p1.x = 150

+--------------------------+------¿ x

— .

—

— .

p1.y —

= 50 ++ p1 = (150, 50)

—

—

y v

The Point (150, 50)

If pp is a pointer to a Point:

Point *pp, p1; int a;

p1.x = 150; p1.y = 50;

pp = &p1;

then a = pp-¿x; //access the x member

and is equivalent to,

a= (*pp).x;

the -¿ is provided for shorthand.

6.3 Operations on Structs

Assignment A struct can be assigned as a complete unit:

Point p1, p2;

p1.x = 3;

p1.y = 2;

p2 = p1; /*copies p1 values into p2*/

is equivalent to:

p2.x = p1.x;

p2.y = p1.y;

6–2

Copy A struct can be copied as a complete unit, i.e. in pass by value to functions and returning
values by return.

Pointer You can take a pointer-to a struct with the & operator.

Access members Access members with ., or -¿, for a pointer.

File points.cpp shows a program which uses Point.

//---- points.cpp --------------------------------

// j.g.c. 20/3/95, 17/2/97, 14/11/98

// exercises ’Point’ struct

//--

struct Point– int x;

int y;

˝;

#include ¡iostream¿

#include ¡math.h¿ //for sqrt()

Point readPoint();

void printPoint(Point p);

float distPoint(Point p, Point q);

int main()

–

Point p1, p2;

float d;

p1=readPoint(); cout¡¡ ”p1 = ”; printPoint(p1); cout¡¡ endl;

p2=readPoint(); cout¡¡ ”p2 = ”; printPoint(p2); cout¡¡ endl;

cout¡¡ ”Point that has largest x-value: ”;

if(p1.x ¿ p2.x)printPoint(p1);

else printPoint(p2);

cout¡¡ endl;

d= distPoint(p1,p2);

cout¡¡ ”distance p1 to p2 = ”¡¡ d¡¡ endl;

d= distPoint(p2,p1);

cout¡¡ ”distance p2 to p1 = ”¡¡ d¡¡ endl¡¡ endl;

p1.x = 3;

cout¡¡ ”After ’p1.x = 3;’ p1 = ”; printPoint(p1);

d= distPoint(p2,p1);

cout¡¡ ”Now distance p2 to p1 = ”¡¡ d¡¡ endl¡¡ endl;

Point *pp;

pp= &p1; //pp points at p1 -- no problems with unitialised ptr*/

cout¡¡ ”pp is a pointer to a Point, *pp= ”; printPoint(*pp);

6–3

d=distPoint(p2, *pp);

cout¡¡ ”distance p2 to *pp (actually p1) = ”¡¡ d¡¡ endl;

pp-¿y = 5;

cout¡¡ ”“npointer-¿member is one way of dereferencing“n”;

cout¡¡” a pointer to a struct & accessing a member“n”;

cout¡¡ ”After ’pp-¿y = 5;’ *pp = ”; printPoint(*pp);

cout¡¡ ”“n(*pointer).member is another way of dereferencing“n”;

cout¡¡ ”a pointer to a struct & accessing a member“n”;

(*pp).x = 6;

cout¡¡ ”After ’(*pp).x = 6;’ *pp = ”; printPoint(*pp);

cout¡¡ endl;

return 0;

˝

Point readPoint()

–

Point p;

cout¡¡ ”enter point x,y (both ints ’space’ separating) : ”;

cin¿¿ p.x ¿¿ p.y;

return p;

˝

void printPoint(Point p)

–

cout¡¡ ”(x = ”¡¡ p.x¡¡ ”, y = ”¡¡ p.y¡¡”)”¡¡ endl;

˝

float distPoint(Point p, Point q)

–

float dx = p.x - q.x;

float dy = p.y - q.y;

float dsquared = dx*dx + dy*dy;

return sqrt(dsquared);

˝

6.4 Unions

A union is declared using the same syntax as struct. Although they may look similar, they are
quite different in meaning.

Whilst a struct contains at all times each and every component declared within it, i.e. it is a
record / tuple, a union may contain but one of its components at a time; which component it is

6–4

depends what was last assigned.

Consider the example:

union Manytype–

char c[4]; int i; long int l; float f; double d;

˝;

Manytype u1,u2;

Here we have declared two variables of union type, to contain char[4], or int, or long int, or
float, or double, but only one of these at any time.

Here we have declared a struct, that contains a tuple: char[4], and int, and long int, and float,
and double.

struct Manyparts–

char c[4]; int i; long int l; float f; double d;

˝;

Manyparts s1,s1;

From the point of view of memory layout, a typical run-time memory layout for the union could
be:

u1

—

— byte0 byte1 2 3

+-----+-----+-----+-----+

— c[0]— c[1]— c[2]— c[3]—

+-----+-----+-----+-----+

— i — -- assuming 4 byte int

+-----+-----+-----+-----+

— l — -- assuming 4 byte long int

+-----+-----+-----+-----+

— f — -- assuming 4 byte float

+-----+-----+-----+-----+-----+-----+-----+-----+

— d -- assuming 8 bytes for double —

+-----+-----+-----+-----+-----+-----+-----+-----+

So, if you assign something to i, c will change, and all the others too.

Now if you assign to f, and examine c[0], c[1] etc, you will get nonsense; i.e. between assign-
ments, what a union stands for must not change.

On the other hand, a union can be used to break-into the type system: in the case mentioned
above, we can assign a float and examine its contents as (four) chars.

In the case of struct, all the components co-exist. Hence, of course the struct uses more
memory, and the union can conserve memory where you want to use only one of the components
at a time.

The example program below (strun.cpp) compares and contrasts struct and union.

6–5

//---- strun.cpp --------------------------------

// j.g.c. 7/1/96, 17/2/97

// experiments with unions & structs

//---

#include ¡iostream¿

union Manytypes– char c[4]; int i; long int l; float f; double d;

˝;

struct Manyparts– char c[4]; int i; long int l; float f; double d;

˝;

int main() –

int j;

Manytypes u1, u2;

Manyparts s1, s2;

cout¡¡ ”“n“t“tunion:“n”;

for(j=0;j¡=3;j++)u1.c[j]=j;

cout¡¡ ”“nu.c[0..3] == “t”;

for(j=0;j¡=3;j++)cout¡¡ ” ”¡¡(int)u1.c[j]; cout¡¡ endl;

u1.i = 0x12345678;

cout¡¡ ”“nu.i == ”¡¡ u1.i;

cout¡¡ ”“nNotice, the c array has been overwritten“n”;

cout¡¡ ”“nu.c[0..3] == “t”;

for(j=0;j¡=3;j++)cout¡¡ ” ”¡¡ (int)u1.c[j]; cout¡¡ endl¡¡ endl;

cout¡¡ ”“t“tstruct:“n“n”;

for(j=0;j¡=3;j++)s1.c[j]=j+2;

cout¡¡ ”“nu.c[0..3] == “t”;

for(j=0;j¡=3;j++)cout¡¡ ” ”¡¡ (int)s1.c[j]; cout¡¡ endl¡¡ endl;

s1.i = 0x12345678; cout¡¡ ”“ns.i == Hex”¡¡ s1.i¡¡ endl;

cout¡¡ ”“nNotice, the c array is unchanged“n”;

cout¡¡ ”“ns.c[0..3] == “t”;

for(j=0;j¡=3;j++)cout¡¡ ” ”¡¡ (int)s1.c[j]; cout¡¡ endl¡¡ endl;

return 0;

˝

The big problem with unions is that they are not discriminated, that is there is no mechanism

6–6

within the type system to remember what was last assigned.

Hence, it may be safer to bolt a discriminant onto a union by enclosing both within a struct.

Here we define a discriminant type for the union Manytypes:

enum Utype –CHAR4,BYTE,INT,FLOAT,DBL˝;

Next, the union itself:

union Manytypes– char c[4]; int i; long int l; float f; double d;

˝;

Then the discriminant and union aggregated together in a struct:

struct Smany–

Utype d;

Manytypes data;

˝;

Finally, we show how to assign a float, and also an appropriate discriminant. Obviously, to be
of real effect, struct Smany would have to be encapsulated in a proper class, with the data
private, see the next chapter.

Smany s;

s.data.f = 1.25; // assign data

s.d = FLOAT; // assign discriminant

6–7

Chapter 7

Introduction to Classes and Objects

7.1 Introduction

This chapter introduces the basics of C++ classes and objects. For the moment, we will avoid
inheritance, polymorphism and dynamic / run-time binding. We start with a very simple class,
Cell, which reduces the class/object concept its bare essentials. At the end of the chapter we
give the code for vectors and transformations in 3D.

Recall that a data type, such as the native data types int, float, etc., is characterized by:

1. A set of values – that can be assumed by objects of the type; for example in the C++ type
char, the set of values is −128,−127, . . . ,−1, 0, 1, . . . 126, 127.

2. A set of operations (functions) that can be legitimately performed on objects of the type;
for example, for int, some of the functions are: +, -, *, /.

Users of the type do not concern themselves with the representation of the values, and, certainly,
they are not encouraged to fiddle with the representation — they interact with the variables only
through the legitimate operations. Hence private data and public operations (methods).

You probably reckon that you already know all this; fine, but it will do no harm to revise it and
while we are at it we can point out the significant differences between C++ and Java.

7.2 A Memory Cell Class

7.2.1 Informal Specification of the Class

This class does nothing more than represent a single int value. As with types we are interested
in: (a) values — the set of states an object may take on, and (b) operations — behaviour, what
an object can do.

State We would expect a Cell object to be able to store the current state, i.e. its integer value.

7–1

Behaviour How would we like a Cell object to behave? It should have:

• Constructors. Since Cell is to be used in a computer program we need to be able to
declare, define and create object of the class. We will define a single constructor, the default
constructor, which initializes objects to have a state 0. In addition, we provide an initializing
constructor – which overload the default constructor name.

• Inspector method. We should be able to obtain the state — but only via an interface function.

• Mutator method. We should be able to modify the state — but again only via an interface
function.

• Input-output methods. We require – more for the purposes of demonstration than anything
else – facilities to convert a Cell object into a humanly readable format; for this we provide
a print function.

7.2.2 Class Cell

Class Cell class is shown below, and below that a test program. Note: in these examples, we try
to keep white space to a minimum — so that it will be possible to get programs on a single OHP
slide. Note also that we are (i) stuffing everything in one file — the class and the user program, (ii)
we are including the implementation of the methods in the class Cell declaration; normally, for
example, the declaration of the class would be in Cell.h and the implementation of the methods
would be given in Cell.cpp.

//----- Cell0.cpp -------------------------------------

// j.g.c. 12/2/98, 8/1/99, 2003/11/29

//--

#include ¡iostream¿ using namespace std;

class Cell–

public:

Cell()–val˙= 0;˝

void set(int val)–val˙= val;˝

int get()–return val˙;˝

void print()–cout¡¡”value= ” ¡¡ val˙¡¡ endl;˝

private:

int val˙;

˝;

int main()–

Cell c;

c.set(123); cout¡¡ ”Cell c: ”¡¡ endl; c.print();

Cell* pc= &c; cout¡¡ ”Cell* pc = &c: ”¡¡ endl; pc-¿print();

//c.val˙= 345; // remove the first ”//” and see if the program compiles

return 0; ˝

7–2

Dissection

1. Public interface. First, we have the interface-functions or methods – which provide the
behaviour ; these are declared public.

2. public means that the members can be directly accessed by client programs as:
instance.member e.g. c.set(123); where c is an instance of Cell.

3. Constructors must have the same name as the class; often, we will have multiple construc-
tors, all with the same name; the name sharing is allowable due to function name overloading
– functions may share the same name, as long as they are resolvable by their parameter list
(their signature).

4. Private by default. Had we left out the keyword public, the interface functions would have
been inaccessible by user programs.

5. After the interface functions, we have the representation of the state; this is private; though
the private representation is visible in the text, it is still encapsulated and invisible to client
programs.

Encapsulation As a consequence of encapsulation we can view objects, e.g. of class as
capsules, containing the representation data, in this case a single datum int val, but these
data may be accessed only through the interface functions (methods). This is shown dia-
grammatically:

+----------------------------------+

— private: (hidden data) —

Public interface — —

functions (methods) — —

+---------+ int val; —

-----¿-— set() — —

+---------+ —

— —

+---------+ —

-----¡-— get() — —

+---------+ —

+ Cell(), toString() etc... —

+----------------------------------+

6. After previously specifying public, it is necessary to revoke this directive using private.

7. private means that the member v cannot be directly accessed by client programs. I.e.

c.val = 22;// illegal -- compiler error

This is called encapsulation and provides information hiding.

8. Generally, the syntax for calling a method (member function), i.e. sending a message to an
object – is: object.method(argument), e.g.

c.set(123);

7–3

Message to c: set your state to 123.

9. Notice that member data of the object itself can be accessed without any . operator.

10. In the client program, notice how Cell c defines an object – same as defining a variable.

Class ↔ type, object ↔ variable.

7.3 Using Separate Files

Normally, we will want to write classes so that they can be used by a great many programs —
all without needing to have a copy of the class in each of them. To enable this we need two
separate class files: (a) the declaration of the class: Cell.h; this declares how to use the class;
(b) the definition of the class: Cell.cpp; this defines the workings of the class. Cell.cpp can be
compiled separately and the result stored in a library (as an object file). These files, and the new
(separate) test program, are shown below.

Notice how the declaration Cell.h must be #included in the .cpp files. As an exercise, remove
#include ”Cell.h” from one of the .cpp and see what the compiler has to say.

Why is this necessary? Answer. If Cell.h is not #included in a .cpp file, when the compiler sees
Cell, it has no idea what you are talking about.

7–4

//----- Cell.h -------------------------------------

// j.g.c. 12/2/98, 8/1/99, 2003/11/29

// minimal class, encapsulating an int value

// .h file contains just declarations

//--

class Cell–

public:

Cell();

void set(int val);

int get() const;

void print() const;

private:

int val˙;

˝;

//----- Cell.cpp -------------------------------------

// j.g.c. 12/2/98, 8/1/99, 2003/11/29, 2006-11-01

// minimal class, encapsulating an int value

//--

#include ¡iostream¿

using namespace std;

#include ”Cell.h”

Cell::Cell() : val˙(0)– ˝

/* The above *constructor initialiser* has the same effect as

Cell::Cell()–

val˙= 0;

˝

it is commonly used because it is more efficient; in the above

previous constructor, val˙ gets allocated and initialised; in the

code above, val˙ get allocated and initialised to some default

and then 0 is assigned to it.*/

void Cell::set(int val)–

val˙= val;

˝

int Cell::get() const–

return val˙;

˝

void Cell::print() const–

cout¡¡”value= ” ¡¡ val˙¡¡ endl;

˝

7–5

//----- CellT.cpp -------------------------------------

// j.g.c. 12/2/98, 8/1/99, 2003/11/29

// tests Cell class

//--

#include ¡iostream¿

using namespace std;

#include ”Cell.h”

int main()

–

Cell c;

c.set(123);

cout¡¡ ”Cell c: ”¡¡ endl; c.print();

Cell* pc= &c;

cout¡¡ ”Cell* pc = &c: ”¡¡ endl; pc-¿print();

return 0;

˝

7.4 Exercises

You will find the programs introduced earlier in the chapter in my public folder
cpp4jp“progs“cell“.

1. Write a little program CellT4.cpp which uses Cell (Cell.h, Cell.cpp):

(i) Declare two Cells, ca initialised by the default constructor, cb initialised to state (value)
of 4094;

(ii) Print out the values of ca, cb;

(iii) Next, use set to change the value of ca’s state to 3056; print out it’s value to confirm.

2. Add a statement to CellT4.cpp as follows:

ca.val˙ = 39;

See what the compiler says about that. Explain how to legally set the state of ca to 39 and
correct the statement above and add a statement to print the result.

3. Add statements to CellT4.cpp as follows:

ca = cb;

cout¡¡ ”after ca = cb;” ¡¡ endl;

ca.print(); cout¡¡ endl;

Notice how you can assign objects.

7–6

1. Based on Cell, implement a class Pair which holds two state values — one we will
call key and has type char and the other value which has type double. Pair should
have the following methods: (i) two constructors — one default, the other initialising; (ii)
void set(char k, double v); (iii) double get(char k); (iv) a print method; (v) I may
have forgotten something — add as necessary.

Give separate Pair.h and Pair.cpp

2. Write a small test program for Pair — PairT.cpp.

3. Develop a class Marks which will be capable of holding student marks (coursework and
examination) along the following lines:

//--

// Marks.h - StudentInfo project

// j.g.c. 2003/02/20

//--

#ifndef MARKSH

#define MARKSH

#include ¡string¿

#include ¡iostream¿

#include ¡cstdio¿ // for toString/sprintf

using namespace std;

class Marks–

public:

Marks(int ex, int ca);

Marks();

int overall() const;

void print() const;

private:

int ex˙;

int ca˙;

˝;

#endif

Method overall should compute the overall mark as follows:

double x = ex˙*0.7 + ca˙*0.3;

return (int)x;

4. Write a small test program for Marks (MarksT.cpp) which declares two Marks objects and
initialises them with (exam 40, ca 60), (exam 80, ca 50); print them, and compute and print
the overall marks for each.

5. (i) Add a method to Marks (bool isPass()) which tests whether a Marks object is pass or
not (pass is overall mark ¿= 40.0);

(ii) Include another Marks object in MarksT.cpp initialised to (exam 25, ca 40); print out all
three objects along with pass/fail indication.

7–7

7.5 3D Affine Transformations

This section is added because we may use these classes for some of our graphics course. You
will note that minor optimisations are in place (e.g. the data is public, so that we can set or get
without a method; this because I know exactly what it will be used for, and that it will not need
to be modified or extended.

You will note that we have not yet covered (i) operators, e.g. the put-to and get-from operators
¡¡ and ¿¿ and the friend qualifier. Operators are like ordinary methods except you call them in
infix mode. The friend qualifier gives access, by non members, to the private area of a class.
For example, below ¡¡ is an ostream operator, not a Vector4D operator, but it needs to acces
the private data of Vector4D. When you have a ¡¡ operator you can output an object using the
normal cout¡¡ object style. Likewise for output to files and for cin¿¿ object.

// friends are not members, but have access to private data

friend std::ostream& operator¡¡(std::ostream& os, const Vector4D& v);

friend std::istream& operator¿¿(std::istream& os, Vector4D& v);

7–8

7.5.1 Homogeneous 3D Vector — Vector4D.h

//--

// Vector4D.h

// j.g.c. 2005-03-28, 2006-10-31

//--

#ifndef Vector4DH

#define Vector4DH

#include ¡string¿ #include ¡iostream¿

#include ¡cstdio¿ // for toString/sprintf

#include ¡cmath¿

#define N 4

class Vector4D–

// friends are not members, but have access to private data

friend std::ostream& operator¡¡(std::ostream& os, const Vector4D& v);

friend std::istream& operator¿¿(std::istream& os, Vector4D& v);

public:

Vector4D();

Vector4D(double d[]);

Vector4D(double x, double y, double z, double w);

Vector4D(std::istream& is);

void setAll(double val);

Vector4D add(Vector4D v);

Vector4D sub(Vector4D v);

Vector4D scale(double s);

double length();

std::string toString() const;

//note below public

double d˙[N];

size˙t n˙;

˝;

#undef N

#endif

7–9

7.5.2 Homogeneous 3D Vector — Vector4D.cpp

//--

// Vector4D.cpp

// j.g.c. 2005-03-28, 2006-10-31

//--

#include ”Vector4D.h”

#define N 4

using namespace std;

Vector4D::Vector4D(): n˙(N)–

setAll(0.0);

˝

Vector4D::Vector4D(double d[]) : n˙(N)–

for(size˙t i= 0; i¡ n˙; i++)d˙[i]= d[i];

˝

Vector4D::Vector4D(double x, double y, double z, double w) : n˙(N)–

d˙[0]= x; d˙[1]= y; d˙[2]= z; d˙[3]= w;

˝

Vector4D::Vector4D(istream& is) : n˙(N) –

for(size˙t i= 0; i¡ n˙; i++)is¿¿ d˙[i];

˝

void Vector4D::setAll(double val)–

for(size˙t i= 0; i¡ n˙; i++)d˙[i]= val;

˝

Vector4D Vector4D::add(Vector4D v)–

Vector4D v1= Vector4D();

for(size˙t i= 0; i¡ n˙; i++)v1.d˙[i]= d˙[i] + v.d˙[i];

return v1;

˝

Vector4D Vector4D::sub(Vector4D v)–

Vector4D v1= Vector4D();

for(size˙t i= 0; i¡ n˙; i++)v1.d˙[i]= d˙[i] - v.d˙[i];

return v1;

˝

Vector4D Vector4D::scale(double s)–

Vector4D v1= Vector4D();

for(size˙t i= 0; i¡ n˙; i++)v1.d˙[i] = s*d˙[i];

return v1;

˝

7–10

double Vector4D::length()–

double len= 0.0;

for(size˙t i= 0; i¡ n˙; i++)len+= d˙[i]*d˙[i];

return sqrt(len);

˝

ostream& operator¡¡ (ostream& os, const Vector4D& v)–

os¡¡ v.toString();

return os;

˝

string Vector4D::toString() const–

//ideally, I should be using stringstream here, but there

// appears to be a problem under g++ 2.96 j.c. 2003/02/22

char cc[80];

sprintf(cc, ”(%8.3f, %8.3f, %8.3f, %8.3f)”, d˙[0], d˙[1], d˙[2], d˙[3]);

return string(cc);

˝

istream& operator¿¿(istream& is, Vector4D& v)–

// assumes that fields are separated by whitespace

for(size˙t i= 0; i¡ v.n˙; i++)is¿¿v.d˙[i];

return is;

˝

7–11

7.5.3 Test for Vector4D.cpp

/**

* Vector4DT1.cpp

* tests Vector4D

* author j.g.c.

* version 1.1; 2005-03-28, 2006-10-31

*/

#include ¡iostream¿ // for cout¡¡ etc.

#include ¡string¿

#include ¡fstream¿ // for files - ofstream, ifstream

#include ”Vector4D.h”

using namespace std;

int main()–

double d[4]= –1., 2., 3., 4.˝;

Vector4D x1= Vector4D(d);

cout¡¡”Vector4DT1”¡¡ endl;

cout¡¡ ”x1 = ” ¡¡ x1.toString()¡¡ endl;

Vector4D x2= Vector4D();

x2.setAll(10.0);

cout¡¡ ”x2 = ”¡¡ x2.toString()¡¡ endl;

Vector4D x3 = x2.add(x1);

cout¡¡ ”x3 = x2.add(x1): ”¡¡ x3.toString()¡¡ endl;

Vector4D x4 = x3.scale(0.25);

cout¡¡ ”x4 = x3.scale(0.25): ”¡¡ x4.toString()¡¡ endl;

double len = x1.length();

cout¡¡ ”len = x1.length(): ”¡¡ len¡¡ endl;

˝

7–12

7.5.4 Homogeneous 3D Vector Transformations — Transform4D.h

//--

// Transform4D.h

// j.g.c. 2005-03-28, 2006-10-31

//--

#ifndef Transform4DH

#define Transform4DH

#include ¡string¿

#include ¡iostream¿

#include ¡cstdio¿ // for toString/sprintf

#include ”Vector4D.h”

#define N 4

class Transform4D–

// friends are not members, but have access to private data

friend std::ostream& operator¡¡(std::ostream& os,

const Transform4D& v);

friend std::istream& operator¿¿(std::istream& os, Transform4D& v);

public:

Transform4D();

Transform4D(double d[N][N]);

Transform4D(std::istream& is);

void setAll(double val);

void setIdentity();

void setTrans(Vector4D t);

void setRotZ(double theta);

void setRotX(double theta);

void setRotY(double theta);

void setScale(Vector4D s);

Vector4D mpy(Vector4D v);

//b = a*this

Transform4D mpy(Transform4D s);

std::string toString() const;

private:

double m˙[N][N];

size˙t n˙;

˝;

#undef N

#endif

7–13

7.5.5 Homogeneous 3D Vector Transformations — Transform4D.cpp

//--

// Transform4D.cpp

// j.g.c. 2005-03-28, 2006-10-31

//--

#include ”Transform4D.h”

#define N 4

using namespace std;

Transform4D::Transform4D() : n˙(N)–

setAll(0.0);

˝

Transform4D::Transform4D(double m[N][N]) : n˙(N)–

for(size˙t r = 0; r¡ n˙; r++)–

for(size˙t c = 0; c¡ n˙; c++)–

m˙[r][c]= m[r][c];

˝

˝

˝

Transform4D::Transform4D(istream& is) : n˙(N)–

for(size˙t r= 0; r¡ n˙; r++)–

for(size˙t c= 0; c¡ n˙; c++)–

is¿¿ m˙[r][c]; // undoubtedly wrong; test

˝

˝

˝

void Transform4D::setAll(double val)–

for(size˙t r = 0; r¡ n˙; r++)–

for(size˙t c = 0; c¡ n˙; c++)–

m˙[r][c] = val ;

˝

˝

˝

void Transform4D::setIdentity()–

setAll(0.0);

for(size˙t i = 0; i¡ n˙; i++)m˙[i][i] = 1.0;

˝

void Transform4D::setTrans(Vector4D t)–

setIdentity();

size˙t n= n˙-1;

for(size˙t c = 0; c¡ n; c++)m˙[c][n] = t.d˙[c]; //x, y, z

7–14

˝

void Transform4D::setRotZ(double theta)–

setIdentity();

double cs = cos(theta);

double sn = sin(theta);

m˙[0][0] = cs;

m˙[0][1] = -sn;

m˙[1][0] = sn;

m˙[1][1] = cs;

˝

void Transform4D::setRotX(double theta)–

setIdentity();

double cs = cos(theta);

double sn = sin(theta);

m˙[1][1] = cs;

m˙[1][2] = -sn;

m˙[2][1] = sn;

m˙[2][2] = cs;

˝

void Transform4D::setRotY(double theta)–

setIdentity();

double cs = cos(theta);

double sn = sin(theta);

m˙[0][0] = cs;

m˙[0][2] = -sn;

m˙[2][0] = sn;

m˙[2][2] = cs;

˝

void Transform4D::setScale(Vector4D s)–

setIdentity();

size˙t n= n˙-1;

for(size˙t i = 0; i¡ n; i++)m˙[i][i] = s.d˙[i]; //x, y, z

˝

/**

* returns pre-multiplication of this*parameter

* @param v a vector to be multiplied by this

* @return product b = this*v

*/

Vector4D Transform4D::mpy(Vector4D a)–

Vector4D b = Vector4D();

double dot;

for (size˙t r = 0; r ¡ N; r++) –

dot = 0;

for (size˙t c = 0; c ¡ N; c++) –

7–15

dot += m˙[r][c]*a.d˙[c];

˝

b.d˙[r] = dot;

˝

return b;

˝

/**

* returns pre-multiplication of parameter*this

* @param a transform to be multiplied by this

* @return product b = a*this

*/

Transform4D Transform4D::mpy(Transform4D a)–

Transform4D b = Transform4D();

double dot;

for (size˙t r = 0; r ¡ N; r++) –

for (size˙t c = 0; c ¡ N; c++) –

dot = 0.0;

for (size˙t i = 0; i ¡ N; i++) –

dot += a.m˙[r][i]*m˙[i][c];

˝

b.m˙[r][c] = dot;

˝

˝

return b;

˝

ostream& operator¡¡ (ostream& os, const Transform4D& m)–

os¡¡ m.toString();

return os;

˝

string Transform4D::toString() const–

//ideally, I should be using stringstream here, but there

// appears to be a problem under g++ 2.96 j.c. 2003/02/22

char cc[80];

string s= string(”[”);

for(size˙t r= 0; r¡ n˙; r++)–

sprintf(cc, ”(%8.3f, %8.3f, %8.3f, %8.3f)“n”,

m˙[r][0], m˙[r][1], m˙[r][2], m˙[r][3]);

s+= string(cc);

˝

s+= ”]”;

return s;

˝

istream& operator¿¿(istream& is, Transform4D& m)–

7–16

// assumes that fields are separated by whitespace

for(size˙t r= 0; r¡ m.n˙; r++)–

for(size˙t c= 0; c¡ m.n˙; c++)–

is¿¿ m.m˙[r][c];

˝

˝

return is;

˝

#undef N

7.5.6 Test for Transform4D.cpp

/**

* Transform4DT1.cpp

* tests Transform4D

* @author j.g.c.

* version 1.0; 2005-03-28

*/

#include ¡iostream¿ // for cout¡¡ etc.

#include ¡string¿

#include ¡fstream¿ // for files - ofstream, ifstream

#include ”Transform4D.h”

#include ”Vector4D.h”

using namespace std;

class Transform4DT1 –

public:

Transform4DT1();

˝;

Transform4DT1::Transform4DT1()–

cout¡¡ ”Transform4DT1”¡¡ endl;

double d[4]= –1.0, 2.0, 3.0, 4.0˝;

Vector4D xa= Vector4D(d);

cout¡¡ ”xa = ”+ xa.toString()¡¡ endl;

Transform4D f = Transform4D();

f.setIdentity();

cout¡¡ ”f.setIdentity(): “n”+ f.toString()¡¡ endl;

Transform4D g = Transform4D();

g.setIdentity();

cout¡¡ ”g.setIdentity(): “n”¡¡ g.toString()¡¡ endl;

7–17

Transform4D fg= f.mpy(g);

cout¡¡ ”fg = f.mpy(g) (g identity): “n”¡¡ fg.toString()¡¡ endl;

Vector4D xb = f.mpy(xa);

cout¡¡ ”xb = f.mpy(xa): ”¡¡ xb.toString()¡¡ endl;

double d1[4]= –0.0, 0.0, 0.0, 1.0˝;

Vector4D x0= Vector4D(d1);

cout¡¡ ”x0 = ”¡¡ x0.toString()¡¡ endl;

double dt[4]= –1.0, 2.0, 3.0, 0.0˝;

Vector4D t= Vector4D(dt);

cout¡¡ ”t = ”+ t.toString()¡¡ endl;

Transform4D h = Transform4D();

h.setTrans(t);

cout¡¡ ”h.setTrans(t): “n”¡¡ h.toString()¡¡ endl;

Vector4D x1 = h.mpy(x0);

cout¡¡ ”x1 = h.mpy(x0): “n”¡¡ x1.toString()¡¡ endl;

double pi= 3.1415926;

//pi/2 rotation of (1,0,0) should make (0,1,0)

h.setRotZ(pi/2.0);

cout¡¡ ”h.setRotZ(pi/2): “n”¡¡ h.toString()¡¡ endl;

Vector4D x1001 = Vector4D(1.0, 0.0, 0.0, 1.0);

cout¡¡ ”x1001 = ”¡¡ x1001.toString()¡¡ endl;

x1= h.mpy(x1001);

cout¡¡ ”x1 = h.mpy(x1001): “n”¡¡ x1.toString()¡¡ endl;

cout¡¡ ”“nRotation followed by translation ...”¡¡ endl;

h.setRotZ(pi/4.0);

cout¡¡ ”h.setRotZ(pi/4.0): “n”¡¡ h.toString()¡¡ endl;

Vector4D x2101 = Vector4D(2.0, 1.0, 0.0, 1.0);

cout¡¡ ”x2101 = ”¡¡ x2101.toString()¡¡ endl;

x1= h.mpy(x2101);

cout¡¡ ”x1 = h.mpy(x2101): “n”¡¡ x1.toString()¡¡ endl;

f.setTrans(Vector4D(1.0, 2.0, 0.0, 0.0));

cout¡¡ ”f.setTrans(Vector4D(1.0, 2.0, 0.0, 0.0)): ”¡¡

f.toString()¡¡ endl;

Vector4D x2 = f.mpy(x1);

cout¡¡ ”x2 = f.mpy(x1): ”¡¡ x2.toString()¡¡ endl;

// incorrect order

/*

System.out.println(”“nConcatenating rotation and translation ...”);

g = f.mpy(h); // this is h.f

7–18

System.out.println(”g = f.mpy(h): “n”+ g.toString());

x2 = g.mpy(x2101);

System.out.println(”x2 = g.mpy(x2101): ”+ x2.toString());

*/

cout¡¡ ”“nConcatenating rotation and translation ...”¡¡ endl;

g = h.mpy(f); // this is f.h

cout¡¡ ”g = h.mpy(f): “n”¡¡ g.toString()¡¡ endl;

x2 = g.mpy(x2101);

cout¡¡ ”x2 = g.mpy(x2101): ”¡¡ x2.toString()¡¡ endl;

˝

/** The main method constructs the test

*/

int main()–

Transform4DT1();

˝

7–19

Chapter 8

Inheritance

8.1 Introduction

Using inheritance, a derived class can be defined as an extension of a base class.

The inheriting (derived) class inherits all the behaviour and state memory of the base class. In
addition, it is free to add its own member data and functions — so-called extensions or speciali-
sations.

Note. The use of specialisation instead of extension has potential for confusion. The same goes
for the use of the terms superclass and subclass for base class, and derived class, respectively.
Thus, we will attempt to standardise on the terminology: base class and derived class, where the
derived class is the one that inherits (is extended); the derived class inherits from the base class.

As well as adding member functions and data, a derived class may overload base functions and
operators — to make them appropriate for itself. An example that we will see is the overloading
of a print function, that is capable of printing any extra fields introduced in the derived class.

However, the real power of inheritance comes from polymorphism and dynamic binding or run-time
binding via virtual functions.

In this chapter we cover nearly everything twice — once from the point of view of the Cell class
hierarchy, and once from the point of view of Person class hierarchy. The repetition is intentional:
the concepts here are important, and crucial to an understanding of the theory and practice of
OOP. Later we will cover the same ground again for a third time, this time in terms of computer
game objects.

Advanced. Ease of program extension. Run-time binding allows a class (hierarchy) to be
extended after the program which uses it has been written — leading to the comment that: old
code can ’call’ new code; this refers to the reversal of the traditional roles, when, generally new
calling programs are based on (calling of) old library code.

Another view of the same property is expressed in the open-closed principle of object-oriented
programming: to be useful to client programmers, a class must be closed to modification; yet,
using inheritance together with run-time binding, the class is also open to extension. Make sure
that I explain the distinction between compile-time binding (the obvious and mots usual one) and

8–1

dynamic binding. The point of being closed to modification is that you don’t have to modify and
retest working software; the point of open to extension is that software can be extended — as is
always necessary.

Liskov Substitution Principle It is important that inheriting classes respect the Liskov Substi-
tution Principle; this states that it must be possible to substitute a derived object (of an inheriting
class) instead of a base object without breaking the software. For example, see below, we want
to be able to substitute a Student object (or a Lecturer object) for a Person object and the
software should still work. One everyday language way of expressing this is that a Student is a
Person. Is a is always a good thought test to run when you are thinking of using inheritance.

8.2 Example 1: Class Cell extended via inheritance

We will approach the solution in three stages; first, we show inheritance, but without virtual
functions. (If you want your code to objects as in Java, you need virtual functions.) Next we
demonstrate the use of protected as private but with public to deriving classes; Java pro-
grammers should be comfortable with the latter. Finally, we introduce virtual functions and the
full effect of dynamic binding and polymorphism.

8.2.1 First Attempt

Program CellR1.cpp presents class ReCell, an extension of class Cell. It extends Cell to have
a backup state that stores the last state when set() is used.

The extension comprises the following:

Constructor This initialises the backup value, and, via the base (Cell) constructor, the Cell part,
i.e. val˙;

Overloaded set() This first backs-up the current value. Then is uses the Cell version of set();

Overloaded print() print() is also overloaded;

The :: qualifier Cell::set(val) insists that set from the base class Cell is to be used; in Java
you would write super.set(val);

Additional behaviour A function restore is provided;

Additional state int backup˙ stores the backup state.

That is nearly all. A ReCell object has whatever a Cell has, plus:

• additional behaviour;

• revised behaviour;

• additional state memory (data).

But there is a little more, as we see below.

8–2

//----- CellR1.cpp -------------------------------------

// inheritance etc. -- first version;

// see CellR2 etc for modifications

//--

#include ¡iostream¿

using namespace std;

class Cell–

public:

Cell() : val˙(0)–˝

void set(int val)–val˙= val;˝

int get() const –return val˙;˝

void print() const –cout¡¡”value= ” ¡¡ val˙¡¡ endl;˝

private:

int val˙;

˝;

class ReCell: public Cell–

public:

ReCell() : Cell(), backup˙(0)–˝;

void set(int val)–backup˙= get(); Cell::set(val);˝

void restore()–set(backup˙);˝

void print() const

–cout¡¡ ”value= ” ¡¡ get()¡¡ ” backup= ” ¡¡backup˙ ¡¡ endl;˝

private:

int backup˙;

˝;

int main()–

Cell c;

c.set(123); cout¡¡ ”Cell c: ”¡¡ endl; c.print();

Cell* pc= &c; cout¡¡ ”Cell* pc = &c: ”¡¡ endl; pc-¿print();

ReCell rc; rc.set(456); rc.set(789);

cout¡¡ ”ReCell rc: ”¡¡ endl; rc.print();

rc.restore();

cout¡¡ ”rc.restore() ”¡¡ endl; rc.print(); cout¡¡ endl;

cout¡¡ ”slicing: c= rc ”¡¡ endl;

c= rc; c.print();

cout¡¡ ”pc= & rc ”¡¡ endl;

pc= &rc; pc-¿print(); cout¡¡ endl;

return 0; ˝

8–3

Dissection of CellR1.cpp

1. Firstly, note that class Cell is unchanged.

2. ReCell contains an additional field backup˙. This means that a ReCell object has two
fields: val˙ and backup˙.

3. c= rc; is a legal assignment, even though they are defined as different types.

This is because, owing to the inheritance rc is-a Cell — in addition to being a ReCell.

4. Slicing. In the assignment c= rc;, slicing occurs, and only the Cell part of rc is copied. If
you like, think of it like this: c would have nowhere to put the additional backup˙ part.

5. pc= &rc; is a also a legal assignment; however, this time, slicing does not occur — although
we note that, in any case, no member data are copied (pc is a pointer) — and pc takes on
the dynamic type ReCell* (pointer-to- ReCell). Java programmers will say big deal, Java
does this all the time.

6. However, pc-¿print(); acts as if slicing has taken place; this is because the static type of
pc is Cell* and, consequently, it is Cell::print() that is bound at compile-time.

In the third version of ReCell below, we will see how virtual functions can rectify the
matter. virtual in the declaration of a method means that it is capable of dynamic or
run-time binding. Java uses dynamic binding by default.

In C++, the default is compile time binding (linking); note: compile-time = static. To get
dynamic (run-time) binding, you must use the keyword virtual when declaring a method.

7. Inheritance is announced by class ReCell: public Cell. This is public inheritance;
private inheritance is possible, but is so uncommon that we are never going to mention it
again.

8. Notice that, in ReCell, we have been able to refrain from referencing the private members
of Cell. Later, we will see that protected, which allows a reduced privacy, can be used if
derived classes must access private members of base classes.

8.2.2 Protected

Program CellR2.cpp is the same as CellR1.cpp with the simple modification that Cell’s val˙
field is now protected instead of private. protected gives limited external visibility — to inher-
iting classes only. Hence, protected is half-way privacy: visible to classes related by inheritance,
but otherwise hidden.

Thus, ReCell functions are at liberty to reference val˙.

Whether protected is good or bad is a moot point. Some people take the view that it dilutes the
main point of object-orientation — encapsulation and information hiding.

As we have seen, in Cell, ReCell it is possible to avoid. In more complex classes, efficiency and
other concerns may make it unavoidable.

8–4

//----- CellR2.cpp -------------------------------------

// from CellR1 -- using protected

// j.g.c. 12/2/98, 8/1/99, 2003/12/02

//--

#include ¡iostream¿

using namespace std;

class Cell–

public:

Cell() : val˙(0) –˝

void set(int val)–val˙= val;˝

int get() const –return val˙;˝

void print() const –cout¡¡”value= ” ¡¡ val˙¡¡ endl;˝

protected:

int val˙; // using protected, derived classes have access

˝;

class ReCell: public Cell–

public:

ReCell() : Cell(), backup˙(0) –˝

void set(int val)–backup˙= val˙; val˙= val;˝

void restore()–val˙= backup˙;˝

void print() const

–cout¡¡ ”value= ” ¡¡ val˙¡¡ ” backup= ” ¡¡backup˙ ¡¡ endl;˝

private:

int backup˙;

˝;

int main()–

Cell c;

c.set(123);

cout¡¡ ”Cell c: ”¡¡ endl; c.print();

ReCell rc;

rc.set(456); rc.set(789);

cout¡¡ ”ReCell rc: ”¡¡ endl; rc.print();

return 0;

˝

8.2.3 Virtual Functions and Dynamic Binding

Finally, in CellR3.cpp we get to the complete ReCell. Already, in the introduction, we have
previewed the need to make print() a virtual function. In fact, for the purposes of demonstra-
tion, we have made two print() functions, one non-virtual as before, the other named printV()
virtual.

8–5

//----- CellR3.cpp -------------------------------------

// inheritance etc. j.g.c. 2003/12/03 from CellR1.cpp

//--

#include ¡iostream¿ using namespace std;

class Cell–

public:

Cell() : val˙(0) –˝

virtual void set(int val)–val˙= val;˝

int get() const –return val˙;˝

void print() const –cout¡¡”value= ” ¡¡ val˙¡¡ endl;˝

virtual void printV() const –cout¡¡”V: value= ” ¡¡ val˙¡¡ endl;˝

private:

int val˙;

˝;

class ReCell: public Cell–

public:

ReCell() : Cell(), backup˙(0) –˝

virtual void set(int val)–backup˙= get(); Cell::set(val);˝

void restore()–set(backup˙);˝

void print() const

–cout¡¡ ”value= ” ¡¡ get()¡¡ ” backup= ” ¡¡backup˙ ¡¡ endl;˝

virtual void printV() const

–cout¡¡ ”V: value= ” ¡¡ get()¡¡ ” backup= ” ¡¡backup˙ ¡¡ endl;˝

private:

int backup˙;

˝;

int main()–

Cell c; c.set(123);

cout¡¡ ”Cell c, c.print() ”¡¡ endl; c.print();

cout¡¡ ”Cell c, c.printV() ”¡¡ endl; c.printV(); cout¡¡ endl;

Cell* pc= &c;

cout¡¡ ”Cell* pc = &c, pc-¿print() ”¡¡ endl; pc-¿print();

cout¡¡ ”Cell* pc = &c, pc-¿printV() ”¡¡ endl; pc-¿printV(); cout¡¡ endl;

ReCell rc; rc.set(456); rc.set(789);

cout¡¡ ”ReCell rc:, rc.print() ”¡¡ endl; rc.print();

cout¡¡ ”ReCell rc:, rc.printV() ”¡¡ endl; rc.printV(); cout¡¡ endl;

c= rc; cout¡¡ ”c= rc, c.print() ”¡¡ endl; c.print();

cout¡¡ ”c= rc, c.printV() ”¡¡ endl; c.printV(); cout¡¡ endl;

pc= &rc; cout¡¡ ”pc = &rc, pc-¿print() ”¡¡ endl; pc-¿print();

cout¡¡ endl¡¡ ”...finally, we see the effect of *virtual* ...”¡¡ endl;

cout¡¡ ”pc = &rc, pc-¿printV() ”¡¡ endl; pc-¿printV(); cout¡¡ endl;

cout¡¡ ”Cell& cc= rc; cc.printV() ...”¡¡ endl;

Cell& cc= rc; cc.printV(); return 0; ˝

8–6

Dissection

1. First, notice the use of the virtual qualifier in the declaration of set and print. Note
again: virtual means capable of dynamic binding.

2. Now, let us jump to main(). In the following,

c= rc; cout¡¡ ”c= rc, c.print() ”¡¡ endl; c.print();

cout¡¡ ”c= rc, c.printV() ”¡¡ endl; c.printV(); cout¡¡ endl;

Slicing again takes place and the following is output:

c= rc, c.print()

value= 789

c= rc, c.printV()

V: value= 789

c is of type Cell and nothing can make it otherwise.

3. However, as already indicated in 8.2.1, pc takes on the dynamic type pointer-to-ReCell.

Still, in the following,

pc= &rc; cout¡¡ ”pc = &rc, pc-¿print() ”¡¡ endl; pc-¿print();

Cell::print() is statically bound (compile-time) to pc, whose static type is
pointer-to-Cell, and the following is output:

pc = &rc, pc-¿print()

value= 789

4. But, in the following, we finally see the effect of virtual,

cout¡¡ endl¡¡ ”...finally, we see the effect of *virtual* ...”¡¡ endl;

cout¡¡ ”pc = &rc, pc-¿printV() ”¡¡ endl; pc-¿printV();

The output is:

...finally, we see the effect of *virtual* ...

pc = &rc, pc-¿printV()

V: value= 789 backup= 456

Here, the dynamic type of pc (pointer-to-ReCell) is respected and ReCell::printV() is
called.

8–7

More on Dynamic Binding In function calls like c.print() etc., and even c.printV() con-
ventional static-binding is used. I.e. the appropriate function is chosen & bound at compile-time
— using the best choice of (overloaded) function the compiler can make: the one indicated by the
static (declared) type of the calling object.

However, in pc-¿printV() quite different code is generated: extra run-time selection & dispatcher
code is generated. At run-time, this code detects the run-time (or dynamic) type of the pointer,
and calls (dispatches) the appropriate function.

In summary, four points are worth making:

• Dynamic binding is possible only for pointers or references;

• We must be dealing with objects related via inheritance;

• The static type of the pointer must be pointer-to-base or reference-to-base;

• The method must have been declared virtual.

Why does C++ not simply allow dynamic binding by default (like Java) and so get rid of any need
for the virtual distinction? The answer is the desire to optimise for run-time efficiency by default.
The run-time selection & dispatcher code mentioned above takes extra time and extra memory.

It used to be that games programmers frowned upon inheritance and virtual functions because their
potential performance penalty. But that is no longer the case.

8–8

8.3 Overriding (virtual functions) versus Overloading

When we specialise a virtual function is provided, we call this overriding. On the other hand,
when we specialise a non-virtual function, we call this overloading.

The difference between overriding and overloading is that:

• The binding (selection) of an overridden function is done at run-time;

• An overloaded function is bound at compile time.

8.4 Strong Typing

Many discussions on strong typing implicitly or explicitly equate strong typing to:

• Every variable is statically (at compile time) bound to a single type.

• Calls to operations on variables — including operations that combine two or more variables
— can be statically checked for type compatibility.

To these we can add, for languages with dynamic typing:

• The type of value held in a dynamically typed variable can be determined at run time, i.e.
dynamically, thus, it is possible to select at run-time an appropriate polymorphic function /
operator.

Even where dynamic binding is employed, it is still possible to determine type compatibility at
compile time. This is because dynamic binding is restricted to the family of classes related by
inheritance, and, since derived / ’inheriting’ classes are merely extensions of their base(s), a derived
class is type-compatible with a base class.

For the above situation to be semantically safe, we must ensure that the type system provided
by the class hierarchy respects the Liskov Substitution Principle: if function f() is defined for a
parameter of class B, and given a class D derived from B, then calls to f(), with an argument of
class D, should work properly.

8.5 Inheritance & Virtual Functions — Summary

If we declare a function, say VF(), as virtual in a base class, say B. Then, in a derived class, say
D,VF() can be overridden. Of course, D::VF() must have matching signature/prototype.

Now, a pointer to an object of class D, pd, can be assigned to a pointer of class B, pb, without
explicit type conversion.

8–9

Then, when invoked with a pointer to the base class, the selection from the overridden virtual
functions VF() is done dynamically, i.e. delayed until run-time, when the dynamic type of the
pointer will be known.

Thus:

B b;

B* pb = &b;

D d;

pb = &d;

pb-¿VF(); //D’s VF selected - dynamically

//if VF is *not* virtual - B’s VF would have been

//selected --- i.e. statically bound, at compile-time.

In the absence of a derived class VF(), of course, the base class virtual function will be used.

8.6 Inheritance versus Inclusion, is-a versus has-a

Without care it is easy for beginners to abuse inheritance through confusion of the class relation-
ships: is-a, versus has-a. Inheritance is a mechanism by which a base class may be extended to
yield a derived class; inclusion (composition) is the normal manner in which we can build a class
using objects of other classes (composition, inclusion).

Since inheritance provides extension, it is crucial to understand that the relationship between a
derived class and a base class is is-a: a derived class object is-a base class object.

In the Person class hierarchy, described below, in which Student and Lecturer are derived from
(inherit from) Person, it is clear that an Student object certainly does qualify for is-a Person.

But please note that the is-a relationship is not transitive; a Person need not necessarily be a
Student or Lecturer. Careful design of classes will mean that they will obey normal everyday
semantics of relationships between categories, e.g. Persons, and sub-categories, e.g. Students.

On the other hand, the relationship between class Person and Address is has-a: a Person object
has-a Name and has-an Address. Given our strict interpretation of has-a and is-a, on no account
could we say that a Person is-an Address.

8.7 Inheritance & Virtual Functions and Ease of Software Ex-
tension

Suppose you sell, or give, precompiled versions of the Person class hierarchy, to someone else,
together with a main() calling program — without giving them the source code. You envisage
them extending the program by building other classes based on your hierarchy.

8–10

Without virtual functions and overriding, you would have to, in the main() program, predict all the
different operations that would ever be required (impossible) and provide them in a giant stitch
statement.

With inheritance and virtual functions, anyone can extend the class hierarchy, so long a they override
appropriate virtual functions. Moreover, the main() program can call code that is developed long
after it.

This leads to the aphorisms mentioned earlier:

Old code can call new code — which contrasts with the non-object-oriented solution of new code
being written to call old code provided in libraries.

Upside-down libraries — i.e. the calling framework remains fixed, while the called functions may
be modified. Virtual functions are C++’s object-oriented way of avoiding callback functions —
such as those use in OpenGL.

And, we recall the open-closed principle: software modules (here classes) must be open to exten-
sion, but must be closed to modification.

8.8 Example 2: a Person class hierarchy

It is always difficult to explain the software design process in notes. Normally, the notes contain
the finished article without any discussion of the design and implementation steps.

We started off requiring classes to represent a course (now module) in the institute. Our first
attempt was the Student class below.

First, we thought the a single string for Address was inadequate — so we designed an Address class.
Then it became clear that we needed a Lecturer and possibly other people classes. Consequently,
we designed a Person class into which we could factor all the data and behaviour common to
Lecturer and Student, and, presumably, other people classes that may arise.

class Student–

public:

Student() : fn˙(””), ln˙(””), id˙(””), ad˙(””)–˝

Student(string fn, string ln, string id, string ad, int m) :

fn˙(fn), ln˙(ln), id˙(id), ad˙(ad)–˝

Student(string);

string first()– return fn˙; ˝;

string last()– return ln˙; ˝;

string ident()– return id˙;˝;

string address()– return ad˙;˝;

string toString() const;

private:

string fn˙;

string ln˙;

string id˙;

string ad˙;

˝;

8–11

File Person.h now shows a Person class. It has been deliberately kept simple, and thus, other
than as a demonstration of inheritance, it is rather limited and unremarkable.

// ---------------- Person.h ---------------------------

// j.g.c version 1.0; 2007-08-27

// ---

#ifndef PERSON˙H

#define PERSON˙H

#include ¡string¿

#include ”StringTokenizer.h”

#include ”Address.h”

class Person–

private:

std::string firstName˙;

std::string lastName˙;

Address address˙;

public:

Person(std::string& firstName, std::string& lastName,

Address& address);

// see Address.h for comment on = ”...”

Person(std::string str = ”blank,blank;blank,blank,blank,blank”);

virtual std::string toString() const;

˝;

#endif

// ---------------- Person.cpp ---------------------------

// j.g.c version 1.0; 2007-08-27

// ---

#include ”Person.h”

#include ¡iostream¿

Person::Person(std::string& firstName, std::string& lastName,

Address& address)

: firstName˙(firstName), lastName˙(lastName),

address˙(address)–˝

Person::Person(std::string str)–

// first split into name ; address

StringTokenizer st1 = StringTokenizer(str, ”;”);

std::string sName = st1.token(0);

std::string sAddress = st1.token(1);

address˙ = Address(sAddress);

// now split name

StringTokenizer st2 = StringTokenizer(sName, ”,”);

8–12

firstName˙ = st2.token(0); lastName˙ = st2.token(1);

˝

std::string Person::toString() const–

return firstName˙ + ”,” + lastName˙ + ”;” + address˙.toString();

˝

Address

// ---------------- Address.h ---------------------------

// j.g.c version 1.0; 2007-08-26

// ---

#ifndef ADDRESS˙H

#define ADDRESS˙H

#include ¡string¿

#include ”StringTokenizer.h”

class Address–

private:

std::string street˙; // street = first line of address

std::string city˙;

std::string region˙; // county or state

std::string country˙;

public:

Address(std::string& street, std::string& city,

std::string& region, std::string& country);

// = ”” does for default constructor

// which C++ wants but will never be used

Address(std::string str = ”blank,blank,blank,blank”);

std::string toString() const;

˝;

#endif

Dissection of Person.h

1. There are two constructors; the first is the standard initialising constructor; the second
constructs from a string. The latter is nice if we want to read from a file.

2. We avoid needing a default constructor (Person() with the default argument in

Person(std::string str = ”blank,blank;blank,blank,blank,blank”);

If we ever have Person(), the Person(std::string) constructor will be called with those
default arguments. This is fine; in fact we never deliberately use a default constructor but
C++ implicitly inserts one in certain situations and the compiler will complain if it doesn’t
exist.

8–13

3. Person is composed of two strings and an Address.

Why this design? We could have avoided Address altogether and put the Address string
straight into Person. But that causes two problems:

(a) Person starts to get big and complicated; as it is we can design and test Address and
after that we can more or less forget about the complexities of the Address part;

(b) What happens if we ever need to design a class, for example Company, that has an
an Address but yet does not inherit from Person? The answer is that we would have
to duplicate the address part of Person — bad, bad, bad. If you ever find yourself
duplicating code, go off and have a cup of tea and rethink your design.

4. We copy Java in giving classes toString methods; this makes life easy when we want to
write an object to the screen or to a file. Think of this as the output equivalent of the
Person(std::string) constructor that is used for input from keyboard and file.

5. We also copy Java in that we developed a StringTokenizer class for ripping apart strings
of data separated by delimiters.

6. In the declaration of toString we have used the keyword virtual; this is highly significant
since it releases the possibility of dynamic binding of toString;

We refrain from describing the implementation of Person; we can discuss that in class.

8.9 A Student Class

File Student.h shows an Student class which is derived from Person— it inherits from Person.

// ---------------- Student.h ---------------------------

// j.g.c version 1.0; 2007-08-27

// ---

#ifndef STUDENT˙H

#define STUDENT˙H

#include ¡string¿

#include ”Person.h”

class Student: public Person–

private:

std::string id˙;

public:

Student(std::string& firstName, std::string& lastName,

Address& address, std::string& id);

// see Address.h for comment on = ”...”

Student(std::string str = ”blank,blank;blank,blank,blank,blank;blank”);

virtual std::string toString() const;

˝;

#endif

8–14

// ---------------- Student.cpp ---------------------------

// j.g.c version 1.0; 2007-08-27

// ---

#include ”Student.h”

#include ¡iostream¿

Student::Student(std::string& firstName, std::string& lastName,

Address& address, std::string& id)

: Person(firstName, lastName, address), id˙(id)–˝

Student::Student(std::string str) : Person(str)–

// first split into name ; address ; id

// note that Person(str) will ignore id

StringTokenizer st1 = StringTokenizer(str, ”;”);

id˙ = st1.token(2); // (0) is name, (1) is address

˝

std::string Student::toString() const–

return Person::toString() + ”;” + id˙;

˝

Dissection of Student

1. class Student : public Person–... signifies that Student inherits from Person.

2. Student exhibits the same behaviour as Person; well, the only common behaviour is the
toString method!

3. As well as id˙ Student, via inheritance, contains all the data members of Person;

4. As a consequence of public inheritance, only the public parts of Person are visible within
Student.

8.10 Use of the Person Hierarchy

First of all we show a simple test program for Person alone; then we show a test that uses al three
classes in the hierarchy (Person, Student, Lecturer and demonstrates polymorphism.

File PersonT1.cpp shows a program which exercises Person. You will have access to similar
programs for Student and Lecturer; the latter two are extremely similar to PersonT1.cpp and
not worth printing here.

8.10.1 PersonT1.cpp

PersonT1.cpp demonstrates the use of std::vector, std::list, and std::iterator and the
random number generator. These may be worth some discussion in class.

A further example of std::vector is given in section 8.11 at the end of this Chapter.

8–15

// ----------------- PersonT1.cpp ------------------

// j.g.c. 2007-08-27

// ---

#include ”Person.h”

#include ¡vector¿

#include ¡list¿

#include ¡iostream¿

#include ¡iterator¿

#include ¡cstdlib¿ // for rand

using namespace std;

class PersonT1 –

public:

PersonT1()–

vector¡string¿ firstNames = vector¡string¿();

firstNames.push˙back(string(”Seamus”));

firstNames.push˙back(string(”Sean”));

firstNames.push˙back(string(”Sharon”));

firstNames.push˙back(string(”Sinead”));

firstNames.push˙back(string(”Sarah”));

firstNames.push˙back(string(”Simon”));

vector¡string¿ lastNames = vector¡string¿();

lastNames.push˙back(string(”Bloggs”));

lastNames.push˙back(string(”Burke”));

lastNames.push˙back(string(”Blaney”));

lastNames.push˙back(string(”Bradley”));

lastNames.push˙back(string(”Brown”));

lastNames.push˙back(string(”Black”));

vector¡string¿ streets = vector¡string¿();

streets.push˙back(string(”Port Road”));

streets.push˙back(string(”Pearse Road”));

streets.push˙back(string(”College Terrace”));

streets.push˙back(string(”Kingsbury”));

streets.push˙back(string(”New Street”));

vector¡string¿ cities = vector¡string¿();

cities.push˙back(string(”Newtown”));

cities.push˙back(string(”Oldtown”));

cities.push˙back(string(”Johnstown”));

cities.push˙back(string(”Hightown”));

cities.push˙back(string(”Lowtown”));

vector¡string¿ regions = vector¡string¿();

regions.push˙back(string(”Oldshire”));

regions.push˙back(string(”Newshire”));

8–16

regions.push˙back(string(”Green County”));

regions.push˙back(string(”Old County”));

vector¡string¿ countries = vector¡string¿();

countries.push˙back(string(”Ireland”));

countries.push˙back(string(”Wales”));

countries.push˙back(string(”England”));

countries.push˙back(string(”Scotland”));

list¡Person¿ personList = list¡Person¿();

string street, city, region, country, lastName, firstName;

unsigned int rnseed= 139;

srand(rnseed); // initialise random number generator.

int n = 10, j;

for(int i = 0; i¡ n; ++i)–

cout¡¡ ”i = ”¡¡ i¡¡ endl;

j = rand()%streets.size();

street = streets.at(j);

j = rand()%cities.size();

city = cities.at(j);

j = rand()%regions.size();

region = regions.at(j);

j = rand()%countries.size();

country = countries.at(j);

j = rand()%firstNames.size();

firstName = firstNames.at(j);

j = rand()%lastNames.size();

lastName = lastNames.at(j);

Address a = Address(street, city, region, country);

cout¡¡ a.toString()¡¡ endl;

Person p = Person(firstName, lastName, a);

cout¡¡ p.toString()¡¡ endl;

personList.push˙back(p);

˝

string s = string(”James,Mulligan;Lough Salt,Kilmacrennan,Donegal,Ireland”);

Person p(s);

personList.push˙back(p);

p = Person();

personList.push˙back(p);

cout¡¡”The Person list size is: ”¡¡ personList.size()¡¡ endl;

cout¡¡ ”The Person list is:”¡¡ endl;

list¡Person¿::iterator itr;

for(itr = personList.begin(); itr!= personList.end(); ++itr)–

cout¡¡ itr-¿toString()¡¡ endl;

˝

˝

˝;

8–17

//main constructs the test

int main()–

PersonT1();

˝

8.10.2 PersonT2.cpp

Now we test the full Person hierarchy, and demonstrate polymorphism.

// ----------------- PersonT2.cpp ------------------

// j.g.c. 2007-08-27

// demonstrating polymorphism in the Person hierarchy

// ---

#include ”Person.h”

#include ”Lecturer.h”

#include ”Student.h”

#include ¡vector¿

#include ¡list¿

#include ¡iostream¿

#include ¡iterator¿

#include ¡cstdlib¿ // for rand

#include ¡sstream¿

using namespace std;

class PersonT2 –

public:

PersonT2()–

// etc., see PersonT1.cpp

vector¡string¿ offices = vector¡string¿();

offices.push˙back(string(”2220”));

offices.push˙back(string(”3301”));

offices.push˙back(string(”3302”));

offices.push˙back(string(”1401”));

list¡Person*¿ personList = list¡Person*¿();

string street, city, region, country, lastName, firstName;

unsigned int rnseed= 1111353;

srand(rnseed); // initialise random number generator.

// and spin it a few times

for(int i = 0; i¡ 1000; ++i)rand();

int n = 10, j;

string id1(”L200702”);

for(int i = 0; i¡ n; ++i)–

8–18

j = rand()%streets.size();

street = streets.at(j);

j = rand()%cities.size();

city = cities.at(j);

j = rand()%regions.size();

region = regions.at(j);

j = rand()%countries.size();

country = countries.at(j);

j = rand()%firstNames.size();

firstName = firstNames.at(j);

j = rand()%lastNames.size();

lastName = lastNames.at(j);

Address a = Address(street, city, region, country);

//cout¡¡ a.toString()¡¡ endl;

int type = rand()%4; //randomly choose type of Person

if(type ¡ 2)–

Person *p = new Person(firstName, lastName, a);

personList.push˙back(p);

˝

else if(type == 2)–

int k = i + 10;

ostringstream ossid;

ossid¡¡ id1¡¡ k;

string id = ossid.str();

Student *st = new Student(firstName, lastName, a, id);

personList.push˙back(st);

˝

else –

j = rand()%offices.size();

string office = offices.at(j);

Lecturer *l = new Lecturer(firstName, lastName, a, office);

personList.push˙back(l);

˝

˝

string s = string(”James,Mulligan;Lough Salt,Kilmacrennan,Donegal,Ireland”);

Person p2(s);

personList.push˙back(&p2);

Person p3 = Person();

personList.push˙back(&p3);

cout¡¡”The Person list size is: ”¡¡ personList.size()¡¡ endl;

cout¡¡ ”The Person list is:”¡¡ endl;

list¡Person*¿::iterator itr;

for(itr = personList.begin(); itr!= personList.end(); ++itr)–

cout¡¡ (*itr)-¿toString()¡¡ endl;

˝

˝

˝;

8–19

// main constructs the test

int main()–

PersonT2();

˝

Dissection of PersonT2.cpp

1. In order to use polymorphism, we now use a list¡Person*¿ — a list of pointer to the base
class.

2. This means that (*itr)-¿toString() will act polymorphically and bind the appropriate
toString (Person, Student, or Lecturer) according to the dynamic type of what itr has
extracted from the list; for this to happen, toString must be virtual, see below.

3. If we had used list¡Person¿ (plus obvious changes), all objects inserted into the list would
have been sliced to produce a Person object and the additional parts in Student and Lecturer
would have been discarded.

4. If we had used list¡Person*¿ as above, but had left the virtual qualifier off toString,
then compile time (static) binding would have been used to and in (*itr)-¿toString()
Person::toString() would have been linked and all the objects would have been displayed
as if they were (plain) Person.

That is, slicing would not have taken place; the extended id˙ and office˙ are there alright,
but Person::toString() knows nothing about them.

Make sure you understand the difference between slicing and static binding in the context
above.

8.11 Standard Library Vector

The program in VectorTest1.cpp demonstrates the usefulness of the standard library vector
class and the associated standard library algorithms.

//------ VectorTest1.cpp --------------------------

// tests for std::vector

// j.g.c. 2003/02/20

//---

#include ¡iostream¿ // for cout¡¡ etc.

#include ¡string¿

#include ¡fstream¿ // for files - ofstream, ifstream

#include ¡algorithm¿

#include ¡vector¿

#include ¡cstdlib¿ // for rand

#include ”Marks.h”

using namespace std;

8–20

int main()–

const int n= 10; unsigned int rnseed= 139;

double d[n];

srand(rnseed); // initialise random number generator.

//cout¡¡ ”Max. random number= ”¡¡ RAND˙MAX¡¡ endl;

for(int i= 0; i¡ n; i++)–

d[i]= (double)rand()/(double)RAND˙MAX; // numbers in 0.0 to 1.0

˝

cout¡¡ ”“nArray of random numbers“n”¡¡ endl;

for(int i= 0; i¡ n; i++)–

cout¡¡ d[i]¡¡ ” ”;

˝

cout¡¡ endl;

vector¡double¿ v1;

for(int i= 0; i¡ n; i++)–

v1.push˙back(d[i]);

˝

cout¡¡ ”“nIterating through vector, one way “n”¡¡ endl;

vector¡double¿::iterator iter;

for(iter = v1.begin(); iter!= v1.end(); iter++)–

cout¡¡ *iter¡¡ ” ”;

˝

cout¡¡ endl;

cout¡¡ ”“nIterating through vector, another way “n”¡¡ endl;

for(int i = 0; i¡ n; i++)–

cout¡¡ v1[i]¡¡ ” ”;

˝

cout¡¡ endl;

sort(v1.begin(), v1.end());

cout¡¡ ”“nSorted vector“n”¡¡ endl;

for(int i = 0; i¡ n; i++)–

cout¡¡ v1[i]¡¡ ” ”;

˝

cout¡¡ endl;

reverse(v1.begin(), v1.end());

cout¡¡ ”“nReverse sorted vector“n”¡¡ endl;

for(int i = 0; i¡ n; i++)–

cout¡¡ v1[i]¡¡ ” ”;

˝

cout¡¡ endl;

cout¡¡ ”“nFront, back elements of vector, and size()“n”¡¡ endl;

cout¡¡ v1.front()¡¡ ” ”¡¡ v1.back()¡¡ ” ”¡¡ v1.size();

8–21

cout¡¡ endl;

cout¡¡ ”“nYou can modify the vector (x 10.0)“n”¡¡ endl;

for(int i = 0; i¡ n; i++)–

v1[i] = v1[i]*10.0;

˝

for(unsigned int i = 0; i¡ v1.size(); i++)–

cout¡¡ v1[i]¡¡ ” ”;

˝

cout¡¡ endl;

cout¡¡ ”“nYou can have vectors of strings“n”¡¡ endl;

vector ¡string¿ v2;

v2.push˙back(”The”); v2.push˙back(”quick”);

v2.push˙back(”brown”); v2.push˙back(”fox”);

v2.push˙back(”jumped”); v2.push˙back(”over”);

v2.push˙back(”the”); v2.push˙back(”lazy”);

v2.push˙back(”dog’s”); v2.push˙back(”back”);

for(unsigned int i = 0; i¡ v2.size(); i++)–

cout¡¡ v2[i]¡¡ ” ”;

˝

cout¡¡ endl;

sort(v2.begin(), v2.end());

cout¡¡ ”“nSorted“n”¡¡ endl;

for(unsigned int i = 0; i¡ v2.size(); i++)–

cout¡¡ v2[i]¡¡ ” ”;

˝

cout¡¡ endl;

cout¡¡ ”“nYou can assign vectors “n”¡¡ endl;

vector¡string¿ v12 = v2;

for(unsigned int i = 0; i¡ v12.size(); i++)–

cout¡¡ v2[i]¡¡ ” ”;

˝

cout¡¡ endl;

cout¡¡ ”“nYou can remove elements from vectors “n”¡¡ endl;

remove(v12.begin(), v12.end(), ”lazy”);

for(unsigned int i = 0; i¡ v12.size(); i++)–

cout¡¡ v12[i]¡¡ ” ”;

˝

cout¡¡ endl;

cout¡¡ ”“nYou can search vectors “n”¡¡ endl;

vector¡string¿::iterator it;

it= find(v12.begin(), v12.end(), ”fox”);

cout¡¡*it¡¡ endl;

8–22

cout¡¡ ”“n... and then erase that element “n”¡¡ endl;

v12.erase(it);

for(unsigned int i = 0; i¡ v12.size(); i++)–

cout¡¡ v12[i]¡¡ ” ”;

˝

cout¡¡ endl;

vector¡string¿ v22;

cout¡¡ ”“nYou can copy using copy, but use resize first “n”¡¡ endl;

v22.resize(4);

copy(v12.begin(), v12.begin()+3, v22.begin());

for(unsigned int i = 0; i¡ v22.size(); i++)–

cout¡¡ v22[i]¡¡ ” ”;

˝

cout¡¡ endl;

vector¡ vector¡string¿ ¿ vv;

cout¡¡ ”“nYou can have vectors of vectors, but use ¿ ¿ in decl. “n”¡¡ endl;

vv.push˙back(v2);

vv.push˙back(v12);

vv.push˙back(v22);

for(unsigned int i = 0; i¡ vv.size(); i++)–

cout¡¡ ”vector ”¡¡ i¡¡”: ”;

for(unsigned int j = 0; j¡ vv[i].size(); j++)–

cout¡¡ vv[i][j]¡¡ ” ”;

˝

cout¡¡ endl;

˝

cout¡¡ endl;

cout¡¡ ”“nYou can have vectors of your own objects“n”¡¡ endl;

vector ¡Marks¿ v3;

int ex, ca;

for(unsigned int i = 0; i¡ 8; i++)–

ex= rand()%100; ca= rand()%100;

Marks m= Marks(ex, ca);

v3.push˙back(m);

˝

for(unsigned int i = 0; i¡ v3.size(); i++)–

cout¡¡ v3[i]¡¡ ” ”;

˝

cout¡¡ endl;

sort(v3.begin(), v3.end());

cout¡¡ ”“nSorted“n”¡¡ endl;

for(unsigned int i = 0; i¡ v3.size(); i++)–

cout¡¡ v3[i]¡¡ ” ”;

8–23

˝

cout¡¡ endl;

cout¡¡ ”“nYou can then save that vector to a file“n”¡¡ endl;

ofstream fileout(”xyz.dat”);

if(!fileout)–

cerr¡¡ ”cannot open file ¡xyz.dat¿“n”;

return -1;

˝

for(unsigned int i=0; i¡ v3.size(); i++)–

fileout¡¡ v3[i];

fileout¡¡ endl;

˝

fileout.close();

cout¡¡ ”“n... and read some of them back“n”¡¡ endl;

vector¡Marks¿ v4;

ifstream filein(”xyz.dat”);

if(!filein)–

cerr¡¡ ”cannot open file ¡xyz.dat¿“n”;

return -1;

˝

Marks tmp;

for(unsigned int i=0; i¡ 5; i++)–

filein¿¿ tmp;

v4.push˙back(tmp);

˝

filein.close();

for(unsigned int i = 0; i¡ v4.size(); i++)–

cout¡¡ v4[i]¡¡ ” ”;

˝

cout¡¡ endl;

return 0;

˝

8–24

8.12 Marks

Notice that if you ever want to apply the sort algorithm to a collection of objects, then the class
must have a ¡ (ordering) operator:

bool operator¡(const Marks& lhs, const Marks& rhs)–

return lhs.overall() ¡ rhs.overall();

˝

//--

// Marks.h - StudentInfo project

// j.g.c. 2003/02/20, 2007-01-05

//--

#ifndef MARKSH

#define MARKSH

#include ¡string¿

#include ¡iostream¿

#include ¡sstream¿

class Marks–

// friends are not members, but have access to private data

friend std::ostream& operator¡¡(std::ostream& os, const Marks& m);

friend std::istream& operator¿¿(std::istream& is, Marks& m);

friend bool operator¡(const Marks& lhs, const Marks& rhs);

public:

Marks() : ex˙(0.0), ca˙(0.0)–˝ //defining in header is same as ’inline’

Marks(double ex, double ca);

Marks(std::istream& is);

double overall() const;

std::string toString() const;

static const int examWeight = 70;

private:

double ex˙;

double ca˙;

˝;

#endif

//--

// Marks.cpp - StudentInfo project

// j.g.c. 2003/02/20, 2007-01-12

//--

#include ”Marks.h”

using namespace std;

8–25

Marks::Marks(double ex, double ca)–

ex˙ = ex;

ca˙ = ca;

˝

Marks::Marks(istream& is)–

// assumes that fields are separated by whitespace

string tmp;

is¿¿ tmp; // throw away decoration (”Marks:”)

is¿¿ ex˙;

is¿¿ ca˙;

˝

double Marks::overall() const–

double exw= double(examWeight)/100.0;

return exw*ex˙ + (1.0 - exw)*ca˙;

˝

ostream& operator¡¡ (ostream& os, const Marks& m)–

// ideally, this would not output any decoration; in that

// case, ¿¿ could be the same as ¡¡

os¡¡ ”Marks:”¡¡ ” ”¡¡ m.ex˙¡¡ ” ”¡¡ m.ca˙;

return os;

˝

string Marks::toString() const–

stringstream ss;

ss¡¡ ”Marks:”¡¡ ” ”¡¡ ex˙¡¡ ” ”¡¡ ca˙;

return ss.str();;

˝

istream& operator¿¿(istream& is, Marks& m)–

// assumes that fields are separated by whitespace

string tmp;

is¿¿ tmp; // throw away decoration (”Marks:”)

is¿¿ m.ex˙;

is¿¿ m.ca˙;

return is;

˝

bool operator¡(const Marks& lhs, const Marks& rhs)–

return lhs.overall() ¡ rhs.overall();

˝

8–26

Chapter 9

Classes that manage memory

9.1 Introduction

The classes that we have used so far — Cell, ReCell, Person and the graphics Vector classes
have avoided any use of heap memory. In each case, member variables are stack memory based
and memory is managed automatically, i.e. object creation and deletion is done automatically by
the language.

On the other hand, many practical classes/objects require, for one reason or another, to employ
heap memory; the sort of objects that require the flexibility of heap storage are containers: lists,
stacks, queues, trees, and dynamically sizable arrays and strings.

Fortunately, the C++ standard library now makes available an extensive range of containers, so
that the development of heap based classes is no longer as necessary as it used to be. That is
fortunate, because, as we repeat below, development of classes that need to manage memory is
difficult and error prone.

Make sure you recall heap and stack variables. In summary: normally declared/defined variables
are constructed (created) on the stack; they are constructed when control reaches the point of
declaration and they are destroyed when control reaches the end of the scope unit in which they
were declared. Thus, programmers need only declare them and the language takes care of the
rest — the lifetime of the variables is handled automatically. Variables that are constructed using
new reside on the heap; as well as requiring to be explicitly constructed (using new), they must be
destroyed explicitly (using delete).

The important distinction between heap-based objects and stack-based objects is the same for
objects as for variables. That is, the compiler will automatically and implicitly generate memory
management and similar functions for the simpler stack objects, but for heap based objects —
those objects whose state is stored in heap memory and accessed through pointers, the class
developer must explicitly program memory management, see section 5.11, i.e. constructors and
destructors, and associated functions such as copy.

Memory management is never easy. However, we can develop patterns — or templates — (taking
the general meanings of these terms) that show how to provide the memory management facilities
generally needed for heap-based classes. We have briefly covered heap memory management in
section 5.11; maybe you should review that now.

9–1

We will discuss in some detail some critical aspects of heap-based classes:

Destructors A destructor is called, automatically, when control reaches the end of the block in
which the object was declared, i.e. when the object goes out of scope. The compiler will
always provide adequate destruction of stack-based objects, but, for heap-based objects,
proper destructor memory management must be provided if garbage and memory-leaks (or
worse, dangling pointers) are to be avoided.

Copy constructor A copy constructor is called when the object is passed (by value) to and from
functions. Again, for classes which use stack memory, the compiler will always provide an
adequate copy constructor. For heap-based objects the case is quite analogous to that of
the destructor: proper constructor memory management must be provided.

Assignment Assignment operator (the ’=’ operator) needs treatment similar to the copy con-
structor.

The Big-Three The C++ FAQs (Cline et al. 1999b) uses the term the Big-Three for these three
functions: copy constructor, assignment operator, and destructor.

This is because, for classes that use heap storage, it is almost certainly necessary to explicitly
program all three. If they are not programmed, the compiler will provide default versions
which will probably not do what you would wish; moreover the inadequacies of these defaults
may be most subtle, and may require quite determined and skilled testing to detect.

In the remainder of this chapter we are going to develop heap-based dynamic array class (rather
like std::vector).

We will spend some time on this, but a much better example is given in in Chapter 12. The details
of a linked list class are in Chapter 13.

There is some repetition between the remainder of this chapter and Chapter 12.

9.2 A Heap-based Dynamic Array Class

9.2.1 Class Declaration

Dissection of Array1.h

Copy constructor A copy constructor always has the signature T(const Type& source);, where
Type is the class name.

Array(const Array& source);

Destructor There is only ever one destructor, and it must have the name of the class preceded
by ’∼’ (tilde).

˜Array();

9–2

//----- Array1.h -------------------------------------

// j.g.c. 6/1/99, 8/1/99, 2007-01-06

// heap memory, and full complement of

// copy constructor, destructor, assignment operator.

//--

#ifndef ARRAYH

#define ARRAYH

#include ¡iostream¿

#include ¡cassert¿

class Array–

public:

Array(unsigned int len= 0); // defaults to zero if no arguments

Array(unsigned int len, int val);

Array(const Array& source); // copy constructor

˜Array(); // destructor

Array& operator=(const Array& source);// assignment operator

void set(int val, unsigned int i);

int get(unsigned int i) const;

unsigned int length() const;

void print() const;

private:

unsigned int len˙;

int* dat˙;

void copy(const Array& source); // used only internally

˝;

#endif

Figure 9.1: Array1.h class declaration.

9–3

Destructors cannot be invoked explicitly — they are implicitly invoked when an object must
be destroyed, i.e. when exiting the block or function in which it was defined, i.e. when
execution leaves the portion of the program in which it is in scope.

Assignment operator Array& operator=(const Array& source);

Private function — copy Note that copy is made private because it is used only internally —
it is not part of the class interface.

void copy(const Array& source); // used only internally

9.2.2 Class implementation code

The implementation code for the Array class is shown in Figures 9.2 and 9.3.

Dissection of Array1.cpp

1. We have added print statements to some of the significant functions; this is to enable tracing
of calls to them. As we shall see in the next subsection, you may be surprised what is going
on during, for example a call to a function which takes an object as a parameter.

However, in the interests of clarity, these prints statements have been removed in the following
discussions.

2. Default constructor.

Array::Array(unsigned int len) : len˙(len) –

if(len˙==0)–dat˙ = 0; return;˝

dat˙ = new int[len˙];

assert(dat˙!= 0);

for(unsigned int i=0; i¡ len˙; i++)set(0, i);

˝

(a) If length is zero, no need to allocate, set dat˙ pointer to null and return.

(b) Otherwise allocate an array of len˙ ints on heap. new returns a pointer to this data
block, and this is assigned to dat˙.

(c) Use assert to ensure that the allocation was successful; new returns a null pointer if it
is unsuccessful, e.g. due to resources of free memory having become exhausted.

(d) Then initialise the memory to 0.

3. Initialising constructor.

Array::Array(unsigned int len, int val) : len˙(len) –

if(len˙==0)–dat˙ = 0; return;˝

dat˙ = new int[len˙];

assert(dat˙!= 0);

for(unsigned int i=0; i¡ len˙; i++)set(val, i);

˝

9–4

//----- Array1.cpp ----------------------------------

// j.g.c. 6/1/99, 8/1/99, 2007-01-06

//--

#include ”Array1.h”

using namespace std;

Array::Array(unsigned int len) : len˙(len) –

cout¡¡ ”*1.Array(unsigned int)*”¡¡ endl;

if(len˙==0)–dat˙ = 0; return;˝

dat˙ = new int[len˙];

assert(dat˙!= 0);

for(unsigned int i=0; i¡ len˙; i++)set(0, i);

˝

Array::Array(unsigned int len, int val) : len˙(len) –

cout¡¡ ”*2.Array(unsigned int, int)*”¡¡ endl;

if(len˙==0)–dat˙ = 0; return;˝

dat˙ = new int[len˙];

assert(dat˙!= 0);

for(unsigned int i=0; i¡ len˙; i++)set(val, i);

˝

Array::Array(const Array& source)–

cout¡¡ ”3.*Array(const Array&) -- copy constructor*”¡¡ endl;

copy(source);

˝

Array::˜Array()–

cout¡¡ ”*˜Array()*”¡¡ endl;

delete [] dat˙;

˝

Array& Array::operator=(const Array& source)–

cout¡¡ ”*operator=*”¡¡ endl;

if(this!= &source)– // beware a= a;

delete [] dat˙;

copy(source);

˝

return *this;

˝

void Array::copy(const Array& source)–

len˙= source.length();

if(len˙== 0)–dat˙ = 0; return;˝

dat˙ = new int[len˙];

assert(dat˙!= 0);

for(unsigned int i= 0; i¡ len˙; i++)dat˙[i] = source.get(i);

˝

... continued ...

Figure 9.2: Array1.cpp class implementation, part 1
9–5

... Array1.cpp ...

void Array::set(int val, unsigned int i)–

assert(i¡len˙);

dat˙[i]= val;

˝

int Array::get(unsigned int i) const –

assert(i¡len˙);

return dat˙[i];

˝

unsigned int Array::length() const –

return len˙;

˝

void Array::print() const –

unsigned int len= length();

cout¡¡”length= ” ¡¡ len¡¡ ”: ”;

for(unsigned int i=0; i¡len; i++)–

cout¡¡ get(i)¡¡ ” ”;

˝

cout¡¡ endl;

˝

Figure 9.3: Array1.cpp class implementation, part 2.

9–6

This is the same as the default constructor — except for the initialising value.

4. Function copy.

void Array::copy(const Array& source)–

len˙= source.length();

if(len˙== 0)–dat˙ = 0; return;˝

dat˙ = new int[len˙];

assert(dat˙!= 0);

for(unsigned int i= 0; i¡ len˙; i++)dat˙[i] = source.get(i);

˝

(a) This is very similar to the default constructor — except that this time we have passed
another object to be copied.

(b) Notice that we have passed a reference (Array& source). If we don’t we’ll end up
constructing many multiple copies, each of which must also be destroyed. And when
the object becomes large, as may be the case for an Array the performance drain can
be considerable.

(c) Of course, we guarantee the safety of the referenced object (in the caller) by making
the reference const.

5. Copy constructor.

Array::Array(const Array& source)–

copy(source);

˝

Here, all the work is done by copy. Again notice the use of reference and const.

6. Destructor.

Array::˜Array()–

delete [] dat˙;

˝

(a) Here we use delete to release the allocated memory.

(b) Owing to the fact that dat˙ points to an array, we must use delete [].

7. Assignment operator ’=’.

Array& Array::operator=(const Array& source)–

if(this!= &source)– // beware a= a;

delete [] dat˙;

copy(source);

˝

return *this;

˝

(a) Let us say we have two Array objects, x, y and x = y. Then this assignment is exactly
equivalent to

9–7

x.operator=(y);

(b) Again notice the use of a reference and const.

(c) Since we can envisage x = x, however improbable, we have to be careful to check
whether this is the case — and if it is, do nothing.

(d) this is an implicit pointer variable which points at the object itself. Thus
if(this!= &source) checks if the calling object and the source object share the same
memory location — and so are the same object!

(e) return *this; returns the object (actually a reference, see next comment).

(f) Why does operator= return Array&? (a) In C and C++ is is standard for an assignment
to have the value of the object assigned, e.g.

int x = y = 10;

we want the same for objects.

And, as usual, we want the efficiency of reference passing.

The next chapter has a more extensive discussion of operator overloading.

9.2.3 Assertions

C++ provides a macro function, assert, which evaluates a Boolean expression and if it evaluates
to false generates a run-time error message and halts the program. assert is defined in cassert.

The following shows an example use of assert to check the legality of the array index operator;
len˙ is the length of the array.

void Array::set(int val, unsigned int i)–

assert(i¡len˙);

dat˙[i]= val;

˝

When the following code is executed:

c2.set(200, 10); //demonstrates assert

the array index 10 will not satisfy the condition ¡len˙ (len- == 3) and an error will be reported
and the program halted:

Array1T1: Array1.cpp:52: void Array::set(int, unsigned int): Assertion

¡len˙’ failed.

For performance or other reasons, the assertion can be disabled either by including the compiler
switch -DNDEBUG; I’m not sure how Visual Studio handles this. Alternatively insert the following
pre-processor directive in the source file:

9–8

#define NDEBUG

Note also the assertion which tests whether memory allocation has been successful:

dat˙ = new int[len˙];

assert(dat˙!= 0);

Use of assertions like this is an example of defensive programming and can be very useful in testing
and can greatly simplify debugging.

9.2.4 A simple client program

The program in Figure 9.4 demonstrates the use of the Array class.

Dissection The most interesting activities are those involving the constructors, the assignment
operator and the destructor. To examine these, it is useful to examine the output generated by
Array1T1.cpp.

1. This code

Array c1;

cout¡¡ ”Array c1: ”; c1.print();

outputs:

1.Array(unsigned int)

Array c1: length= 0:

i.e. the default constructor is called, and, when printed, the array is seen to have length 0.

2. This code

Array c2(3);

cout¡¡ ”Array c2(3): ”; c2.print();

outputs:

1.Array(unsigned int)

Array c2(3): length= 3: 0 0 0

i.e. the constructor is called with argument 3, and, when printed, the array is seen to have
length 3 and initial values 0.

9–9

//----- Array1T1.cpp ----------------------------------

// j.g.c. 6/1/99, 8/1/99, 13/1/99, 2007-01-06

//--

#include ”Array1.h”

using namespace std;

Array fred(Array a)–

cout¡¡ ”Array a in fred: ”; a.print(); cout¡¡ endl;

Array b(a);

int len= b.length(); int x;

for(int i= 0; i¡ len; i++)–

x= b.get(i);

b.set(x+100, i);

˝

return b; ˝

int main()–

cout¡¡ ”heap based array ...”¡¡ endl;

Array c1; cout¡¡ ”Array c1: ”; c1.print();

Array c2(3); cout¡¡ ”Array c2(3): ”; c2.print();

//c2.set(200, 10); demonstrates assert

Array c3(5, 7); cout¡¡ ”Array c3(5, 7): ”; c3.print(); cout¡¡ endl;

cout¡¡ ”c3.length() ”¡¡ c3.length()¡¡ endl;

int len= c3.length();

for(int i= 0; i¡ len; i++)–

c3.set(i+20, i);

˝

cout¡¡ ”c3 updated: ”; c3.print(); cout¡¡ endl¡¡ endl;

cout¡¡ ”c3.get: ”;

for(int i= 0; i¡ len; i++)–

cout¡¡ c3.get(i)¡¡ ” ”;

˝

cout¡¡ endl¡¡ endl;

Array c4= c3;

cout¡¡ ”Array c4= c3: ”; c4.print(); cout¡¡ endl;

Array c5(c3); cout¡¡ ”Array c5(c3): ”; c5.print(); cout¡¡ endl;

c2= c3;

cout¡¡ ”c2= c3: ”; c2.print(); cout¡¡ endl;

c2= fred(c3);

cout¡¡ ”c2= fred(c3): ”; c2.print(); cout¡¡ endl;

cout¡¡ ”finishing ...”¡¡ endl;

return 0;˝

Figure 9.4: Array1T1.cpp
9–10

3. Array c3(5, 7);

cout¡¡ ”Array c3(5, 7): ”; c3.print(); cout¡¡ endl;

outputs:

2.Array(unsigned int, int)*

Array c3(5, 7): length= 5: 7 7 7 7 7

i.e. the initialising constructor is called with arguments 5, 7, and, when printed, the array is
seen to have length 5 and initial values 7.

4. Array c4= c3;

cout¡¡ ”Array c4= c3: ”; c4.print(); cout¡¡ endl;

outputs:

3.*Array(const Array&) -- copy constructor*

Array c4= c3: length= 5: 20 21 22 23 24

i.e. the copy constructor is called with argument c3; this may be a little surprising — in this
circumstance, the compiler always knows to optimise out an unnecessary assignment. When
printed, the array c4 is seen to have been appropriately copied from c3.

5. Array c5(c3);

cout¡¡ ”Array 5(c3): ”; c5.print(); cout¡¡ endl;

outputs:

3.*Array(const Array&) -- copy constructor*

Array c5(c3): length= 5: 20 21 22 23 24

i.e. the copy constructor is called with argument c3; in this case this is more expected.

6. Now we get to an true assignment statement.

c2= c3;

cout¡¡ ”Array c2= c3: ”; c2.print(); cout¡¡ endl;

outputs:

operator=

Array c2= c3: length= 5: 20 21 22 23 24

i.e. the assignment operator is called with argument c3.

7. Now we get to a function call with parameter passing; this generates a lot more activity than
you would expect.

c2= fred(c3);

First, a copy of c3 is made to create local object a, and the print statement executed.

9–11

3.*Array(const Array&) -- copy constructor*

Array a in fred: length= 5: 20 21 22 23 24

Next local Array b is created from a. (Actually, this is a little silly, since a is already a local
copy; nevertheless, the code as given is a good general demonstration of the activity that
surrounds function calls and parameter passing).

3.*Array(const Array&) -- copy constructor*

Then, after b is modified (no output), return b causes the copy constructor to make a copy
to an anonymous temporary object in the main program:

3.*Array(const Array&) -- copy constructor*

Then both local objects, a, b are destroyed:

˜Array()

˜Array()

Then the temporary is assigned to c2:

operator=

and the temporary is destroyed:

˜Array()

Then c2 is printed,

c2= fred(c3): length= 5: 120 121 122 123 124

8. Finally, we get to the end of main, but it’s not all over yet:

finishing ...

˜Array()

˜Array()

˜Array()

˜Array()

˜Array()

Here we see objects c1, c2 ..., c5 being destroyed.

9–12

9.3 The ’this’ pointer

If we have to reference the object itself in a member function, we can do it through an implicit
pointer this; e.g. below in operator=:

Array& Array::operator=(const Array& source)–

if(this!= &source)– // beware a= a;

delete [] dat˙;

copy(source);

˝

return *this;

˝

9.4 Copy Constructors and Parameter Passing and Value Re-
turn

Usually, copy constructors must be provided for classes which use heap memory. As already
described, if the developer of the class does not provide one, the compiler will do so.

9.4.1 Näıve member-wise constructor, shallow copy

The problem is that the compiler provided default copy constructor will merely perform a näıve
member-wise or shallow copy constructor. In the case of Array this means that only members
len and dat˙ will be copied.

The deficiency of the default copy constructor is seen in the following example:

Array a(5,7), b(a);

Array c(a); //OK so far, but b and a share the same

//data array -- referenced by pdat˙

b.set(125, 2); // 2nd element of b becomes 125

int x= a.get(2); // what value of x? 7?

// *no* it is 125!

// because a.pdat˙ and b.pdat˙ are aliases for one

//another

A worse problem is caused if a gets destroyed before b, or vice versa; in this case b.dat˙ will
become a dangling reference.

9–13

9.4.2 Proper ’deep’ copy constructor

In the case of Array, we provide

Array::Array(const Array& source)–

cout¡¡ ”3.*Array(const Array&) -- copy constructor*”¡¡ endl;

copy(source);

˝

void Array::copy(const Array& source)–

len˙= source.length();

if(len˙== 0)–dat˙ = 0; return;˝

dat˙ = new int[len˙];

assert(dat˙!= 0);

for(unsigned int i= 0; i¡ len˙; i++)dat˙[i] = source.get(i);

˝

This provides a so-called deep copy, i.e. copy not just the explicit members, but also what they
point to.

9.4.3 Copy constructor and parameter passing and return

Already, we have given a detailed account of constructor activity during the following function call:

call: c2= fred(c3);

Array fred(Array a)–

Array b(a);

// ...

return b;

˝

1. Local object a is created — using the copy constructor.

2. Then object b is created — again the copy constructor.

3. On return, b must be copied to the caller; this is to a an anonymous temporary object, which,
momentarily, replaces fred(c3).

4. Next, the assignment operator = is invoked to copy the temporary object to c2.

I suppose the main point to me made here is that a faulty copy constructor is a great liability —
but, because of the implicitness of most of its use, it can cause problems that are very hard to
trace.

9–14

9.5 Assignment

Assignment is subject to the same requirements as copy constructors, and the discussion of section
9.4; i.e. a non-trivial assignment operator must usually be provided for classes which use heap
memory. If such is not provided, again the compiler will provide a default one, which uses shallow
copy.

Copy constructors and assignment operators perform very similar tasks, and so their code often
closely mirrors that of the other. In the following example, the only difference is (a) the check
against mistaken deletion of an objects memory if it is assigned to itself, and (b) the use of
delete [] dat˙; to free whatever memory the object is currently using.

Array& Array::operator=(const Array& source)–

cout¡¡ ”*operator=*”¡¡ endl;

if(this!= &source)– // beware a= a;

delete [] dat˙;

copy(source);

˝

return *this;

˝

A more detailed account of operators is given in the next chapter.

As mentioned earlier, you should note carefully that operator= returns a reference (Array&). This
allows constructs of the form a = b = c;, which, if it is to be valid for built-in types like int,
had better be valid for objects. Indeed, many container classes, e.g. those in the C++ standard
library, depend on and demand this property.

9.6 Destructor

As repeatedly mentioned, destructors are called, automatically, when program control reaches the
end of the block in which the object was defined (and hence constructed).

The destructor for an object which references heap memory is subject to the same memory man-
agement demands as copy constructor and assignment operator. The compiler will always provide
adequate destruction of stack-based objects, but, for heap-based objects, proper destructor mem-
ory management must be provided if garbage and memory-leaks (or worse, dangling pointers) are
to be avoided.

Thus, the Array destructor:

Array::˜Array()–

delete [] dat˙;

˝

9–15

9.7 The Big-Three

The C++ FAQs (Cline et al. 1999b) uses the term the Big-Three for the previous three functions:
copy constructor, assignment operator, and destructor.

This is because, for any class for which you must provide one, it is almost certainly necessary to
provide all three.

9.8 Reference parameters and reference return

I hope that the discussion in subsection 9.4.3 will have given the (correct) impression that function
fred may be generating an awful lot of unnecessary work.

In many cases, a better solution is the following:

call: c2= fred1(c3); // call remains the same

Array fred1(const Array& a)–

Array b(a);

// do things to b

return b;

˝

Here we have dispensed with one call to a copy constructor — a. But the others remain — creation
of b and creation of the temporary in the caller. Actually, as mentioned above, we could equally
well use:

Array fred11(Array a)–

// a is a local *copy*

// do things to a

return a;

˝

Reference return It would now be tempting to continue the trend and return a reference to b
(or a — if fred11).

In this circumstance, we cannot easily do that. Since b, or a are local variables, they are destroyed
upon return. Thus,

call: c2= fred21(c3);

Array& fred2err(Array a)–

// a is a local *copy*

9–16

// do things to a

return a;

˝

is very seriously flawed; upon return, a reference (remember — a reference is just an alias to a
is returned (to a temporary); next, a is destroyed, so that when, in the caller, the assignment has
a dangling reference on its right-hand-side!.

This is subtle. Just because an object references heap-memory, it itself is not a heap object unless
it is created using new.

Returning a reference to a local object is a cardinal sin.

Pointer return Obviously, if b is to become a revised version of the argument (c3), we cannot
avoid a constructor for b. However, what about the temporary? This can be accomplished by the
code in fred2:

//Warning: ugly code follows

Array* pc2;

call: pc2= fred1(c3); // now returns a pointer

Array* fred2(const Array& a)–

Array* pb = new Array(a);

int len= pb-¿length();

int x;

for(int i= 0; i¡ len; i++)–

x= pb-¿get(i);

pb-¿set(x+100, i);

˝

return *pb;

˝

The price to pay is that b, or rather pb, must reference a heap object; to create this, we must use
new.

The real disadvantage of fred2 is that is creates a heap object that someone else must take
responsibility for destroying — i.e. potential garbage. However, you may be relieved to hear that
this example is quite artificial, and that properly designed software will normally use new only within
a class, and that a corresponding delete will be provided (by the class designer).

Return value optimisation Actually, the following version, which is by far the prettiest, may turn
out to be the most efficient — due to return value optimisation.

Array fred11(Array a)–

// a is a local *copy*

// do things to a

return a;

˝

9–17

When the compiler notices a local Array a being created, followed by a return a, it knows that
considerable optimisation can achieved by creating a in the callers space.

9.9 Privacy is class-based, not object-based

Up to now, we have been careful to use, where possible, accessor functions such as get in member
functions, e.g. in copy:

void Array::copy(const Array& source)–

len˙= source.length();

if(len˙== 0)–dat˙ = 0; return;˝

dat˙ = new int[len˙];

assert(dat˙!= 0);

for(unsigned int i= 0; i¡ len˙; i++)dat˙[i] = source.get(i);

˝

for(unsigned int i= 0; i¡ len˙; i++)dat˙[i] = source.get(i);

Here we use get for access to source, but we go straight to dat˙ for the object itself.

However, we could easily rewrite this line as:

for(unsigned int i= 0; i¡ len˙; i++)dat˙[i] = source.dat˙[i];

Thus, source’s private members are visible to the member functions of other objects of the
same class.

Privacy is class-based, not object-based.

On the other hand, maybe the use of accessor functions is no harm at all; it further limits the
effects of change of representation to even member functions. However, use of source.get(i)
may offend the performance ultra-fastidious since it may incur some small performance penalty.

If we wanted to take use of interface functions to the limit, we could have:

for(unsigned int i= 0; i¡ len˙; i++)set(source.get(i), i);

Here, set refers to the object itself — the so called implicit argument.

9–18

Chapter 10

Operator Overloading

10.1 Introduction

Already, in the previous chapter, we have glanced at the provision of operator= for the Array
class. We have also noted that these so-called overloaded operators have exactly the same meaning
as an equivalent traditionally named function.

Here, we go into a little more detail, and, at the end of the chapter, we discuss some of the
consequences of the asymmetry cause by the difference between implicit and explicit arguments,
e.g. implicit: object1 versus explicit: object2 in object1.member˙function(object2).

It should be said that operator overloading is not favoured by everyone. As we have stated,
operators calls are no different to function calls. Neither, as we show below is there any magic
involved, nor any performance advantages. Java does not allow operator overloading; in my opinion
that was a wise design decision. However, whether you like operator overloading or not, there are
at least three good reasons to know about it: (i) for some classes, you need to be able to create
an assignment operator (operator=) — if, like the Array classes in the previous chapter and in
this chapter, the classes are heap based, then you have no choice, you must provide an assignment
operator; (ii) many programs that you will use or modify will employ operator overloading; (iii) if
you want use standard library containers and you want to use sort and other algorithms on objects
of a class, you will need to supply the comparison operator, operator¡.

In addition, some argue that it is beneficial to be able to use + when we want to add, e.g. Arrays,
just as adding ints or doubles; the claim is that this makes the language more expressive.

10.2 Lead-in — Add Functions for Array

As a lead-in to our discussion on operator overloading, we first provide add functions for
Array; subsequently, we will replace these with overloaded operators +, +=. We present
Array2.h, Array2.cpp and ArrayT2T1.cpp almost without comment — except for the non-
member function add there should be nothing new. See Figures 10.1, 10.2, 10.3 and 10.4.

10–1

//----- Array2.h -------------------------------------

// j.g.c. 8/1/99, 2007-01-07

// copied from Array1.h (ch09);

// getting ready for operators.

//--

#ifndef ARRAYH

#define ARRAYH

#include ¡iostream¿

#include ¡cassert¿

class Array–

public:

Array(unsigned int len= 0);

Array(unsigned int len, int val);

Array(const Array& source);

˜Array();

Array& operator=(const Array& source);

void addTo(const Array& other);

Array& addTo1(const Array& other);

void copy(const Array& source);

void set(int val, unsigned int i);

int get(unsigned int i) const;

int length() const;

void print() const;

private:

unsigned int len˙;

int* dat˙;

˝;

Array add(const Array& a1, const Array& a2);

#endif

Figure 10.1: Array2.h

10–2

//----- Array2.cpp ----------------------------------

// j.g.c. 8/1/99, 2007-01-07

// getting ready for operators

//--

#include ”Array2.h”

using namespace std;

Array::Array(unsigned int len) : len˙(len) –

if(len˙== 0)– dat˙ = 0; return;˝

dat˙ = new int[len];

assert(dat˙!= 0);

for(unsigned int i=0; i¡ len˙; i++)set(0, i);

˝

Array::Array(unsigned int len, int val) : len˙(len) –

if(len== 0)– dat˙ = 0; return;˝

dat˙ = new int[len];

assert(dat˙!= 0);

for(unsigned int i=0; i¡ len˙; i++)set(val, i);

˝

Array::Array(const Array& source)–

copy(source);

˝

Array::˜Array()–

delete [] dat˙;

˝

Array& Array::operator=(const Array& source)–

if(this!= &source)– // beware a= a;

delete [] dat˙;

copy(source);

˝

return *this;

˝

void Array::copy(const Array& source)–

len˙= source.length();

if(len˙¡ 1)–dat˙ = 0; return;˝

dat˙ = new int[len˙];

assert(dat˙!= 0);

for(unsigned int i= 0; i¡ len˙; i++)dat˙[i] = source.dat˙[i];

˝ continued ...

Figure 10.2: Array2.cpp, part 1

10–3

... Array2.cpp ...

void Array::addTo(const Array& other)–

assert(len˙== other.len˙);

for(unsigned int i= 0; i¡ len˙; i++)dat˙[i] += other.dat˙[i];

˝

Array& Array::addTo1(const Array& other)–

assert(len˙== other.len˙);

for(unsigned int i= 0; i¡ len˙; i++)dat˙[i] += other.dat˙[i];

return *this;

˝

void Array::set(int val, unsigned int i)–

assert(i¡len˙);

dat˙[i]= val;

˝

int Array::get(unsigned int i) const –

assert(i¡len˙);

return dat˙[i];

˝

int Array::length() const –

return len˙;

˝

void Array::print() const –

unsigned int len= length();

cout¡¡”length= ” ¡¡ len¡¡ ”: ”;

for(unsigned int i=0; i¡len; i++)–

cout¡¡ get(i)¡¡ ” ”;

˝

cout¡¡ endl;

˝

// notice no Array:: add is *not* a member

Array add(const Array& a1, const Array& a2)–

Array res(a1);

return res.addTo1(a2);

˝

Figure 10.3: Array2.cpp, part 2

10–4

//----- Array2T1.cpp ----------------------------------

// j.g.c. 8/1/99, 2007-01-07

//--

#include ”Array2.h”

using namespace std;

int main()

–

Array c2(5, 7);

cout¡¡ ”Array c2(5, 7): ”; c2.print();

Array c3(5, 10);

cout¡¡ ”Array c3(5): ”; c3.print(); cout¡¡ endl;

Array c4(5);

cout¡¡ ”Array c4(5): ”; c4.print();

c3.addTo(c2);

cout¡¡ ”c3.addTo(c2): ”; c3.print(); cout¡¡ endl¡¡ endl;

cout¡¡ ”c2: ”; c2.print();

cout¡¡ ”c3: ”; c3.print(); cout¡¡ endl;

c4= add(c2, c3);

cout¡¡ ”c4= add(c2, c3): ”; c4.print(); cout¡¡ endl;

Array c5(5), c6(5);

cout¡¡ ”Array c5(5): ”; c5.print();

cout¡¡ ”Array c6(5): ”; c6.print();

c6= c5.addTo1(c4);

cout¡¡ ”c6= c5.addTo1(c4);”¡¡ endl;

cout¡¡ ”c5: ”; c5.print();

cout¡¡ ”c6: ”; c6.print();

cout¡¡ endl;

return 0;

˝

Figure 10.4: Array2T1.cpp

10–5

Dissection of Array2.h, .cpp

1. Method AddTo performs addition of the argument object, to the calling object:

array1.addTo(array2);

2. Method AddTo1 does the same as addTo, only it returns a value; thus, it can be used in the
C/C++ style:

result = array1.addTo1(array2);

addTo1 will become a model for operator+=.

3. Notice that add is declared outside the class.

Array add(const Array& a1, const Array& a2);

This is because we want to call this function with its input arguments symmetrically:

result = add(array1, array2);

If it was a member function, one of the arguments would have to be implicit (the calling
object), i.e. it would be declared exactly as like addTo1 and the call would be asymmetric:

result = array1.add(array2);

4. Later, we will see that it is normal to define a two argument function add (and operator+)
in terms of AddTo1 (or operator-=-).

10.3 Chaining calls to member functions

As noted, AddTo1 returns a value; not only can it be used as follows:

result = array1.addTo1(array2);

but also in chained set of calls:

result = array10.addTo1(array1.addTo1(array2));

We will see a similar principle in action when we require operator= to return a reference to its
object; this allow the familiar C/C++ chaining of assignments such as:

object1 = object2 = object3;

10–6

10.4 Operators

In this section, we show how to replace the add functions of the previous section with overloaded
operators:

• addTo replaced by operator+=

• add replaced by operator+; as with add, operator+ is declared as a non member.

• In addition, we provide an overloaded operator¡¡ so that we can output Array objects using
cout¡¡; this operator also must be declared as a non-member.

operator¡¡ is really handy to have; as you will notice, I include it in many of the classes I
write; it makes use of the classes very easy, especially testing.

• Finally, we include an indexing operator[] which replaces get and set.

See Figures 10.5, 10.6, 10.7 and 10.8.

10–7

//----- Array3.h -------------------------------------

// j.g.c. 14/1/99, 2007-01-07

// copied from Array2.h

// introducing operators

//--

#ifndef ARRAYH

#define ARRAYH

#include ¡iostream¿

#include ¡cassert¿

class Array–

public:

Array(unsigned int len= 0);

Array(unsigned int len, int val);

Array(const Array& source);

˜Array();

Array& operator=(const Array& source);

Array& operator+=(const Array& other);

void copy(const Array& source);

int& operator[](unsigned int i) const;

unsigned int length() const;

private:

unsigned int len˙;

int* dat˙;

˝;

Array operator+(const Array& a1, const Array& a2);

std::ostream& operator¡¡(std::ostream& os, Array& a);

#endif

Figure 10.5: Array3.h

10–8

//----- Array3.cpp ----------------------------------

// j.g.c. 14/1/99, 2007-01-07

//--

#include ”Array3.h”

using namespace std;

Array::Array(unsigned int len) : len˙(len) –

if(len˙==0)–dat˙ = 0; return;˝

dat˙ = new int[len];

assert(dat˙!= 0);

for(unsigned int i=0; i¡ len˙; i++)dat˙[i]= 0;

˝

Array::Array(unsigned int len, int val) : len˙(len) –

if(len==0)–dat˙ = 0; return;˝

dat˙ = new int[len];

assert(dat˙!= 0);

for(unsigned int i=0; i¡ len˙; i++)dat˙[i]= val;

˝

Array::Array(const Array& source)–

copy(source);

˝

Array::˜Array()–

delete [] dat˙;

˝

Array& Array::operator=(const Array& source)–

if(this!= &source)– // beware a= a;

delete [] dat˙;

copy(source);

˝

return *this;

˝

void Array::copy(const Array& source)–

len˙= source.length();

if(len˙==0)–dat˙ = 0; return;˝

dat˙ = new int[len˙];

assert(dat˙!= 0);

for(unsigned int i= 0; i¡ len˙; i++)dat˙[i] = source.dat˙[i];

˝

... continued ...

Figure 10.6: Array3.cpp, part 1

10–9

... Array3.cpp ...

Array& Array::operator+=(const Array& other)–

assert(len˙==other.len˙);

for(unsigned int i= 0; i¡ len˙; i++)dat˙[i] += other.dat˙[i];

return *this;

˝

int& Array::operator[](unsigned int i) const–

assert(i¡len˙);

return dat˙[i];

˝

unsigned int Array::length() const –

return len˙;

˝

// notice no Array:: -- add is *not* a member

Array operator+(const Array& a1, const Array& a2)–

Array res= a1;

return res+= a2;

˝

// and operator¡¡ is not a member

ostream& operator¡¡(ostream& os, Array& a)–

unsigned int len= a.length();

os¡¡ ”[” ¡¡ len ¡¡ ”]– ”;

for(unsigned int i=0; i¡ len; i++)–

os¡¡ a[i];

if(i!= len-1)os¡¡”, ”;

˝

os¡¡”˝”¡¡ endl;

return os;

˝

Figure 10.7: Array3.cpp, part 2

10–10

//----- Array3T1.cpp ----------------------------------

// j.g.c. 9/1/99, 2007-01-07

//--

#include ”Array3.h”

using namespace std;

int main()–

Array c2(5, 7); cout¡¡ ”Array c2(5, 7): ”¡¡ c2;

Array c3(5, 10); cout¡¡ ”Array c3(5): ”¡¡ c3¡¡ endl;

Array c4(5); cout¡¡ ”Array c4(5): ”¡¡ c4;

c3+= c2; //previously c3.addTo(c2);

cout¡¡ ”c3+= c2: ”¡¡ c3¡¡ endl¡¡ endl;

cout¡¡ ”c2: ”¡¡ c2; cout¡¡ ”c3: ”¡¡ c3¡¡ endl;

c4 = c2 + c3;// previously c4= add(c2, c3);

cout¡¡ ”c4 = c2 + c3: ”¡¡ c4¡¡ endl;

Array c5(5), c6(5);

cout¡¡ ”Array c5(5): ”¡¡ c5;

cout¡¡ ”Array c6(5): ”¡¡ c6;

c6= c5+= c4;// previously c6= c5.addTo1(c4);

cout¡¡ ”c6= c5+=c4;”¡¡ endl;

cout¡¡ ”c5: ”¡¡ c5;

cout¡¡ ”Array c6: ”¡¡ c6¡¡ endl;

int len= c6.length();

for(int i= 0; i¡ len; i++)– c6[i]= i+50; ˝

cout¡¡ ”Using ’cout¡¡ c6[i]’”¡¡ endl;

for(int i= 0; i¡ len; i++)– cout¡¡ c6[i] ¡¡ ” ”; ˝

cout¡¡ endl¡¡ endl;

cout¡¡”Now operators called in ’function’ manner”¡¡ endl¡¡ endl;

c3.operator+=(c2); //c3+= c2;

cout¡¡ ”c3.operator+=(c2);: ”¡¡ c3¡¡ endl¡¡ endl;

cout¡¡ ”c2: ”¡¡ c2; cout¡¡ ”c3: ”¡¡ c3¡¡ endl;

c4= operator+(c2, c3); // c4 = c2 + c3;

cout¡¡ ”c4= operator+(c2, c3);: ”¡¡ c4¡¡ endl;

for(int i= 0; i¡ len; i++)– c6.operator[](i)= i+50; ˝

cout¡¡ ”Using ’cout¡¡ c6.operator[](i)’”¡¡ endl;

for(int i= 0; i¡ len; i++)– cout¡¡ c6.operator[](i) ¡¡ ” ”; ˝

cout¡¡ endl¡¡ endl;

return 0; ˝

Figure 10.8: Array3T1.cpp

10–11

Dissection of Array3

1. Here we see operator+= compared to addTo

c3+= c2; //previously c3.addTo(c2);

2. Here we see that we can call operator+= using normal function-call syntax:

c3.operator+=(c2); //c3+= c2;

3. Here we see operator+ compared to add:

c4 = c2 + c3;// previously c4= add(c2, c3);

4. Here we show operator+ can also be called as a normal function:

c4= operator+(c2, c3); // c4 = c2 + c3;

5. Here we show use of operator[] and how it replaces both put and get:

for(int i= 0; i¡ len; i++)–

c6[i]= i+50; // replaces c6.put(1+50, i);

˝

for(int i= 0; i¡ len; i++)–

cout¡¡ c6[i] ¡¡ ” ”; // replaces c6.get(i);

˝

6. And here we show it called as a function:

cout¡¡ c6.operator[](i) ¡¡ ” ”;

7. Use of operator[] in put (write) mode is a bit subtle. The operator returns int& — a
reference to an int.

In verb+get+ (read) mode, that’s understandable enough — when the reference is re-
turned to a temporary (anonymous) variable, as discussed before in the context of
returning references, the = operator immediately copies the value to the destination:
destination= source1 + source2;, and the temporary is destroyed.

In the case of put (write), the reference is returned to a temporary (anonymous) variable, the
value on the right-hand-side of the assignment is assigned to the variable that the reference
aliases, i.e. the element of the array. Subtle!

The stream output operator ¡¡ needs special consideration.

10–12

Non-member operator, argument order We must declare operator¡¡ outside class Array:

ostream& operator¡¡(ostream& os,const Array& a);

The operator ¡¡ takes two arguments: an object of the class ostream (usually cout — which is
defined in iostream, hence #include ¡iostream¿), and a Array object. This will be invoked as:

Array x;

cout¡¡ x;

hence, because of the convention for infix operators in C++, the first argument must be ostream
(actually a reference), and the second a Array.

Friend functions and operators If non-member functions (or operators) need to access
verb+private+ data (not the case here, but will be the case in later chapters), we have a problem
— do we have to make the data public? No, we can declare the function/operator as friend in
the class, e.g. let us say that operator¡¡ needed to access the private members of Array, the
following declaration, in the class, would give it the appropriate access:

friend ostream& operator¡¡(ostream& os,const Array& a);

10–13

10.5 Member versus Non-member Functions, Conversions

10.5.1 Introduction

The objective of this section is to discuss circumstances in which it is better to make functions or
operators non-member (even if we need to make them friend, and to discuss the related matters
of implicit arguments (the object itself) and conversion / coercion. We use a String class as an
example for some of these phenomena.

I have changed this section very little since 1997; I include it here just to point out some quite
subtle aspects of member versus non-member functions and conversions. You will not be examined
on any of this, but I would feel uncomfortable if I hadn’t pointed out some of these pitfalls.

10.5.2 A String Class

Although the standard library provides a perfectly good string class, we need the following home-
grown one to furnish examples for the later discussion.

Class Interface, Methods

The interface for the String class is shown in String.h.

// ---- String.h -------------------------------------

// j.g.c. 1992 -- 2007-08-28

//--

#ifndef STRINGH

#define STRINGH

#include ¡iostream¿

#include ¡cstring¿ // for C-String operations

#include ¡cctype¿

class String –

public:

String(const int len = 0);

String(const char* cstr);

String(const String& other);

void assign(const String& rhs);

String& operator=(const String& other);

˜String();

String& operator+=(const String& other);

void insertCharAt(char c, int i);

char charAt(int i) const;

int length() const;

10–14

int compare(const String& other) const;

void print() const;

void gets(); // reads up to “n, includes whitespaces

void get(); // uses cin.get(c), reads up to any whitespace

String concatM(const String& source2);

String operator / (const String& source2);

private:

char* p˙; // string data - C form, with ’“0’.

int len˙; // length, incl. ’“0’

˝;

String concatNM(const String& s1, const String& s2);

String operator + (const String& s1, const String& s2);

#endif

Brief Dissection of String.h

1. There are three constructors, and, as it must be, they all have the same name — the class
name. Again, note that each is distinguishable from the other by its signature — the types
in parameter list. It is instructive to inspect each constructor in turn:

• String(const int len = 0); This constructor is called when we define a String
object as: String s(22);. It doubles as a default constructor, since String s; is
taken as String s(0);

• String(const char* cstr); This constructor is called when we define a String ob-
ject as: String s(”abcdef”);, i.e. it constructs a String object from a ’C-string’.

• Copy constructor String(const String& source);.

2. Concatenate. String& operator+=(const String& other); is simply an operator pre-
sentation of concatenate. Thus, String s1(”abc”); String s2(”xyz”); s1 += s2
yields s1 == ”abcxyz”.

Class implementation code

The implementation code for the String class is shown in String.cpp.

// ---- String.cpp -------------------------------------

// j.g.c. 1992 -- 2007-08-28

//---

#include ”String.h”

#include ¡cstring¿

String::String(const int len)

//Note: *don’t* specify default len=0 here

–

len˙=len;

10–15

p˙=new char[len˙+1];

p˙[0]=’“0’;

˝

String::String(const char* cstr)–

len˙=strlen(cstr); //length of C string, excl. ’“0’

p˙=new char[len˙+1]; // include ’“0’

strcpy(p˙, cstr);

˝

// copy constructor

String::String(const String& other)–

len˙ = other.length();

p˙=new char [len˙+1];

strcpy(p˙, other.p˙);

˝

//only for pedagogical reasons - see ’=’ for comments

void String::assign(const String& source)–

if(this != &source) – // beware s = s;

delete [] p˙;

len˙= source.length();

p˙= new char[len˙+1];

strcpy(p˙, source.p˙);

˝

˝

String& String::operator=(const String& other)–

if(this != &other) – // beware s=s - Stroustrup p.238

delete [] p˙; //old text buffer

len˙ = other.length();

p˙ = new char[len˙+1];

strcpy(p˙, other.p˙);

˝

return *this;

˝

String::˜String()

–

delete [] p˙;

p˙=0;

˝

String& String::operator+= (const String& other)–

int oldl = length();

len˙=oldl + other.length(); //NB character count

char* pp= new char[len˙ + 1];

strcpy(pp, p˙);

delete [] p˙;

10–16

strcpy(&(pp[oldl]), other.p˙);

p˙ = pp;

return *this;

˝

String concatNM(const String& s1, const String& s2)–

String s = s1;

s += s2;

return s;

˝

String operator + (const String& source1, const String& source2)–

String s = source1;

s += source2;

return s;

˝

String String::concatM(const String& source2)–

String s = *this;

s += source2;

return s;

˝

String String::operator / (const String& source2)–

String s = *this;

s += source2;

return s;

˝

void String::insertCharAt(char c, int i)–

if(i ¿= length())return;

p˙[i]=c;

˝

char String::charAt(int i) const–

if(i ¿= length())return ’“0’;

else return p˙[i];

˝

int String::length() const–

return len˙;

˝

int String::compare(const String & other) const–

char *s = p˙;

char *t = other.p˙;

return strcmp(s,t);

˝

10–17

void String::print() const –

std::cout¡¡ p˙;

˝

//reads up to “n

void String::gets()–

char c,s[81];

int i = 0;

while(std::cin.get(c))–

if(c==’“n’)break;

s[i] = c;

i++;

˝

s[i]=’“0’;

*this = String(s);

˝

// uses std::cin.get(c), reads up to any whitespace

void String::get()–

char c,s[81];

int i = 0;

while(std::cin.get(c))–

if(isspace(c))break;

s[i] = c;

i++;

˝

s[i]=’“0’;

*this = String(s);

˝

A simple test program

The program in StringT1.cpp demonstrates the use of the parts of the String class.

// ------------ StringT1.cpp -------------------------------

// j.g.c. 1997 -- 2007-08-26

// ---

#include ”String.h”

using namespace std;

int main()–

String s1(0), s4;

String s2(”abcdef”);

String s3(s2);

cout¡¡ ”gets(): enter a string -- end with Enter:”;

10–18

s1.gets();

cout¡¡ ”s1: length = ”¡¡ s1.length()¡¡ endl; s1.print();

cout¡¡ endl;

cout¡¡ ”get(): enter a string -- end with ˙any˙ white-space:”;

s4.get();

cout¡¡ ”s4: length = ”¡¡ s4.length()¡¡ endl; s4.print();

cout¡¡ endl;

cout¡¡ ”s2: length = ”¡¡ s2.length()¡¡ endl; s2.print();

cout¡¡ endl;

cout¡¡ ”s3: length = ”¡¡ s3.length()¡¡ endl; s3.print();

cout¡¡ endl;

s2 += s1;

cout¡¡ ”s2 += s1;”¡¡ endl;

cout¡¡ ”s2: length = ”¡¡ s2.length()¡¡ endl; s2.print();

cout¡¡ endl;

s4 = concatNM(s1, s2);

cout¡¡ ”s4 = concatNM(s1, s2);”¡¡ endl;

cout¡¡ ”s4: length = ”¡¡ s4.length()¡¡ endl; s4.print();

cout¡¡ endl;

s4 = s1 + s2;

cout¡¡ ”s4 = s1 + s2;”¡¡ endl;

cout¡¡ ”s4: length = ”¡¡ s4.length()¡¡ endl; s4.print();

cout¡¡ endl;

s4 = s1.concatM(s2);

cout¡¡ ”s4 = s1.concatM(s2);”¡¡ endl;

cout¡¡ ”s4: length = ”¡¡ s4.length()¡¡ endl; s4.print();

cout¡¡ endl;

s4 = s1 / s2;

cout¡¡ ”s4 = s1 / s2;”¡¡ endl;

cout¡¡ ”s4: length = ”¡¡ s4.length()¡¡ endl; s4.print();

cout¡¡ endl;

return 0;

˝

10.5.3 Member versus Non-member functions

Assume that we want to write a function that concatenates two Strings to produce a third, and
leaving the two sources intact. There are at least four ways we can do it:

1. Member function.

10–19

2. Non-member function — possibly friend.

3. Member operator, say +.

4. Non-member operator, say /; we name it / simply to avoid name conflict with +..

Whether a function is a member or not has an obvious consequence on the way it is called: if it
is a member we must use the object.member(); notation. For operators, the consequences are
more subtle, but can be important.

Member function

The member function version, concatM, is defined as follows:

String String::concatM(const String& source2)–

String s = *this;

s += source2;

return s;

˝

Notice that it uses operator +=; further, notice that it returns a String by value, it is tempting
to return by reference (String&), but this would lead to a dangling reference, since String s is
destroyed on return from concatM.

We notice too that the first argument is implicit — it is the object itself, as can be seen from the
call:

String s1, s2, s4;

s4 = s1.concatM(s2);

The lack of symmetry in the call is not appealing, we would expect s1 and s2 to be treated
uniformly. This can be corrected by developing concat as a non-member function.

Non-member function

The non-member function version, concatNM, is defined as follows:

String concatNM(const String& source1, const String&source2) –

String s = source1;

s += source2;

return s;

˝

The first argument is no longer implicit, and the call is symmetric:

10–20

String s1, s2, s4;

s4 = concatNM(s1, s2);

If concatNM had required to access private member data, which is actually not the case, then
concatNM would have had to be been given friend privileges by including the following in the
declaration of String, string.h:

friend String concatNM(const String& source1, const String& source2);

Non-member operator

The non-member operator version, +, is defined as follows:

String operator + (const String& source1, const String& source2)

–

String s = source1;

s += source2;

return s;

˝

The call is now both symmetric and infix:

String s1, s2, s4;

s4 = s1 + s2;

Again we note that if + had required to access private member data, then we would have had to
include the following in the declaration of String, string.h:

friend String operator +(const String& source1, const String& source2);

Member operator

For completeness, we give a member operator version, /, which is defined as follows:

String String::operator / (const String& source2)–

String s = *this;

s += source2;

return s;

˝

The call appears to be both symmetric and infix:

String s1, s2, s4;

s4 = s1 / s2;

Nonetheless, it has one slight asymmetry, what is really happening is:

s4 = s1.(operator/)(s2);

There are consequences, as pointed out in subsection 10.5.4.

10–21

10.5.4 Coercion of Arguments

There is a very subtle difference between the non-member operator+ and the member operator /
above. The relevant rule is the following: if an operator function is a member, its first argument
must match the class type. The second argument is not so restricted, since, if one is available, an
appropriate constructor will be invoked to perform a coercion (an implicit conversion).

In the case of a non-member operator, coercion can be applied to either argument. Example:

String a, b, c;

c = ”abcd” + ”xyz” ; //OK if non-member +;

//constructor String(char *) is used to convert

c = a + ”asdf”; //OK in either case, non-member,

c = a / ”asdf”; // and member.

c = ”abdcef” + b; //OK only if non-member + .

10.5.5 Constructors for conversion — explicit

In subsection 10.5.4, we referred to the automatic invocation of the constructor String(char *)
when e.g. ”xyz” appears where a String object is expected.

C++ allows us to forbid the use of a constructor as a conversion function: in string.h we can
declare the constructor explicit, i.e.

explicit String(const char* cstr);

10–22

Chapter 11

Templates

11.1 Introduction

There are many examples of cases where we develop a class, e.g. Array, or List, which manipu-
lates objects of a particular type, e.g. int, only to find that we need to adapt it to work for float
or other types, or, indeed, for user defined classes. In the Array and List examples in Chapter 12
the element-type is the only part which changes; thus, it seems a pity to have to have to develop
additional classes.

The same goes for functions, e.g. swap: all swap functions have the same functional requirements
and usually they are implemented as three assignments. If you were to adapt an int swap function
to float, or even string, you would merely exchange all occurrences of int for float – or
String, etc..., as the case may be.

In such cases, what we require is often termed generic software; we have been using standard
library templates in the previous chapter; Java introduced generic (template) collection classes in
Java 1.5.

This chapter discusses templates. With templates, we can develop a module or function in which
the type / class of one or more elements is given as a parameter. The actual value of the type
parameters is specified at compile time.

Of course, the main objective is reuse. As we have argued before, the least acceptable form of
reuse is duplicate-and-modify – simply because each duplication creates an new, additional, module
to be tested, documented and maintained.

First we will give a quick discussion of the implementation of a template Array – the int version of
which we have become very familiar with. Although the syntax of template classes looks complex at
first, we will see that there is little new to be learned – beyond what was learned in the development
of the original Array(int) class. In fact, the main advice is: design your data abstraction (array,
list, queue, whatever), then add the template bits – using an established template class as an
example (a template, in fact!).

First, we provide an example of a template function.

11–1

11.2 Template Functions

11.2.1 Overloaded Functions recalled

The two overloaded swap functions shown below clearly invite use of a type parameter.

void swap(int& a, int& b)–

int temp = a; a = b; b = temp;

˝

void swap(float& a, float& b)–

int temp = a; a = b; b = temp;

˝

Overloading function names – Ad Hoc Polymorphism The overloading of function names is
yet another example of polymorphism, in this case called ad hoc polymorphism. It is called ad hoc
because, even though the name of the function (swap) is the same, there is nothing to ensure that
they are similar in other than name; e.g. we could define int swap(String s) which gives the
length of the String!

11.2.2 Template Function

A template version of swap is shown below:

11–2

template ¡class T¿ void swap(T& p, T& q)

–

T temp = p; p = q; q = temp;

˝

The program swapT.cpp shows use of this swap. Here, we are able to swap ints, floats, and
string objects. In the case of user defined classes, the only requirement is that the assignment
operator = is defined.

//--- swapT.cpp ----------------------------

// j.g.c. 14/1/99, 2007-02-11

//--

#include ¡iostream¿

#include ¡string¿

using namespace std;

// there is a std::swap, so we call this one swap1

template ¡class T¿ void swap1(T& p, T& q)

–

T temp = p;

p = q;

q = temp;

˝

int main()

–

int a = 10, b = 12;

float x = 1.25, y = 1.30;

cout¡¡ ”a, b = ”¡¡ a¡¡ ” ” ¡¡ b¡¡ endl;

swap1(a, b);

cout¡¡ ”a, b (swapped) = ”¡¡ a¡¡ ” ” ¡¡ b¡¡ endl;

cout¡¡ ”x, y = ”¡¡ x¡¡ ” ” ¡¡ y¡¡ endl;

swap1(x, y);

cout¡¡ ”x, y (swapped) = ”¡¡ x¡¡ ” ” ¡¡ y¡¡ endl;

string s1(”abcdef”), s2(”1234”);

cout¡¡ ”s1 = ”¡¡ s1¡¡ endl;

cout¡¡ ”s2 = ”¡¡ s2¡¡ endl;

swap1(s1, s2);

cout¡¡ ”swapped: ”;

cout¡¡ ”s1 = ”¡¡ s1¡¡ endl;

cout¡¡ ”s2 = ”¡¡ s2¡¡ endl;

11–3

return 0;

˝

11.3 Polymorphism – Parametric

Templates are another form of polymorphism; using templates one can define, for example a
polymorphic List – a List of int, or float, or string, etc... Likewise we can define a polymorphic
swap. Unlike the polymorphism encountered in chapter 11 (Person and Cell class hierarchies),
the type of each instance of a generic unit is specified at compile time – statically.

Hence, the polymorphism offered by templates is called parametric polymorphism.

11.4 Template Array

11.4.1 Class declaration and implementation

The declaration for the template Array class is shown in file arrayt.h.

The first thing to note about templates, at least using the GNU C++ compiler, is that both
declaration and implementation (normally .cpp file) must be #included. Hence we include them
in the same file, here arrayt.h.

//----- ArrayT.h ----------------------------------

// j.g.c. 9/1/99, 2007-02-11

// template array

//--

#ifndef ARRAYTH

#define ARRAYTH

#include ¡iostream¿

#include ¡cassert¿

using std::ostream; using std::endl;

template ¡class T¿ class Array–

public:

Array(const unsigned int len= 0);

Array(const unsigned int len, const T& val);

Array(const Array¡T¿& source);

˜Array();

Array& operator=(const Array¡T¿& source);

void copy(const Array¡T¿& source);

T& operator[](unsigned int i) const;

unsigned int length() const;

11–4

private:

unsigned int len˙;

T* dat˙;

˝;

template ¡class T¿ ostream& operator¡¡(ostream& os, const Array¡T¿& a);

template ¡class T¿ Array¡T¿::Array(const unsigned int len) : len˙(len) –

if(len== 0)–dat˙ = 0; return;˝

dat˙ = new T[len˙];

assert(dat˙!= 0);

T zero(0);

for(unsigned int i=0; i¡ len˙; i++)dat˙[i]= zero;

˝

template ¡class T¿ Array¡T¿::Array(const unsigned int len, const T& val)

: len˙(len) –

if(len== 0)–dat˙ = 0; return;˝

dat˙ = new T[len˙];

assert(dat˙!= 0);

for(unsigned int i=0; i¡ len˙; i++)dat˙[i]= val;

˝

template ¡class T¿ Array¡T¿::Array(const Array¡T¿& source)–

copy(source);

˝

template ¡class T¿ Array¡T¿::˜Array()–

delete [] dat˙;

˝

template ¡class T¿ Array¡T¿& Array¡T¿::operator=(const Array& source)–

if(this!= &source)– // beware a= a;

delete [] dat˙;

copy(source);

˝

return *this;

˝

template ¡class T¿ void Array¡T¿::copy(const Array¡T¿& source)–

len˙= source.length();

if(len˙== 0)–dat˙ = 0; return;˝

dat˙ = new T[len˙];

assert(dat˙!= 0);

for(unsigned int i= 0; i¡ len˙; i++)dat˙[i] = source.dat˙[i];

˝

template ¡class T¿ T& Array¡T¿::operator[](unsigned int i) const –

assert(i¡len˙);

11–5

return dat˙[i];

˝

template ¡class T¿ unsigned int Array¡T¿::length() const –

return len˙;

˝

// notice no Array¡T¿:: -- *not* a member

template ¡class T¿ ostream& operator¡¡(ostream& os, const Array¡T¿& a)

–

unsigned int len= a.length();

os¡¡ ”[” ¡¡ len ¡¡ ”]– ”;

for(unsigned int i=0; i¡ len; i++)–

os¡¡ a[i];

if(i!= len-1)os¡¡”, ”;

˝

os¡¡”˝”¡¡ endl;

return os;

˝

#endif

Dissection of ArrayT.h

1. The class-type parameter ¡T¿. As already mentioned, Array is now a a parameterised class
– the type/class of its element is given as a ’class’ parameter, ¡T¿. Just as in declaration
of a function with parameters (variables – formal parameters), we must announce this fact,
and give the (as yet unknown) parameter an identifier. This is done as follows:

template ¡class T¿ class Array

Here we are saying: Array uses an as yet unspecified type/class T.

2. Instead of ¡class T¿, we may use ¡typename T¿;

3. When we want to define an actual Array in a program, we do so as, e.g., ¡int¿:

Array ¡int¿ c1(5);

Array ¡int¿ c2(5, 127);

or double:

Array ¡double¿ c3(3, 3.14159);

or even an Array of Array¡int¿ (a matrix):

Array ¡Array¡int¿ ¿ c4(3);

Thus, as with (parameterised) functions, we can invoke the abstraction with any number of
(different) parameters.

11–6

4. Likewise, if we ever need to declare a Array object as a parameter, we use the form:

Array(const Array¡T¿ & other);

i.e. other is a reference to a Array object of classT elements.

5. Instantiation. Just as variables and objects are instantiated (created), so are template classes.
In the case of template classes and functions, this is done at compile time.

6. In GNU C++, the Array¡int¿ class, for example, is instantiated, at compile time, by a form
of macro-expansion. This is the reason that function implementations must also be in the
.h file.

11.4.2 A simple client program

As we have seen, there is little to templates.

The program ArrayTT1.cpp demonstrates the use of the template Array class; it creates, in the
same program, Arrays of both int, double and Array¡int¿ (an array of int arrays); note the the
array-of-array contains empty arrays.

If you ever needed to create a two-dimensional array, Array ¡Array¡int¿ ¿, would be the way
to do it.

//----- ArrayTT1.cpp ----------------------------------

// j.g.c. 9/1/99, 2007-02-11

//--

#include ”ArrayT.h”

using std::cout;

int main()–

Array ¡int¿ c1(5);

cout¡¡ ”Array ¡int¿ c1(5): ”¡¡ c1;

Array ¡int¿ c2(5, 127);

cout¡¡ ”Array ¡int¿ c2(5, 127): ”¡¡ c2;

Array ¡double¿ c3(3, 3.14159);

cout¡¡ ”Array ¡double¿ c3(3, 3.14159): ”¡¡ c3;

Array ¡Array¡int¿ ¿ c4(3);

cout¡¡ ”Array ¡Array¡int¿ ¿ c4(3): ”¡¡ c4;

cout¡¡ endl;

return 0;

˝

11–7

Chapter 12

Array Containers

12.1 Introduction

We call this chapter array containers for want of a better term. We describe sequence containers
which remedy some of the shortcomings of the basic C++ array (e.g. int a[50];).

The two most common sequence containers that we encounter in C++ are std::vector and
std::list; we use the general term sequence to signify that the elements are held in strict
sequential (linear) order.

The main difference between array-like sequence containers (e.g. std::vector and Array that
we develop here) and linked (list-like) sequence containers are the two related characteristics:
(i) array-like have random access, e.g. std::cout¡¡ a[i];, whereas lists must be sequentially
accessed; and (ii) array-like use contiguous storage, whereas lists used linked storage (e.g. singly
and doubly linked lists).

Roughly speaking, you can do anything with an array-like sequence that you can with a linked
sequence and vice-versa, but the allocation of storage and random access issues mean that there
are major performance drawbacks if you choose the wrong type for your application — i.e. the
wrong type may work, but work comparatively very slowly.

Java programmers are aware of the distinction, they have ArrayList and LinkedList.

In this chapter we will comment on the inadequacy of the C++ basic array; we will develop an Array
class that performs rather like std::vector; in doing that we will develop some understanding
of what goes on inside std::vector, so that when you use std::vector you will have some
sympathy for performance issues. Then we will examine use of std::vector itself.

In developing Array, we will identify some inadequacies of contiguous storage that lead to the
need for linked storage. We will cover (linked) lists in Chapter 13.

The Array class here is more or less identical to the vector class in (Budd 1997a).

12.2 An Array class

In the lecture, we will discuss the inadequacies of plain-vanilla arrays (int a[25];) for the task
of sequence container. For example, just look in Array.h at what needs to be done when we

12–1

insert (add) an element into the middle of a list, i.e. moving everything else up one. To ask a
programmer who is concentrating of doing sequence operations to remember this every time is to
ask for increased errors and poor productivity.

Figure 12.1 shows the interface of Array. Figures 12.2 to 12.5 give the implementation.

12–2

/* ----- Array.h ----------------------------------

j.g.c. 9/1/99, 2007-02-11, 2008-01-13, 2008-01-19

template unordered array

2008-01-22, iterator added based on Budd (1998)

2008-02-05 bugs fixed in insert, insert1

--*/

#ifndef ARRAYH

#define ARRAYH

#include ¡iostream¿

#include ¡cassert¿

using std::ostream; using std::endl;

typedef unsigned int uint;

template ¡class T¿ class Array–

public:

typedef T* Iterator;

Array(uint len= 0);

Array(uint len, const T& val);

Array(const Array¡T¿& source);

˜Array();

void reserve(uint cap);

void resize(uint sz);

Array& operator=(const Array¡T¿& source);

void copy(const Array¡T¿& source);

T& operator[](uint i) const;

void push˙back(const T& val);

void pop˙back();

T back() const;

void insert1(uint pos, uint n, const T& val);

uint erase(uint pos);

Iterator begin()– return dat˙;˝

Iterator end()– return dat˙ + sz˙;˝

void insert(Iterator itr, uint n, const T& e);

uint size() const;

bool empty() const;

uint capacity() const;

private:

uint sz˙, cap˙;

T* dat˙;

˝;

template ¡class T¿

ostream& operator¡¡(ostream& os, const Array¡T¿& a);

Figure 12.1: Declaration of Array.

12–3

template ¡class T¿

Array¡T¿::Array(uint sz) : sz˙(sz), cap˙(sz) –

if(cap˙== 0)–dat˙ = 0; return;˝

dat˙ = new T[cap˙];

assert(dat˙!= 0);

T zero = T();

for(uint i = 0; i¡ sz˙; ++i)dat˙[i]= zero;

˝

template ¡class T¿

void Array¡T¿::reserve(uint cap)–

//std::cout¡¡ ”*reserve* cap = ”¡¡ cap¡¡ ” cap˙ = ”¡¡ cap˙¡¡ std::endl;

if(cap ¡= cap˙)return;

T* newdat = new T[cap];

assert(newdat != 0);

for(uint i = 0; i¡ sz˙; ++i)newdat[i] = dat˙[i];

delete [] dat˙;

dat˙ = newdat;

cap˙ = cap;

˝

template ¡class T¿

void Array¡T¿::resize(uint sz)–

assert(sz¡= cap˙);

if(sz ¡= sz˙)return;

else if(sz ¡= cap˙)–

T zero = T();

for(uint i = sz˙; i¡ sz; ++i)dat˙[i] = zero;

sz˙ = sz;

˝

else –

T* newdat = new T[sz];

assert(newdat != 0);

for(uint i = 0; i¡ sz˙; ++i)newdat[i] = dat˙[i];

T zero = T();

for(uint i = sz˙; i¡ sz; ++i)newdat[i] = zero;

delete [] dat˙;

dat˙ = newdat;

cap˙ = sz˙ = sz;

˝

˝

Figure 12.2: Array implementation, part 1

12–4

template ¡class T¿

Array¡T¿::Array(uint sz, const T& val)

: sz˙(sz), cap˙(sz) –

if(cap˙ == 0)–dat˙ = 0; return;˝

dat˙ = new T[cap˙];

assert(dat˙!= 0);

for(uint i=0; i¡ sz˙; ++i)dat˙[i]= val;

˝

template ¡class T¿

Array¡T¿::Array(const Array¡T¿& source)–

copy(source);

˝

template ¡class T¿

Array¡T¿::˜Array()–

delete [] dat˙;

dat˙ = 0;

˝

template ¡class T¿

Array¡T¿& Array¡T¿::operator=(const Array& source)–

//std::cout¡¡ ”copy ctor”¡¡ std::endl;

if(this!= &source)– // beware a= a;

delete [] dat˙;

copy(source);

˝

return *this;

˝

template ¡class T¿

void Array¡T¿::copy(const Array¡T¿& source)–

sz˙= cap˙ = source.size();

if(cap˙== 0)–dat˙ = 0; return;˝

dat˙ = new T[cap˙];

assert(dat˙!= 0);

for(uint i= 0; i¡ sz˙; ++i)dat˙[i] = source.dat˙[i];

˝

template ¡class T¿

void Array¡T¿::insert1(uint pos, uint n, const T& val) –

uint sz = sz˙ + n;

assert(cap˙¿= sz);

uint id= sz - 1; // dest

uint is= sz˙ - 1; // source

for(; is¿ pos-1; --is, --id)dat˙[id] = dat˙[is];

for(id = pos; id¡ pos+n; id++)dat˙[id] = val;

sz˙ = sz;

˝

Figure 12.3: Array implementation, part 212–5

template ¡class T¿

uint Array¡T¿::erase(uint pos) –

for(uint i = pos + 1; i¡ sz˙; ++i)dat˙[i - 1] = dat˙[i];

--sz˙;

return pos;

˝

template ¡class T¿

void Array¡T¿::insert(Iterator pos, uint n, const T& e)–

uint sz = sz˙ + n;

assert(cap˙¿= sz);

Iterator itrd= dat˙ + sz - 1; // dest

Iterator itrs= dat˙ + sz˙ - 1; // source

for(; itrs!= pos-1; --itrs, --itrd)*itrd = *itrs;

for(itrd = pos; itrd!= pos + n; ++itrd)*itrd = e;

sz˙ = sz;

˝

template ¡class T¿

void Array¡T¿::push˙back(const T& val) –

//std::cout¡¡ ”*push˙back* cap˙ = ”¡¡ cap˙¡¡ ” sz˙ = ”¡¡ sz˙¡¡ std::endl;

if(!(cap˙¿ sz˙))reserve(2*cap˙);

dat˙[sz˙] = val;

++sz˙;

˝

template ¡class T¿

void Array¡T¿::pop˙back() –

assert(sz˙¿ 0);

--sz˙;

˝

template ¡class T¿

T Array¡T¿::back() const –

assert(sz˙¿ 0);

return dat˙[sz˙ - 1];

˝

template ¡class T¿

T& Array¡T¿::operator[](uint i) const –

assert(i ¡ sz˙);

return dat˙[i];

˝

template ¡class T¿

uint Array¡T¿::size() const –

return sz˙;

˝

Figure 12.4: Array implementation, part 3

12–6

template ¡class T¿

bool Array¡T¿::empty() const –

return sz˙ == 0;

˝

template ¡class T¿

uint Array¡T¿::capacity() const –

return cap˙;

˝

// notice no Array¡T¿:: -- *not* a member

template ¡class T¿

ostream& operator¡¡(ostream& os, const Array¡T¿& a)–

uint sz= a.size();

uint cap = a.capacity();

os¡¡ ”[” ¡¡ sz¡¡”, ”¡¡ cap ¡¡ ”]– ”;

for(uint i=0; i¡ sz; i++)–

os¡¡ a[i];

if(i!= sz-1)os¡¡”, ”;

˝

os¡¡”˝”¡¡ endl;

return os;

˝

#endif

Figure 12.5: Array implementation, part 4

12–7

12.2.1 Major points to note in Array.h

1. Note the difference between size(), sz˙ and capacity(), cap˙; size(), sz˙ is the
used size of the sequence, while capacity(), cap˙ is what it can grow to before we need
to allocate more memory.

2. When using Array (and std::vector) it is always a good idea to use reserve to allocate
either the size that you know you will need, or a decent chunk at the beginning.

3. Notice the difference between reserve and resize.

4. Notice that when push˙back detects that we are at full capacity, it reserves double the
current capacity; this might work well or badly, depending on the application. I’m not sure
how std::vector handles this.

[Here we repeat some messages from Chapter 9.]

5. Destructors. A destructor is called, automatically, when control reaches the end of the block
in which the object was declared, i.e. when the object goes out of scope. The compiler
will always provide adequate destruction of stack-based objects, but, for heap-based objects,
proper destructor memory management must be provided if garbage and memory-leaks (or
worse, dangling pointers) are to be avoided.

6. Copy constructor. A copy constructor is called when the object is passed (by value) to and
from functions. Again, for classes which use stack memory, the compiler will always provide
an adequate copy constructor. For heap-based objects the case is quite analogous to that of
the destructor: proper constructor memory management must be provided.

7. Assignment. Assignment operator (the ’=’ operator) needs treatment similar to the copy
constructor.

8. The Big-Three. The C++ FAQs (Cline et al. 1999a) uses the term the Big-Three for these
three functions: copy constructor, assignment operator, and destructor. More on this in
section 12.4.

This is because, for classes that use heap storage, it is almost certainly necessary to explicitly
program all three. If they are not programmed, the compiler will provide default versions
which will probably not do what you would wish; moreover the inadequacies of these defaults
may be most subtle, and may require quite determined and skilled testing to detect.

9. We use assert to report errors if allocations were unsuccessful; new returns a null pointer if
it is unsuccessful, e.g. due to resources of free memory having become exhausted. This may
not be ideal, but the error message that assert issues is a lot more helpful than what will
happen if we charge on and ignore the fact that we have run out of memory.

10. Function copy.

void Array¡T¿::copy(const Array¡T¿& source)–

sz˙= cap˙ = source.size();

if(cap˙== 0)–dat˙ = 0; return;˝

dat˙ = new T[cap˙];

assert(dat˙!= 0);

for(uint i= 0; i¡ sz˙; ++i)dat˙[i] = source.dat˙[i];

˝

12–8

(a) This is very similar to the default constructor — except that this time we have passed
another object to be copied.

(b) Notice that we have passed a reference (Array& source). If we don’t we’ll end up
constructing many multiple copies, each of which must also be destroyed. And when
the object becomes large, as may be the case for an Array the performance drain can
be considerable.

(c) Of course, we guarantee the safety of the referenced object (in the caller) by making
the reference const.

11. Copy constructor.

Array::Array(const Array& source)–

copy(source);

˝

Here, all the work is done by copy. Again notice the use of reference and const.

12. Destructor.

Array::˜Array()–

delete [] dat˙;

˝

(a) Here we use delete to release the allocated memory.

(b) Owing to the fact that dat˙ points to an array, we must use delete [].

13. Assignment operator ’=’.

Array& Array::operator=(const Array& source)–

if(this!= &source)– // beware a= a;

delete [] dat˙;

copy(source);

˝

return *this;

˝

(a) Let us say we have two Array objects, x, y and x = y. Then this assignment is exactly
equivalent to

x.operator=(y);

(b) Again notice the use of a reference and const.

(c) Since we can envisage x = x, however improbable, we have to be careful to check
whether this is the case — and if it is, do nothing.

(d) this is an implicit pointer variable which points at the object itself. Thus
if(this!= &source) checks if the calling object and the source object share the same
memory location — and so are the same object!

(e) return *this; returns the object (actually a reference, see next comment).

12–9

(f) Why does operator= return Array&?

Answer. In C and C++ it is standard for an assignment to have the value of the object
assigned, e.g.

int x = y = 10;

we want the same for objects.

And, as usual, we want the efficiency of reference passing.

14. If you are unsure about operator overloading, refer to Chapters 9 and 10

15. Iterators are described in section 12.2.2.

12.2.2 Iterators

Because of the fact that the internal representation is a C++ built-in array, we can do everything we
want to using array subscripting, overloading the array subscript operator [] e.g. a[index] = 10;
and integer subscripts.

But the STL collections use the more general concept of an iterator. We will see that iterators
are made to behave like pointers, i.e. you can dereference an iterator, and you can do pointer-like
arithmetic on them.

1. Normally an iterator is implemented as a class, but in the case of Array it is easy to declare
an iterator as

typedef T* Iterator;

2. Because Iterator is declared within the scope of Array, when we define an iterator we use
the scope resolution operator ::

Array¡int¿::Iterator itr;

3. We need an iterator that points to the beginning of the array

Iterator begin()– return dat˙;˝

It simply returns a pointer to the first element of data array.

4. We need an iterator that points one element past the end of the array;

Iterator end()– return dat˙ + sz˙;˝

5. One element past the end of the array is the convention; you never dereference this iterator
value. The usual pattern for iterating over a collection is as follows:

12–10

Array¡int¿::Iterator itr;

for(itr = c5.begin(); itr!= c5.end(); ++itr)–

cout¡¡ *itr¡¡ ’ ’;

˝

itr!= c5.end() is our way of checking that we are not at the end — really one element
past the end.

This is very like the normal array pattern:

int a[n];

for(int i = 0; i¡ n; ++i)–

cout¡¡ a[i]¡¡ ’ ’;

˝

which could be written:

int a[n];

for(int i = 0; i!= n; ++i)–

cout¡¡ a[i]¡¡ ’ ’;

˝

or even:

int a[n];

for(int* pos = &a[0]; pos!= &a[0]+ n; ++pos)–

cout¡¡ *pos¡¡ ’ ’;

˝

or:

int a[n];

for(int* pos = a; pos!= a + n; ++pos)–

cout¡¡ *pos¡¡ ’ ’;

˝

6. Here is insert written using subscripts

template ¡class T¿

void Array¡T¿::insert1(uint pos, uint n, const T& val) –

uint sz = sz˙ + n;

assert(cap˙¿= sz);

uint id= sz - 1; // dest

uint is= sz˙ - 1; // source

for(; is¿ pos-1; --is, --id)dat˙[id] = dat˙[is];

for(id = pos; id¡ pos+n; id++)dat˙[id] = val;

sz˙ = sz;

˝

12–11

7. And here it is using Iterator

template ¡class T¿

void Array¡T¿::insert(Iterator pos, uint n, const T& e)–

uint sz = sz˙ + n;

assert(cap˙¿= sz);

Iterator itrd= dat˙ + sz - 1; // dest

Iterator itrs= dat˙ + sz˙ - 1; // source

for(; itrs!= pos-1; --itrs, --itrd)*itrd = *itrs;

for(itrd = pos; itrd!= pos + n; ++itrd)*itrd = e;

sz˙ = sz;

˝

We’ll have a good deal more to say about iterators when we get to Chapter 13.

12.3 A Simple Client Program for Array

Figures 12.6 and 12.7 give a program, ArrayT1.cpp which uses Array.

12–12

/* ----- ArrayT1.cpp ----------------------------------

j.g.c. 9/1/99, 2007-02-11, 2008-01-13, 2008-01-19, 2008-01-22

--*/

#include ”Array.h”

using std::cout; using std::endl; typedef unsigned int uint;

int main()–

Array ¡int¿ c1(5);

cout¡¡ ”Array ¡int¿ c1(5): ”¡¡ c1;

Array ¡int¿ c2(5, 127);

cout¡¡ ”Array ¡int¿ c2(5, 127): ”¡¡ c2;

Array ¡double¿ c3(3, 3.14159);

cout¡¡ ”Array ¡double¿ c3(3, 3.14159): ”¡¡ c3;

Array ¡Array¡int¿ ¿ c4(3);

cout¡¡ ”Array ¡Array¡int¿ ¿ c4(3): ”¡¡ c4;

c4[0] = c1; c4[1] = c2;

cout¡¡ ”c4[0] = c1, c4[1] = c2: ”¡¡ c4; cout¡¡ endl;

c1.reserve(20);

cout¡¡ ”c1.reserve(20): ”¡¡ c1;

c1.resize(10);

cout¡¡ ”c1.resize(10): ”¡¡ c1;

c1.push˙back(22);

cout¡¡ ”c1.push˙back(22): ”¡¡ c1;

c1.insert1(2, 5, 33);

cout¡¡ ”c1.insert1(2, 5, 33): ”¡¡ c1;

c1.push˙back(44);

cout¡¡ ”c1.push˙back(44): ”¡¡ c1;

c1.pop˙back();

cout¡¡ ”c1.pop˙back(): ”¡¡ c1;

uint j = c1.erase(4);

cout¡¡ ”j = c1.erase(4): ”¡¡ ”j = ”¡¡ j¡¡ ” c1 = ”¡¡ c1;

for(uint i = 0; i¡ 20; ++i)–

c1.push˙back(i);

cout¡¡ ”c1.push˙back(i = ”¡¡ i¡¡ ”): ”¡¡ c1;

˝

cout¡¡ ”c1.back(): ” ¡¡ c1.back(); cout¡¡ endl;

// continued

Figure 12.6: ArrayT1.cpp part 1
12–13

Array¡int¿ c5;

c5.reserve(10);

for(uint i = 0; i¡ 5; ++i)–

c5.push˙back(i);

cout¡¡ ”c5.push˙back(i = ”¡¡ i¡¡ ”): ”¡¡ c5;

˝

cout¡¡ ”using Iterator”¡¡ endl;

Array¡int¿::Iterator itr;

for(itr = c5.begin(); itr!= c5.end(); ++itr)–

cout¡¡ *itr¡¡ ’ ’;

˝

cout¡¡ endl;

cout¡¡ ”Array¡int¿::Iterator itr1 = c5.begin() + 2 ”¡¡ endl;

cout¡¡ ”c5.insert(itr1, 5, 33) ”¡¡ endl;

c5.insert1(2, 5, 33);

cout¡¡ c5;

cout¡¡ endl;

return 0;

˝

Figure 12.7: ArrayT1.cpp part 2

12–14

And here is the output from ArrayT1.

Array ¡int¿ c1(5): [5, 5]– 0, 0, 0, 0, 0˝

Array ¡int¿ c2(5, 127): [5, 5]– 127, 127, 127, 127, 127˝

Array ¡double¿ c3(3, 3.14159): [3, 3]– 3.14159, 3.14159, 3.14159˝

Array ¡Array¡int¿ ¿ c4(3): [3, 3]– [0, 0]– ˝

, [0, 0]– ˝

, [0, 0]– ˝

˝

c4[0] = c1, c4[1] = c2: [3, 3]– [5, 5]– 0, 0, 0, 0, 0˝

, [5, 5]– 127, 127, 127, 127, 127˝

, [0, 0]– ˝

˝

c1.reserve(20): [5, 20]– 0, 0, 0, 0, 0˝

c1.resize(10): [10, 20]– 0, 0, 0, 0, 0, 0, 0, 0, 0, 0˝

c1.push˙back(22): [11, 20]– 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22˝

c1.insert(2, 5, 33): [16, 20]– 0, 0, 33, 33, 33, 33, 33, 0, 0, 0, 0, 0, 0,

0, 0, 22˝

c1.push˙back(44): [17, 20]– 0, 0, 33, 33, 33, 33, 33, 0, 0, 0, 0, 0, 0, 0,

0, 22, 44˝

c1.pop˙back(): [16, 20]– 0, 0, 33, 33, 33, 33, 33, 0, 0, 0, 0, 0, 0, 0, 0,

22˝

j = c1.erase(4): j = 4 c1 = [15, 20]– 0, 0, 33, 33, 33, 33, 0, 0, 0, 0, 0,

0, 0, 0, 22˝

c1.push˙back(i = 0): [16, 20]– 0, 0, 33, 33, 33, 33, 0, 0, 0, 0, 0, 0, 0,

0, 22, 0˝

c1.push˙back(i = 1): [17, 20]– 0, 0, 33, 33, 33, 33, 0, 0, 0, 0, 0, 0, 0,

0, 22, 0, 1˝

... etc. ...

c1.push˙back(i = 19): [35, 40]– 0, 0, 33, 33, 33, 33, 0, 0, 0, 0, 0, 0, 0,

0, 22, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19˝

c1.back(): 19

c5.push˙back(i = 0): [1, 10]– 0˝

c5.push˙back(i = 1): [2, 10]– 0, 1˝

c5.push˙back(i = 2): [3, 10]– 0, 1, 2˝

c5.push˙back(i = 3): [4, 10]– 0, 1, 2, 3˝

c5.push˙back(i = 4): [5, 10]– 0, 1, 2, 3, 4˝

using Iterator

0 1 2 3 4

Array¡int¿::Iterator itr1 = c5.begin() + 2

c5.insert(itr1, 5, 33)

[10, 10]– 0, 1, 33, 33, 33, 33, 33, 0, 3, 4˝

12–15

12.4 The Big-Three

The C++ FAQs (Cline et al. 1999a) introduced the term the Big-Three for the three functions:
copy constructor, assignment operator, and destructor.

This is because, for classes that use heap storage, it is almost certainly necessary to explicitly
program all three. If they are not programmed, the compiler will provide default versions which
will probably not meet the requirements of client programs. Nevertheless, the inadequacy of these
defaults may be most subtle, and may require very detailed testing to detect.

The lack of a proper destructor would be particularly difficult to detect — it simply causes garbage,
whose effect is to leak memory, which may not be detected until the class is used in some application
which runs for a long time, e.g. an operating system, or an embedded control program.

Other than the Big-Three care must be exercised with comparison, e.g. equality check ==. If left
to its own devices the compiler will provide a shallow compare, which compares just the explicit
member(s).

12.4.1 Defence against naive defaults

If the developer of a heap-based class is quite sure that assignment, =, will never be required, it
still may be quite dangerous to trust that client programmers will never be tempted to use it; and,
normally, as we have said above, the compiler will provide a naive default – but silently, with no
warning of its possible inadequacy.

Fortunately, there is a simple and sure defence; this is to declare a stub of the function, and to
make it private, i.e.

private:

Array& operator = (const Array & rhs)–˝;

This means that any client program which unwittingly invokes an assignment will be stopped by a
compiler error; client programs are not allowed to access private members.

This would work also for compare, ==.

Nevertheless, it is hard to envisage a class which can operate successfully without a proper copy
constructor; likewise destructor. These will have to be programmed.

12–16

12.5 Overloading the Stream Output Operator

The stream output operator ¡¡ is overloaded as follows:

// notice no Array¡T¿:: -- *not* a member

template ¡class T¿

ostream& operator¡¡(ostream& os, const Array¡T¿& a)–

uint sz= a.size();

uint cap = a.capacity();

os¡¡ ”[” ¡¡ sz¡¡”, ”¡¡ cap ¡¡ ”]– ”;

for(uint i=0; i¡ sz; i++)–

os¡¡ a[i];

if(i!= sz-1)os¡¡”, ”;

˝

os¡¡”˝”¡¡ endl;

return os;

˝

ostream is a output-stream, so that the parameter os is an output-stream object; the familiar
cout is one such object.

It is important, to make it conform to its pattern of operation for the built-in types, that ¡¡ returns
a reference to the ostream object. This allows concatenated calls to it, e.g.:

cout¡¡ x¡¡ y¡¡ z¡¡ ”;”¡¡ endl;

If you are feeling confused about the distinction between member functions and non-member
functions such as ostream& operator¡¡ above, please consult Chapter 10.

12.6 std::vector

As stated previously, the chief reason for developing Array is as an educational experience.
std::vector will do everything that Array does only faster and with much less chance of a
bug lurking somewhere in its implementation.

If you read games programming books of more than five years ago, you may find ambivalence to
the standard library (STL) — for a start, not all compilers included it, and in addition there was
suspicion about its efficiency.

That’s in the past. I cannot imagine any reason why anyone would ever roll their own array class
— except for educational or some very special reasons.

Figures 12.8 and 12.9 show a program which uses std::vector in almost the same way as
Figure 12.6 uses Array.

12–17

/* ----- vectorT1.cpp ----------------------------------

from Arrayt1.cpp, j.g.c. 2008-01-15

--*/

#include ¡vector¿ #include ¡iostream¿

#include ¡ostream¿ #include ¡iterator¿

#include ¡algorithm¿

using namespace std;

int main()–

vector ¡int¿ c1(5);

cout¡¡ ”vector ¡int¿ c1(5): ”;

copy(c1.begin(), c1.end(), ostream˙iterator¡int¿(cout, ” ”)); cout¡¡ endl;

vector ¡int¿ c2(5, 127);

cout¡¡ ”vector ¡int¿ c2(5, 127): ”;

copy(c2.begin(), c2.end(), ostream˙iterator¡int¿(cout, ” ”)); cout¡¡ endl;

vector ¡double¿ c3(3, 3.14159);

cout¡¡ ”vector ¡double¿ c3(3, 3.14159): ”;

copy(c3.begin(), c3.end(), ostream˙iterator¡double¿(cout, ” ”)); cout¡¡ endl;

c1.reserve(20); cout¡¡ ”c1.reserve(20): ”;

copy(c1.begin(), c1.end(), ostream˙iterator¡int¿(cout, ” ”)); cout¡¡ endl;

c1.resize(10); cout¡¡ ”c1.resize(10): ”;

copy(c1.begin(), c1.end(), ostream˙iterator¡int¿(cout, ” ”)); cout¡¡ endl;

c1.push˙back(22); cout¡¡ ”c1.push˙back(22): ”;

copy(c1.begin(), c1.end(), ostream˙iterator¡int¿(cout, ” ”)); cout¡¡ endl;

c1.insert(c1.begin() + 2, 5, 33);

cout¡¡ ”c1.insert(2, 5, 33): ”;

copy(c1.begin(), c1.end(), ostream˙iterator¡int¿(cout, ” ”)); cout¡¡ endl;

c1.push˙back(44); cout¡¡ ”c1.push˙back(44): ”;

copy(c1.begin(), c1.end(), ostream˙iterator¡int¿(cout, ” ”)); cout¡¡ endl;

c1.pop˙back(); cout¡¡ ”c1.pop˙back(): ”;

copy(c1.begin(), c1.end(), ostream˙iterator¡int¿(cout, ” ”)); cout¡¡ endl;

c1.erase(c1.begin()); cout¡¡ endl;

cout¡¡ ”c1.erase(c1.begin()): ”¡¡ ” c1 = ”;

copy(c1.begin(), c1.end(), ostream˙iterator¡int¿(cout, ” ”)); cout¡¡ endl;

for(size˙t i = 0; i¡ 20; ++i)–

c1.push˙back(i); cout¡¡ ”c1.push˙back(i = ”¡¡ i¡¡ ”): ”;

copy(c1.begin(), c1.end(), ostream˙iterator¡int¿(cout, ” ”)); cout¡¡ endl;

˝

Figure 12.8: Use of std::vector

12–18

copy(c1.begin(), c1.end(), ostream˙iterator¡int¿(cout, ” ”));

cout¡¡ endl;

uint n = c1.size();

for(uint i = 0; i!= n; ++i)–

cout¡¡ c1[i]¡¡ ” ”;

˝

cout¡¡ endl;

vector¡int¿::iterator it;

for(it = c1.begin(); it!= c1.end(); ++it)–

cout¡¡ *it¡¡ ” ”;

˝

cout¡¡ ”“nsort(c1.begin(), c1.end())”¡¡ endl;

sort(c1.begin(), c1.end());

copy(c1.begin(), c1.end(), ostream˙iterator¡int¿(cout, ” ”));

cout¡¡ endl;

return 0;

˝

Figure 12.9: Use of std::vector

12–19

12.6.1 Points to note in vectort1.cpp

1. #include ¡vector¿.

2. Unless you want to fully qualify the type as std::vector, you must include
using namespace std.

3. You can randomly access elements of vector using [] notation, for example cout¡¡ c1[2],
see Figure 12.9.

4. You can access elements of vector using and iterator, for example

vector¡int¿::iterator it;

for(it = c1.begin(); it!= c1.end(); ++it)–

cout¡¡ *it¡¡ ” ”;

˝

5. We declare the iterator as vector¡int¿::iterator it; because that iterator is de-
clared within the scope of vector; recall Array¡T¿::Iterator above; :: is the scope
resolution operator.

6. When we come to using std::list, we will have to use an iterator because std::list
does not support random access.

7. An iterator is meant to behave rather like a pointer: (a) ++it and --itmove the iterator
forwards and backwards; (b) *it access the element that it refers to.

8. c1.begin() is an iterator that references the first element of c1.

9. c1.end() is an iterator that references one element past the last element of c1. Hence
it!= c1.end().

10. Although we show explicit use of iterator and [] indexed random access, the standard
library gives us alternatives, for example

copy(c1.begin(), c1.end(), ostream˙iterator¡int¿(cout, ” ”));

11. The standard library algorithms have been written in such a manner that they can be applied
to pointers as well as iterators.

12. Notice how to sort a vector:

sort(c1.begin(), c1.end());

12–20

Chapter 13

Linked Lists

13.1 Introduction

The two most common form of sequence data structures are (a) contiguous array-based as covered
in Chapter 12 and (b) linked-list-based that we cover in this Chapter. In what follows, when
comparing them, we’ll use the term array for the former and linked-list for the latter. Apart from
sequence data structures, we will encounter other forms of collection, e.g. trees and graphs; some
of these use linked representations, some use arrays, and there are other implementations.

std::vector (and likewise Array) that we covered in Chapter 12 do a fine job for many appli-
cations. However, they run into performance difficulties in two major circumstances: (i) you need
to insert one or more elements into the array at other than the back; in fact std::vector has no
push˙front function because it is reckoned that to use push˙front on on array would be rather
silly; (ii) you get it wrong when you declare the initial size of the array (or when you use reserve).

These difficulties can be seen by examining Figure 13.1.

First, push˙back works fine until we run out of space, but then we must reserve more memory
(an new array), and, (not shown) copy all data from the old array to the new array; that makes
push˙back an O(N) operation in the worst case, and if, unlike the example, we reserve only what
extra space that is immediately needed, then N push˙backs will grow as O(N2).

Next, if we look at insert, we see that the first thing that has to be done is to copy all data that
are above the insert position, n memory positions up the array to make space for the n inserts. This
is an O(N) operation, so that if we want to insert all N array elements in this manner, constructing
the array will be O(N2).

A linked-list operates by treating every element in a collection as a semi-independent entity but
linked to other elements in the collection so that the sequence can be maintained. Using this
representation, most insert and delete operations take constant time, i.e. O(1). The one downside
is that accessing the i-th item in the list (sequence) takes O(N) — sequential access, whilst an
array allows random access and the same can be done in O(1).

As we have noted earlier, the purpose of developing our own list classes, just as for the array class
in Chapter 12, is mostly to develop some sympathy with how and why they work. When it comes
to application development, we will almost always use STL collections and algorithms.

13–1

template ¡class T¿

void Array¡T¿::insert(Iterator pos, uint n, const T& e)–

uint sz = sz˙ + n;

assert(cap˙¿= sz);

Iterator itrd= dat˙ + sz - 1; // dstination

Iterator itrs= dat˙ + sz˙ - 1; // source

for(; itrs!= pos; --itrs, --itrd)*(dat˙ + itrd) = *(dat˙ + itrs);

for(itrd = pos; itrd!= pos + n; ++itrd)*(dat˙ + itrd) = e;

sz˙ = sz;

˝

template ¡class T¿

void Array¡T¿::push˙back(const T& val) –

if(!(cap˙¿ sz˙))reserve(2*cap˙);

dat˙[sz˙] = val;

++sz˙;

˝

Figure 13.1: Extracts from Array.h showing drawback of Array and std::vector

13–2

13.2 A Singly Linked List

Here we develop the simplest form of linked list — a singly linked list. This works fine for
most list applications, but suffers from the disadvantage that inserting and deleting at the back
(push˙back, pop˙back) take O(N). Later, we will see how a doubly linked list can remedy this
particular drawback.

13.2.1 Class Declaration

The declaration of the singly linked SList class is shown in Figure 13.2.

13–3

#ifndef LISTTH

#define LISTTH

#include ¡cassert¿

#include ¡iostream¿

template ¡class T¿

class List;

template ¡class T¿

std::ostream& operator¡¡(std::ostream& os, const List¡T¿& l);

template ¡class T¿ class Link;

template ¡class T¿ class List–

friend std::ostream& operator¡¡ ¡T¿(std::ostream& os, const List¡T¿& l);

public:

List();

List(const List¡T¿ & other);

˜List();

List & operator = (const List¡T¿ & rhs);

T front() const;

void push˙front(T e);

void pop˙front();

T back() const;

void push˙back(T e);

void pop˙back();

void clear(); // empty the list and delete all elements in it

bool empty() const;

int size() const;

private:

void copy(const List¡T¿ & other); // local utility only, users use =

Link¡T¿* first˙;

˝;

template ¡class T¿class Link–

friend class List¡T¿;

friend std::ostream& operator¡¡ ¡T¿(std::ostream& os, const List¡T¿& l);

private:

Link(T e, Link *next=0);

T elem˙;

Link¡T¿* next˙;

˝;

Figure 13.2: Declaration of Singly Linked List.

13–4

13.2.2 Dissection of List

[You know all this already, but it may be worth repeating.]

1. The type parameter T. As already mentioned, List is a parameterised class – the type / class
of its element is given as a template class parameter. Just as in declaration of a function
with parameters (variables — formal parameters), we must announce this fact, and give the
(as yet unknown) parameter an identifier. This is done as follows:

template ¡class T¿ class List

Here we are saying: List uses an as yet unspecified type / class T.

2. When we want to define an actual List in a program, we do so as, e.g.:

List¡int¿ s;

List¡float¿ t;

List¡string¿ x;

Thus, as with (parameterised) functions, we can ’use’ the abstraction with any number of
(different) parameters.

3. Likewise, if we ever need to declare a List object as a parameter, we use the form:

List(const List¡T¿ & other);

i.e. other is a reference to a List object of class or type T elements.

4. Instantiation. Just as variables and objects are instantiated (created), so are template classes.
In the case of template classes and functions, this is done at compile time.

5. In GNU C++, the List¡int¿ class, for example, is instantiated, at compile time, by a form
of macro-expansion. This is the reason that function implementations must also be in the
.h file.

6. The only data member for a List is Link¡T¿* first˙, a pointer to a Link.

7. When first constructed a List is empty, in which case first˙ == NULL.

8. List has the Big-Three: copy constructor, assignment operator, and destructor.

9. Ordinarily, e.g. in the copy constructor and the assignment operator, we pass Lists by
reference, e.g.

List¡T¿& List¡T¿::operator = (const List¡T¿& rhs)

This is because we don’t want to make unnecessary copies.

.

Figure 13.3 gives a brief indication of the operation of List.

13–5

Figure 13.3: Operation of a singly linked list.

13–6

13.2.3 Class Implementation

The implementations of selected List class functions are shown in Figures 13.4 to 13.6. Most of
these are straightforward, but it will be useful to ensure that we discuss them properly in lectures;
diagrams will do a lot to aid your understanding. You should also read appropriate sections pf
(Penton 2003) and execute his programs which have interactive graphics representations of singly
linked and doubly linked lists.

13–7

template ¡class T¿

Link¡T¿::Link(T e, Link¡T¿ *next) –

elem˙ = e;

next˙ = next;

˝

template ¡class T¿

List¡T¿::List()–

first˙ = 0;

˝

template ¡class T¿

void List¡T¿::copy(const List¡T¿ & other)–

if(other.empty())first˙ = 0;

else–

Link¡T¿ *pp = other.first˙; //cursor to other

Link¡T¿ *pt = new Link¡T¿(pp-¿elem˙, 0);

first˙ = pt;

while(pp-¿next˙ != 0)–

pp = pp-¿next˙;

pt-¿next˙ = new Link¡T¿(pp-¿elem˙,0);

pt = pt-¿next˙;

˝

˝˝

template ¡class T¿

List¡T¿::List(const List¡T¿& other)–

copy(other);

˝

template ¡class T¿

List¡T¿ & List¡T¿::operator = (const List¡T¿& rhs)–

if(this != &rhs)– //beware of listA=listA;

clear();

˝

copy(rhs);

return *this;

˝

template ¡class T¿

List¡T¿::˜List()– clear(); ˝

template ¡class T¿

void List¡T¿::push˙front(T e)–

Link¡T¿ *pt= new Link¡T¿(e, first˙);

assert(pt != 0);

first˙=pt;

˝ // continued ...

Figure 13.4: Implementation code for Singly Linked List, part 1.

13–8

template ¡class T¿

T List¡T¿::front() const–

assert(!empty());

return first˙-¿elem˙;

˝

template ¡class T¿

void List¡T¿::pop˙front()–

Link¡T¿* pt= first˙;

first˙= pt-¿next˙;

delete pt; pt = 0;

˝

template ¡class T¿

void List¡T¿::push˙back(T e)–

//std::cout¡¡ ”push˙back”¡¡ std::endl;

if(empty())–

first˙ = new Link¡T¿(e, 0);

assert(first˙ != 0);

˝

else–

Link¡T¿* pp = first˙;

// walk to the back

while(pp-¿next˙ != 0)pp = pp-¿next˙;

// and add a new Link with e in it and next = null

pp-¿next˙ = new Link¡T¿(e, 0);

assert(pp-¿next˙ != 0);

˝

˝

template ¡class T¿

void List¡T¿::pop˙back()–

//std::cout¡¡ ”pop˙back”¡¡ std::endl;

assert(!empty());

if(first˙-¿next˙ == 0)– /*kludge for one element */

delete first˙;

first˙ = 0;

return;

˝

Link¡T¿ *pp(first˙), *prev(first˙);

// walk to the back

while(pp-¿next˙ != 0)–

prev = pp; pp = pp-¿next˙;

˝

// delete the last Link and set prev-¿next = null

delete pp;

pp = 0;

prev-¿next˙ = 0;

˝ // continued ...

Figure 13.5: Implementation code for Singly Linked List, part 2.13–9

template ¡class T¿

T List¡T¿::back() const–

//std::cout¡¡ ”back”¡¡ std::endl;

assert(!empty());

Link¡T¿* pp (first˙);

// walk to the back

while(pp-¿next˙ != 0)pp = pp-¿next˙;

return pp-¿elem˙;

˝

template ¡class T¿

void List¡T¿::clear()–

Link¡T¿ *next,*pp(first˙);

while(pp != 0)–

next = pp-¿next˙;

pp-¿next˙ = 0; // why did Budd include this?

delete pp;

pp = next;

˝

first˙ = 0;

˝

template ¡class T¿

bool List¡T¿::empty() const–

return (first˙ == 0);

˝

template ¡class T¿

int List¡T¿::size() const–

int i = 0;

Link¡T¿ *pt = first˙;

while(pt != 0)–

pt = pt-¿next˙;

++i;

˝

return i;

˝

template ¡class T¿

std::ostream& operator¡¡ (std::ostream& os, const List¡T¿& lst)–

os¡¡”f[”;

Link¡T¿ *pp = lst.first˙; //cursor to lst

while(pp != 0)–

if(pp != lst.first˙)os¡¡”, ”;

os¡¡ pp-¿elem˙;

pp = pp-¿next˙;

˝

os¡¡”]b”¡¡std::endl;

return os;

˝

Figure 13.6: Implementation code for Singly Linked List, part 3.
13–10

13.3 A simple List client program

As we have seen, there is little to templates.

The program ListT1.cpp in Figures 13.7 and 13.8 demonstrate the use of the List class.

Figure 13.9 shows the output of ListT1.cpp. Please note that if you make minor modifications to
the beginning of ListT1.cpp and change occurrences of List to list (std::list), the program
performs the same. Although std::list is a doubly-linked-list, the interface functions hide that
fact.

In the next section, we develop a doubly linked list.

13–11

/* --- ListT1.cpp ---

j.g.c. 31/12/96//j.g.c. 1/1/97, 5/1/97, 2007-12-28, 2008-01-18

changed j.g.c. 2007-12-30 to use new SList.h (std::list compatible)

-- */

#include ”SList.h”

//#include ”ListStd1.h”

#include ¡string¿

//#include ¡list¿

#include ¡iostream¿

using namespace std;

typedef List¡double¿ ListD;

typedef List¡int¿ ListI;

typedef List¡string¿ ListS;

int main()–

ListD x;

x.push˙front(4.4); x.push˙front(3.3); x.push˙front(2.2); x.push˙front(1.1);

ListD y(x);

ListD z = x; //NB. equiv. to ListD z(x); see prev. line

cout¡¡ ”x.front = ”¡¡ x.front()¡¡ endl;

//note that the following destroys the List

cout¡¡ ”List x =”¡¡endl;

cout¡¡ ”x.size() =”¡¡ x.size()¡¡ endl;

while(!x.empty())–

cout¡¡ x.front()¡¡ endl;

x.pop˙front();

˝

cout¡¡ ”x.size() now = ”¡¡ x.size()¡¡ endl;

cout¡¡ ”List y =”¡¡endl;

cout¡¡ y¡¡ endl;

cout¡¡ ”List z =”¡¡endl;

cout¡¡ z¡¡ endl;

// continued ...

Figure 13.7: ListT1.cpp, part 1

13–12

ListD v; v = y;

v.pop˙front();

cout¡¡ ”List v (v = y; v.pop˙front();) =”¡¡endl;

cout¡¡ v¡¡ endl;

ListI li; li.push˙front(3); li.push˙front(2); li.push˙front(1);

cout¡¡ ”List li via operator ¡¡”¡¡endl;

cout¡¡ li¡¡ endl;

li.push˙back(22); li.push˙back(33);

cout¡¡ ”li.push˙back(22), li.push˙back(33)”¡¡ endl;

cout¡¡ li¡¡ endl;

cout¡¡ ”back(), pop.back()”¡¡ endl;

while(!li.empty())–

cout¡¡ li.back()¡¡ endl;

li.pop˙back();

˝

ListS ls;

ls.push˙front(”abcd”);

ls.push˙front(”cdefgh”);

ls.push˙back(”back”);

cout¡¡ ls¡¡ endl;

return 0;

˝

Figure 13.8: ListT1.cpp, part 2

13–13

x.front = 1.1

List x =

x.size() =4

1.1

2.2

3.3

4.4

x.size() now = 0

List y =

f[1.1, 2.2, 3.3, 4.4]b

List z =

f[1.1, 2.2, 3.3, 4.4]b

List v (v = y; v.pop˙front();) =

f[2.2, 3.3, 4.4]b

List li via operator ¡¡

f[1, 2, 3]b

li.push˙back(22), li.push˙back(33)

f[1, 2, 3, 22, 33]b

back(), pop.back()

33

22

3

2

1

f[cdefgh, abcd, back]b

Figure 13.9: Output of ListT1.cpp.

13–14

13.4 Doubly Linked List

In this section, we develop a doubly linked list. The declaration is shown in Figures 13.10, 13.11
(Link) and 13.12 (ListIterator).

13–15

#ifndef LISTTH

#define LISTTH

#include ¡cassert¿

#include ¡iostream¿

template ¡class T¿

class List;

template ¡class T¿

std::ostream& operator¡¡ (std::ostream& os, const List¡T¿& l);

template ¡class T¿

class Link;

template ¡class T¿

class ListIterator;

template ¡class T¿ class List–

friend std::ostream& operator¡¡ ¡T¿(std::ostream& os, const List¡T¿& l);

public:

typedef ListIterator¡T¿ Iterator;

List() : first˙(0), last˙(0) –˝;

List(const List¡T¿ & other);

˜List();

List & operator = (const List¡T¿ & rhs);

T& front() const;

void push˙front(const T& e);

void pop˙front();

T& back() const;

void push˙back(const T& e);

void pop˙back();

void clear(); // empty the list and delete all elements in it

bool empty() const;

int size() const;

Iterator begin();

Iterator end();

Iterator insert(Iterator& itr, const T& val);

void insert(Iterator& itr, int n, const T& val);

void erase(Iterator& itr);

void erase(Iterator& start, Iterator& stop);

private:

void copy(const List¡T¿ & other); // private utility only, users use =

Link¡T¿* first˙;

Link¡T¿* last˙;

˝;

Figure 13.10: Doubly linked list declaration, part 1

13–16

template ¡class T¿class Link–

friend class List¡T¿;

friend class ListIterator¡T¿;

friend std::ostream& operator¡¡ ¡T¿(std::ostream& os, const List¡T¿& l);

private:

Link(const T& e) : elem˙(e), next˙(0), prev˙(0)–˝

T elem˙;

Link¡T¿* next˙;

Link¡T¿* prev˙;

˝;

Figure 13.11: Doubly linked list declaration, part 2, the Link

13–17

template ¡class T¿class ListIterator–

friend class List¡T¿;

typedef ListIterator¡T¿ Iterator;

public:

ListIterator(List¡T¿* list = 0, Link¡T¿* cLink = 0) :

list˙(list), cLink˙(cLink) –˝

T& operator *()–

return cLink˙-¿elem˙;

˝

bool operator == (Iterator rhs)–

return cLink˙ == rhs.cLink˙;

˝

bool operator != (Iterator rhs)–

return cLink˙ != rhs.cLink˙;

˝

Iterator& operator ++ (int)–

cLink˙ = cLink˙-¿next˙;

return *this;

˝

Iterator operator ++ ();

Iterator& operator -- (int)–

cLink˙ = cLink˙-¿prev˙;

return *this;

˝

Iterator operator -- ();

private:

List¡T¿* list˙;

Link¡T¿* cLink˙;

˝;

Figure 13.12: Doubly linked list declaration, part 3, the ListIterator

13–18

13.4.1 Brief Discussion of the Doubly Linked List

The doubly linked list in Figures 13.10 to 13.12 is very similar to the singly linked list described
earlier in the chapter. The chief differences are:

1. There are now two List data members (the singly linked list had just a pointer to the front;
now we have pointers to front and back :

Link¡T¿* first˙;

Link¡T¿* last˙;

This means that when we want to push˙back or pop˙back, we can go directly there, via
last˙, rather than having to sequentially walk there as in the singly linked list example.

2. Link now has three data members, first the element; then, as before, one pointing to the
next link, and now a new pointer pointing to the previous link.

T elem˙;

Link¡T¿* next˙;

Link¡T¿* prev˙;

In the singly linked list, we could traverse the list (iterate) only in the front towards back
direction via next˙; now we can traverse in both directions, back towards front, using the
prev˙ pointer.

3. The other major difference is that we have equipped the List with an iterator. This iterator
has the same effect as the Array iterator in Chapter 12, i.e. it looks the same to client
programs, but it is slightly more complicated to implement.

4. ListIterator has two data members:

List¡T¿* list˙;

Link¡T¿* cLink˙;

a pointer to the List itself, and a pointer one of the Links.

13–19

13.4.2 Simple Test Program, ListT1.cpp

Figures 13.13 and 13.14 show a simple test program. The only difference between this program
and the one above in Figures 13.7 and 13.8 is that we have added code to exercise the additional
functions in the doubly linked list, and the iterator.

As pointed out before, we note that this doubly linked list, the singly linked list above, and std:list
appear identical in client programs; the only differences (and there should be none) is that in the
lists here, we have chosen to implement only a subset of the functions of std::list and in the
singly linked list, the subset is even smaller. As we keep saying, the objectives of the list classes
here is not to replace std::list, but to get some feeling how std::list might be implemented.

The output of ListT1.cpp is shown in Figure 13.15

13–20

/* --- ListT1.cpp ---

j.g.c. 31/12/96//j.g.c. 1/1/97, 5/1/97, 2007-12-28, 2008-01-18

changed j.g.c. 2007-12-30 to use new List.h (std::list compatible)

-- */

#include ”List.h”

//#include ”ListStd1.h”

#include ¡string¿

//#include ¡list¿

#include ¡iostream¿

using namespace std;

typedef List¡double¿ ListD;

typedef List¡int¿ ListI;

typedef List¡string¿ ListS;

int main()–

ListD x;

x.push˙front(4.4); x.push˙front(3.3); x.push˙front(2.2); x.push˙front(1.1);

ListD y(x);

ListD z = x; //NB. equiv. to ListD z(x); see prev. line

cout¡¡ ”x.front = ”¡¡ x.front()¡¡ endl;

//note that the following destroys the list

cout¡¡ ”List x =”¡¡endl;

cout¡¡ ”x.size() =”¡¡ x.size()¡¡ endl;

while(!x.empty())–

cout¡¡ x.front()¡¡ endl;

x.pop˙front();

˝

cout¡¡ ”x.size() now = ”¡¡ x.size()¡¡ endl;

cout¡¡ ”List y =”¡¡endl;

cout¡¡ y¡¡ endl;

cout¡¡ ”List z =”¡¡endl;

cout¡¡ z¡¡ endl;

ListD v;

v = y;

v.pop˙front();

cout¡¡ ”List v (v = y; v.pop˙front();) =”¡¡endl;

cout¡¡ v¡¡ endl; // continued ...

Figure 13.13: Simple Test Program for Doubly Linked List, ListT1.cpp, part 1

13–21

ListI li; li.push˙front(3); li.push˙front(2); li.push˙front(1);

cout¡¡ ”List li via operator ¡¡”¡¡endl;

cout¡¡ li¡¡ endl;

li.push˙back(22);

li.push˙back(33);

cout¡¡ ”li.push˙back(22), li.push˙back(33)”¡¡ endl;

cout¡¡ li¡¡ endl;

cout¡¡ ”back(), pop.back()”¡¡ endl;

while(!li.empty())–

cout¡¡ li.back()¡¡ endl;

li.pop˙back();

˝

ListS ls;

ls.push˙front(”abcd”);

ls.push˙front(”cdefgh”);

ls.push˙back(”back”);

cout¡¡ ls¡¡ endl;

ListI c5;

for(uint i = 0; i¡ 5; ++i)–

c5.push˙back(i);

cout¡¡ ”c5.push˙back(i = ”¡¡ i¡¡ ”): ”¡¡ c5;

˝

cout¡¡ ”using Iterator”¡¡ endl;

ListI::Iterator itr = c5.begin();

ListI::Iterator itrb = c5.begin();

ListI::Iterator itre = c5.end();

if(itr == itrb)cout¡¡ ”itr == itrb”¡¡ endl;

else cout¡¡ ”itr != itrb”¡¡ endl;

if(itr != itrb)cout¡¡ ”itr != itrb”¡¡ endl;

else cout¡¡ ”itr == itrb”¡¡ endl;

ListI::Iterator it;

for(it = c5.begin(); it != c5.end(); ++it)–

cout¡¡ *it¡¡ ’ ’;

˝

cout¡¡ ”ListI::Iterator itr2 = c5.begin(), ++, ++ ”¡¡ endl;

cout¡¡ ”c5.insert(itr2, 5, 33) ”¡¡ endl;

ListI::Iterator itr2 = c5.begin();

itr2++; itr2++;

c5.insert(itr2, 5, 33);

cout¡¡ c5;

Figure 13.14: Simple Test Program for Doubly Linked List, ListT1.cpp, part 2
13–22

x.front = 1.1

List x =

x.size() =4

1.1

2.2

3.3

4.4

x.size() now = 0

List y =

f[1.1, 2.2, 3.3, 4.4]b

List z =

f[1.1, 2.2, 3.3, 4.4]b

List v (v = y; v.pop˙front();) =

f[2.2, 3.3, 4.4]b

List li via operator ¡¡

f[1, 2, 3]b

li.push˙back(22), li.push˙back(33)

f[1, 2, 3, 22, 33]b

back(), pop.back()

33

22

3

2

1

f[cdefgh, abcd, back]b

c5.push˙back(i = 0): f[0]b

c5.push˙back(i = 1): f[0, 1]b

c5.push˙back(i = 2): f[0, 1, 2]b

c5.push˙back(i = 3): f[0, 1, 2, 3]b

c5.push˙back(i = 4): f[0, 1, 2, 3, 4]b

using Iterator

itr == itrb

itr == itrb

0 1 2 3 4 ListI::Iterator itr2 = c5.begin(), ++, ++

c5.insert(itr2, 5, 33)

f[0, 1, 33, 33, 33, 33, 33, 2, 3, 4]b

Figure 13.15: Output of ListT1.cpp (double linked version)

13–23

13.4.3 Doubly Linked List Implementation

Here we give the complete implementation of the doubly linked list. Since the principles involved
are the same as for the singly linked list, we provide no discussion. However, it will be worthwhile
to spend some time in class on the implementation, especially that of ListIterator.

// --------- ListIterator ---------------------------------

// postfix form of increment

template ¡class T¿

ListIterator¡T¿ ListIterator¡T¿::operator ++ ()–

// clone, then increment, return clone

ListIterator¡T¿ clone (list˙, cLink˙);

cLink˙ = cLink˙-¿next˙;

return clone;

˝

// postfix form of decrement

template ¡class T¿

ListIterator¡T¿ ListIterator¡T¿::operator -- ()–

// clone, then increment, return clone

ListIterator¡T¿ clone (list˙, cLink˙);

cLink˙ = cLink˙-¿prev˙;

return clone;

˝

Figure 13.16: Doubly Linked List Implementation, part 1, ListIterator

13–24

template ¡class T¿

void List¡T¿::copy(const List¡T¿ & other)–

if(other.empty())first˙ = 0;

else–

Link¡T¿ *pp = other.first˙; //cursor to other

Link¡T¿ *pt = new Link¡T¿(pp-¿elem˙);

first˙ = pt;

while(pp-¿next˙ != 0)–

pp = pp-¿next˙;

pt-¿next˙ = new Link¡T¿(pp-¿elem˙);

pt = pt-¿next˙;

˝

˝

˝

template ¡class T¿

List¡T¿::List(const List¡T¿ & other)–

copy(other);

˝

template ¡class T¿

List¡T¿ & List¡T¿::operator = (const List¡T¿ & rhs)–

if(this != &rhs)– //beware of listA=listA;

clear();

˝

copy(rhs);

return *this;

˝

template ¡class T¿

List¡T¿::˜List()–

clear();

˝

Figure 13.17: Doubly Linked List Implementation, part 2

13–25

template ¡class T¿

void List¡T¿::copy(const List¡T¿ & other)–

if(other.empty())first˙ = 0;

else–

Link¡T¿ *pp = other.first˙; //cursor to other

Link¡T¿ *pt = new Link¡T¿(pp-¿elem˙);

first˙ = pt;

while(pp-¿next˙ != 0)–

pp = pp-¿next˙;

pt-¿next˙ = new Link¡T¿(pp-¿elem˙);

pt = pt-¿next˙;

˝

˝

˝

template ¡class T¿

List¡T¿::List(const List¡T¿ & other)–

copy(other);

˝

template ¡class T¿

List¡T¿ & List¡T¿::operator = (const List¡T¿ & rhs)–

if(this != &rhs)– //beware of listA=listA;

clear();

˝

copy(rhs);

return *this;

˝

template ¡class T¿

List¡T¿::˜List()–

clear();

˝

Figure 13.18: Doubly Linked List Implementation, part 3

13–26

template ¡class T¿

void List¡T¿::push˙front(const T& e)–

Link¡T¿ *newLink= new Link¡T¿(e);

assert(newLink != 0);

if(empty())first˙ = last˙ = newLink;

else –

first˙-¿prev˙ = newLink;

newLink-¿next˙ = first˙;

first˙= newLink;

˝

˝

template ¡class T¿

T& List¡T¿::front() const–

assert(!empty());

return first˙-¿elem˙;

˝

template ¡class T¿

void List¡T¿::pop˙front()–

assert(!empty());

Link¡T¿* tmp = first˙;

first˙= first˙-¿next˙;

if(first˙!= 0) first˙-¿prev˙ = 0;

else last˙ = 0;

delete tmp;

˝

Figure 13.19: Doubly Linked List Implementation, part 4

13–27

template ¡class T¿

void List¡T¿::push˙back(const T& e)–

Link¡T¿ *newLink= new Link¡T¿(e); assert(newLink != 0);

if(empty()) first˙ = last˙ = newLink;

else–

last˙-¿next˙ = newLink;

newLink-¿prev˙ = last˙;

last˙ = newLink;

˝

˝

template ¡class T¿

void List¡T¿::pop˙back()–

assert(!empty());

Link¡T¿* tmp = last˙;

last˙= last˙-¿prev˙;

if(last˙!= 0) last˙-¿next˙ = 0;

else first˙ = 0;

delete tmp;

˝

template ¡class T¿

T& List¡T¿::back() const–

assert(!empty());

return last˙-¿elem˙;

˝

template ¡class T¿

void List¡T¿::clear()–

Link¡T¿ *next, *first(first˙);

while(first != 0)–

next = first-¿next˙; delete first; first = next;

˝

first˙ = 0;

˝

template ¡class T¿

bool List¡T¿::empty() const–

return (first˙ == 0);

˝

template ¡class T¿

int List¡T¿::size() const–

int i = 0;

Link¡T¿ *pt = first˙;

while(pt != 0)–

pt = pt-¿next˙; ++i;

˝

return i; ˝

Figure 13.20: Doubly Linked List Implementation, part 5
13–28

template ¡class T¿

ListIterator¡T¿ List¡T¿::begin() –

return Iterator(this, first˙);

˝

template ¡class T¿

ListIterator¡T¿ List¡T¿::end() –

return ListIterator¡T¿(this, 0);

˝

template ¡class T¿

void List¡T¿::erase(ListIterator¡T¿& itr)–

erase(itr, itr);

˝

// insert a new element into the middle of a linked list

template ¡class T¿

ListIterator¡T¿ List¡T¿::insert (ListIterator¡T¿ & itr, const T& value)–

Link¡T¿* newLink = new Link¡T¿(value);

Link¡T¿* current = itr.cLink˙;

newLink-¿next˙ = current;

newLink-¿prev˙ = current-¿prev˙;

current-¿prev˙ = newLink;

current = newLink-¿prev˙;

if (current != 0)current-¿next˙ = newLink;

return ListIterator¡T¿(this, newLink);

˝

// insert n new elements into the middle of a linked list

// note: iterator changed, but I think this is okay as

// iterators are known to be invalidated by insertion

template ¡class T¿

void List¡T¿::insert (ListIterator¡T¿ & itr, int n, const T& value)–

for(int i = 0; i¡ n; i++)–

itr = insert(itr, value);

˝

˝

Figure 13.21: Doubly Linked List Implementation, part 6

13–29

// remove values from the range of elements

template ¡class T¿

void List¡T¿::erase (ListIterator¡T¿ & start, ListIterator¡T¿ & stop)–

Link¡T¿ * first = start.cLink˙;

Link¡T¿ * prev = first-¿prev˙;

Link¡T¿ * last = stop.cLink˙;

if (prev == 0) – // removing initial portion of list

first˙ = last;

if (last == 0) last˙ = 0;

else last-¿prev˙ = 0;

˝

else –

prev-¿next˙ = last;

if (last == 0)last˙ = prev;

else last-¿prev˙ = prev;

˝

// now delete the values

while (start != stop) –

ListIterator¡T¿ next = start;

++next;

delete start.cLink˙;

start = next;

˝

˝

template ¡class T¿

std::ostream& operator¡¡ (std::ostream& os, const List¡T¿& lst)–

os¡¡”f[”;

Link¡T¿ *pp = lst.first˙; //cursor to lst

while(pp != 0)–

if(pp != lst.first˙)os¡¡”, ”;

os¡¡ pp-¿elem˙;

pp = pp-¿next˙;

˝

os¡¡”]b”¡¡std::endl;

return os;

˝

#endif

Figure 13.22: Doubly Linked List Implementation, part 7

13–30

13.5 Arrays versus Linked List, Memory Usage

On a 32-bit machine, int and pointer typed variables normally occupy four 8-bit bytes.

Ex. 1. If we have an Array¡int¿ such as that in Chapter 12 (and std::vector will be the same)
whose size and capacity are 1000, how many memory bytes will be used?

Ex. 2. Do the same calculation for a singly linked list which contains 1000 elements.

Ex. 3. Do the same calculation for a doubly linked list.

Ex. 4. If we define efficiency as actual useful data memory divided by total memory used, what
can we say about the efficiency obtained in Ex. 1., Ex. 2. and Ex. 3. above.

Ex. 5. As N, the number of elements, increases to a very large number, what can we say about
the efficiency in the three cases: (i) array, (ii) singly linked list, (iii) doubly linked list.

13.6 Arrays versus Linked List, Cache issues

All CPU chips these days have cache memory ; cache memory is extra-fast memory close to the
CPU. Cache memory has access times one tenth to one twentieth of main memory.

Usually, there are two separate caches, data cache, and instruction cache.

In the case of data cache, when you access a memory location, 4560, say, the cache system will
bring memory locations 4560 to 4581 (32 bytes — it could be more, depends on the CPU) into
cache; the first memory access will be at the speed of main memory; however, if you access memory
4564, it will already be in cache and this memory access will be at the much faster cache speed.

Hence on machines that have cache, it makes sense to access memory in a orderly manner: e.g.
4560, 4564, 4568,

If you hop about through memory: e.g. 4560, 200057, 26890, . . . , you will lose the speed of the
cache memory.

Ex. In connection with cache memory, what performance penalty might a program incur when
using a linked list instead of an array?

13–31

Chapter 14

Case Study — Person, Student class
hierarchy

14.1 Introduction

This is a case study involving a number of classes; it is useful to see how a methodical object-
oriented design approach can tame a problem that looks very difficult at first glance. A secondary
goal of the case study is to gain confidence in using the standard library.

Unfortunately, the software that is presented here is the result of a few iterations of design; thus,
like software that you see in some books, it is hard to depict the thought process that resulted in
the what you see here.

The mini-project started off with the requirement for a set of classes related to Institute staff and
students; hence we think immediately of Student and Lecturer. It is relatively obvious that these
have a lot in common; the common stuff can be factored into a Person class.

A Person will have set of names and an address. After a bit of thought, it becomes obvious that a
separate Address part (class) is sensible; the latter for two reasons: (i) it cuts down the size and
complexity of the Person class; (ii) an Address class will be useful if we ever need to work with
companies and other entities that need an address.

The remainder of this chapter presents the classes and test programs.

The assignment questions at the end of the chapter helps identify some of the key learning objec-
tives of this chapter.

The commentary here is kept to a minimum — this software will be the subject of many lectures
and discussions, plus an assignment.

14–1

// ---------------- Address.h ---------------------------

// j.g.c version 1.1; 2007-08-26, 2007-11-04

// ---

#ifndef ADDRESS˙H

#define ADDRESS˙H

#include ¡string¿

#include ”StringTokenizer.h”

class Address–

friend bool operator¡(const Address& lhs, const Address& rhs);

friend bool operator==(const Address& lhs, const Address& rhs);

private:

std::string num˙;

std::string street˙; // street = first line of address

std::string city˙;

std::string region˙; // county or state

std::string country˙;

public:

Address(std::string& num, std::string& street, std::string& city,

std::string& region, std::string& country);

// below = ”” does for default constructor

// which C++ wants but will never be used

Address(std::string str = ”blank,blank,blank,blank,blank”);

std::string toString() const;

˝;

#endif

14–2

// ---------------- Address.cpp ---------------------------

// j.g.c version 1.1; 2007-08-26, 2007-11-04

// ---

#include ”Address.h”

Address::Address(std::string& num, std::string& street,

std::string& city,

std::string& region, std::string& country)

: num˙(num), street˙(street), city˙(city),

region˙(region), country˙(country)–˝

Address::Address(std::string str)–

StringTokenizer st = StringTokenizer(str, ”,”);

num˙ = st.token(0);

street˙ = st.token(1); city˙ = st.token(2);

region˙ = st.token(3); country˙ = st.token(4);

˝

std::string Address::toString() const–

return num˙ + ”,” + street˙ + ”,” + city˙ + ”,”

+ region˙ + ”,” + country˙;

˝

bool operator¡(const Address& lhs, const Address& rhs)–

if(lhs.country˙==rhs.country˙)–

if(lhs.region˙==rhs.region˙)–

if(lhs.city˙==rhs.city˙)–

if(lhs.street˙==rhs.street˙)–

return lhs.num˙¡ rhs.num˙;

˝

else return lhs.street˙¡ rhs.street˙;

˝

else return lhs.city˙¡ rhs.city˙;

˝

else return lhs.region˙¡ rhs.region˙;

˝

else return lhs.country˙¡ rhs.country˙;

˝

bool operator==(const Address& lhs, const Address& rhs)–

return lhs.country˙==rhs.country˙ &&

lhs.region˙==rhs.region˙ &&

lhs.city˙==rhs.city˙ &&

lhs.street˙==rhs.street˙ &&

lhs.num˙== rhs.num˙;

˝

14–3

// ----------------- AddressT1.cpp ------------------

// j.g.c. 2007-08-27, 2007-10-04

// ---

#include ”Address.h”

#include ¡vector¿

#include ¡list¿

#include ¡iostream¿

#include ¡iterator¿

#include ¡cstdlib¿ // for rand

#include ¡sstream¿ // for ostringstream

#include ¡algorithm¿ // for sort

using namespace std;

class AddressT1 –

public:

AddressT1()–

vector¡string¿ streets = vector¡string¿();

streets.push˙back(string(”Port Road”));

streets.push˙back(string(”Pearse Road”));

streets.push˙back(string(”College Terrace”));

streets.push˙back(string(”Kingsbury”));

streets.push˙back(string(”New Street”));

vector¡string¿ cities = vector¡string¿();

cities.push˙back(string(”Newtown”));

cities.push˙back(string(”Oldtown”));

cities.push˙back(string(”Johnstown”));

cities.push˙back(string(”Hightown”));

cities.push˙back(string(”Lowtown”));

vector¡string¿ regions = vector¡string¿();

regions.push˙back(string(”Oldshire”));

regions.push˙back(string(”Newshire”));

regions.push˙back(string(”Green County”));

regions.push˙back(string(”Old County”));

vector¡string¿ countries = vector¡string¿();

countries.push˙back(string(”Ireland”));

countries.push˙back(string(”Wales”));

countries.push˙back(string(”England”));

countries.push˙back(string(”Scotland”));

vector¡Address¿ addList = vector¡Address¿();

string num, street, city, region, country;

unsigned int rnseed= 139139;

srand(rnseed); // initialise random number generator.

int n = 10;

for(int i = 0; i¡ n; ++i)–

14–4

int j = rand()%streets.size();

street = streets.at(j);

j = rand()%100;

ostringstream ossnum;

ossnum¡¡ j;

num = ossnum.str();

j = rand()%cities.size();

city = cities.at(j);

j = rand()%regions.size();

region = regions.at(j);

j = rand()%countries.size();

country = countries.at(j);

Address a = Address(num, street, city, region, country);

addList.push˙back(a);

˝

string s= string(”Rose Cottage,Lough Salt,Kilmacrennan,Donegal,Ireland”);

Address a = Address(s);

addList.push˙back(a);

cout¡¡”The address list size is: ”¡¡ addList.size()¡¡ endl;

cout¡¡ ”The address list is:”¡¡ endl;

for(int i = 0; i!= addList.size(); ++i)–

cout¡¡ addList.at(i).toString()¡¡ endl;

˝

sort(addList.begin(), addList.end());

cout¡¡”Sorted address list size is: ”¡¡ addList.size()¡¡ endl;

cout¡¡ ”Sorted address list is:”¡¡ endl;

for(int i = 0; i!= addList.size(); ++i)–

cout¡¡ addList.at(i).toString()¡¡ endl;

˝

˝

˝;

/** The main method constructs the test */

int main()–

AddressT1();

˝

14–5

// ---------------- Person.h ---------------------------

// j.g.c version 1.0; 2007-08-27, 2007-11-04

// ---

#ifndef PERSON˙H

#define PERSON˙H

#include ¡string¿

#include ”StringTokenizer.h”

#include ”Address.h”

class Person–

friend bool operator¡(const Person& lhs, const Person& rhs);

friend bool operator==(const Person& lhs, const Person& rhs);

private:

std::string firstName˙;

std::string lastName˙;

Address address˙;

public:

Person(std::string& firstName, std::string& lastName,

Address& address);

// see Address.h for comment on = ”...”

Person(std::string str =

”blankf,blankl;blanknum,blanks,blankc,blankr,blankc”);

virtual std::string toString() const;

std::string getFirstName() const;

std::string getLastName() const;

˝;

#endif

14–6

// ---------------- Person.cpp ---------------------------

// j.g.c version 1.0; 2007-08-27, 2007-11-04

// ---

#include ”Person.h”

#include ¡iostream¿

Person::Person(std::string& firstName, std::string& lastName,

Address& address)

: firstName˙(firstName), lastName˙(lastName),

address˙(address)–˝

Person::Person(std::string str)–

// first split into name ; address

StringTokenizer st1 = StringTokenizer(str, ”;”);

std::string sName = st1.token(0);

std::string sAddress = st1.token(1);

address˙ = Address(sAddress);

// now split name

StringTokenizer st2 = StringTokenizer(sName, ”,”);

firstName˙ = st2.token(0); lastName˙ = st2.token(1);

˝

std::string Person::toString() const–

return firstName˙ + ”,” + lastName˙ + ”;” + address˙.toString();

˝

std::string Person::getFirstName() const–

return firstName˙;

˝

std::string Person::getLastName() const–

return lastName˙;˝

bool operator¡(const Person& lhs, const Person& rhs)–

if(lhs.lastName˙==rhs.lastName˙)–

if(lhs.firstName˙==rhs.firstName˙)–

return lhs.address˙¡ rhs.address˙;

˝

else return lhs.firstName˙¡ rhs.firstName˙;

˝

else return lhs.lastName˙¡ rhs.lastName˙;

˝

bool operator==(const Person& lhs, const Person& rhs)–

return lhs.firstName˙==rhs.firstName˙ &&

lhs.lastName˙==rhs.lastName˙ &&

lhs.address˙ == rhs.address˙;˝

14–7

// ----------------- PersonT1.cpp ------------------

// j.g.c. 2007-08-27, 2007-11-04

// ---

#include ”Person.h”

#include ¡vector¿

#include ¡list¿

#include ¡iostream¿

#include ¡iterator¿

#include ¡cstdlib¿ // for rand

#include ¡sstream¿ // for ostringstream

#include ¡algorithm¿ // for sort

using namespace std;

class PersonT1 –

public:

PersonT1()–

vector¡string¿ firstNames = vector¡string¿();

firstNames.push˙back(string(”Seamus”));

firstNames.push˙back(string(”Sean”));

firstNames.push˙back(string(”Sharon”));

firstNames.push˙back(string(”Sinead”));

firstNames.push˙back(string(”Sarah”));

firstNames.push˙back(string(”Simon”));

vector¡string¿ lastNames = vector¡string¿();

lastNames.push˙back(string(”Bloggs”));

lastNames.push˙back(string(”Burke”));

lastNames.push˙back(string(”Blaney”));

lastNames.push˙back(string(”Bradley”));

lastNames.push˙back(string(”Brown”));

lastNames.push˙back(string(”Black”));

vector¡string¿ streets = vector¡string¿();

streets.push˙back(string(”Port Road”));

streets.push˙back(string(”Pearse Road”));

streets.push˙back(string(”College Terrace”));

streets.push˙back(string(”Kingsbury”));

streets.push˙back(string(”New Street”));

vector¡string¿ cities = vector¡string¿();

cities.push˙back(string(”Newtown”));

cities.push˙back(string(”Oldtown”));

cities.push˙back(string(”Johnstown”));

cities.push˙back(string(”Hightown”));

cities.push˙back(string(”Lowtown”));

vector¡string¿ regions = vector¡string¿();

14–8

regions.push˙back(string(”Oldshire”));

regions.push˙back(string(”Newshire”));

regions.push˙back(string(”Green County”));

regions.push˙back(string(”Old County”));

vector¡string¿ countries = vector¡string¿();

countries.push˙back(string(”Ireland”));

countries.push˙back(string(”Wales”));

countries.push˙back(string(”England”));

countries.push˙back(string(”Scotland”));

vector¡Person¿ personList = vector¡Person¿();

string num, street, city, region, country, lastName, firstName;

unsigned int rnseed= 139;

srand(rnseed); // initialise random number generator.

int n = 10, j;

for(int i = 0; i¡ n; ++i)–

j = rand()%100;

ostringstream ossnum;

ossnum¡¡ j;

num = ossnum.str();

cout¡¡ ”i = ”¡¡ i¡¡ endl;

j = rand()%streets.size();

street = streets.at(j);

j = rand()%cities.size();

city = cities.at(j);

j = rand()%regions.size();

region = regions.at(j);

j = rand()%countries.size();

country = countries.at(j);

j = rand()%firstNames.size();

firstName = firstNames.at(j);

j = rand()%lastNames.size();

lastName = lastNames.at(j);

Address a = Address(num, street, city, region, country);

cout¡¡ a.toString()¡¡ endl;

Person p = Person(firstName, lastName, a);

cout¡¡ p.toString()¡¡ endl;

personList.push˙back(p);

˝

cout¡¡ ”testing Person(std::string)”¡¡ endl;

string s = string(”James,Mulligan;Hillview,Lough Salt,Kilmacrennan,Donegal,Ireland”);

Person p(s);

personList.push˙back(p);

p = Person();

personList.push˙back(p);

14–9

cout¡¡”The Person list size is: ”¡¡ personList.size()¡¡ endl;

cout¡¡ ”The Person list is:”¡¡ endl;

for(int i = 0; i!= personList.size(); ++i)–

cout¡¡ personList.at(i).toString()¡¡ endl;

˝

sort(personList.begin(), personList.end());

cout¡¡”Sorted address list size is: ”¡¡ personList.size()¡¡ endl;

cout¡¡ ”Sorted address list is:”¡¡ endl;

for(int i = 0; i!= personList.size(); ++i)–

cout¡¡ personList.at(i).toString()¡¡ endl;

˝

cout¡¡ ”Sorted names are:”¡¡ endl;

for(int i = 0; i!= personList.size(); ++i)–

cout¡¡ personList.at(i).getLastName()¡¡ ”, ”

¡¡ personList.at(i).getFirstName()¡¡ endl;

˝

˝

˝;

/** The main method constructs the test */

int main()–

PersonT1();

˝

14–10

// ---------------- Student.h ---------------------------

// j.g.c version 1.1; 2007-08-27, 2007-11-04

// ---

#ifndef STUDENT˙H

#define STUDENT˙H

#include ¡string¿

#include ”Person.h”

class Student: public Person–

friend bool operator¡(const Student& lhs, const Student& rhs);

friend bool operator==(const Student& lhs, const Student& rhs);

private:

std::string id˙;

public:

Student(std::string& firstName, std::string& lastName,

Address& address, std::string& id);

// see Address.h for comment on = ”...”

Student(std::string str =

”blankf,blankl;blanknum,blanks,blankc,blankr,blankc;blankid”);

std::string toString() const;

string getId() const;

˝;

#endif

14–11

// ---------------- Student.cpp ---------------------------

// j.g.c version 1.1; 2007-08-27, 2007-11-04

// ---

#include ”Student.h”

#include ¡iostream¿

Student::Student(std::string& firstName, std::string& lastName,

Address& address, std::string& id)

: Person(firstName, lastName, address), id˙(id)–˝

Student::Student(std::string str) : Person(str)–

// first split into name ; address ; id

// note that Person(str) will ignore id

StringTokenizer st1 = StringTokenizer(str, ”;”);

id˙ = st1.token(2); // (0) is name, (1) is address, (2) is id

˝

std::string Student::toString() const–

return Person::toString() + ”;” + id˙;

˝

std::string Student::getId() const–

return id˙;

˝

bool operator¡(const Student& lhs, const Student& rhs)–

Person pl = Person(lhs); Person pr = Person(rhs);

if(pl == pr)–

return lhs.id˙¡ rhs.id˙;

˝

else return pl¡ pr;

˝

bool operator==(const Student& lhs, const Student& rhs)–

Person pl = Person(lhs); Person pr = Person(rhs);

return pl == pr && lhs.id˙ == rhs.id˙;

˝

14–12

// ----------------- StudentT1.cpp ------------------

// j.g.c. 2007-08-27, 2007-11-04

// ---

#include ”Student.h”

#include ¡vector¿

#include ¡list¿

#include ¡iostream¿

#include ¡iterator¿

#include ¡cstdlib¿ // for rand

#include ¡sstream¿ // for ostringstream

#include ¡algorithm¿ // for sort

#include ¡fstream¿ // for files - ofstream, ifstream

using namespace std;

bool cmp0(const Student& s1, const Student& s2)–

return s1.getId()¡ s2.getId();

˝

class StudentT1 –

public:

StudentT1()–

vector¡string¿ firstNames = vector¡string¿();

firstNames.push˙back(string(”Seamus”));

// etc. same as PersonT1.cpp

vector¡Student¿ sList = vector¡Student¿();

string num, street, city, region, country, lastName, firstName;

unsigned int rnseed= 139;

srand(rnseed); // initialise random number generator.

int n = 10, j;

string id1(”L200702”);

for(int i = 0; i¡ n; ++i)–

j = rand()%100;

ostringstream ossnum;

ossnum¡¡ j;

num = ossnum.str();

cout¡¡ ”i = ”¡¡ i¡¡ endl;

j = rand()%streets.size();

street = streets.at(j);

j = rand()%cities.size();

city = cities.at(j);

j = rand()%regions.size();

region = regions.at(j);

j = rand()%countries.size();

country = countries.at(j);

j = rand()%firstNames.size();

14–13

firstName = firstNames.at(j);

j = rand()%lastNames.size();

lastName = lastNames.at(j);

Address a = Address(num, street, city, region, country);

cout¡¡ a.toString()¡¡ endl;

int k = i + 10;

ostringstream ossid;

ossid¡¡ id1¡¡ k;

string id = ossid.str();

Student st = Student(firstName, lastName, a, id);

sList.push˙back(st);

˝

string s =

string(”James,Mulligan;Hillview,Lough Salt,Kilmacrennan,Donegal,Ireland;L200799”);

Student st(s);

sList.push˙back(st);

s = string(

”James,Mulligan;Hillview,Lough Salt,Kilmacrennan,Donegal,Ireland;L200789”);

Student st1(s);

sList.push˙back(st1);

st = Student();

sList.push˙back(st);

cout¡¡”The Student list size is: ”¡¡ sList.size()¡¡ endl;

cout¡¡ ”The Student list is:”¡¡ endl;

for(int i = 0; i!= sList.size(); ++i)–

cout¡¡ sList.at(i).toString()¡¡ endl;

˝

sort(sList.begin(), sList.end());

cout¡¡”Sorted list size is: ”¡¡ sList.size()¡¡ endl;

cout¡¡ ”Sorted list is:”¡¡ endl;

for(int i = 0; i!= sList.size(); ++i)–

cout¡¡ sList.at(i).toString()¡¡ endl;

˝

// now using alternative compare

sort(sList.begin(), sList.end(), cmp0);

cout¡¡ ”Student list sorted by student id. is:”¡¡ endl;

for(int i = 0; i!= sList.size(); ++i)–

cout¡¡ sList.at(i).toString()¡¡ endl;

˝

vector¡Person*¿ ppList = vector¡Person*¿();

Person *pp;

for(int i = 0; i!= sList.size(); ++i)–

pp = &sList.at(i);

ppList.push˙back(pp);

˝

14–14

string s1 = string(

”Jim,Dillon;10,Fourth Avenue,Raphoe,Donegal,Ireland;L200791”);

Person p(s1);

ppList.push˙back(&p);

cout¡¡”The Person pointer list size is: ”¡¡ sList.size()¡¡ endl;

cout¡¡ ”The Person pointer (contents) list is:”¡¡ endl;

for(int i = 0; i!= ppList.size(); ++i)–

cout¡¡ ppList.at(i)-¿toString()¡¡ endl;

˝

cout¡¡ ”“nSave that vector to a file“n”¡¡ endl;

ofstream fileout(”students.dat”);

if(!fileout)–

cerr¡¡ ”cannot open file ¡students.dat¿ for writing“n”;

exit(-1);

˝

for(unsigned int i=0; i¡ sList.size(); i++)–

fileout¡¡ sList[i].toString();

fileout¡¡ endl;

˝

fileout.close();

cout¡¡ ”“n... and read some of them back“n”¡¡ endl;

vector¡Student¿ v4;

ifstream filein(”students.dat”);

if(!filein)–

cerr¡¡ ”cannot open file ¡students.dat¿ for reading“n”;

exit(-1);

˝

string str1;

for(unsigned int i=0; i¡ 5; i++)–

getline(filein, str1);

v4.push˙back(Student(str1));

˝

filein.close();

for(unsigned int i = 0; i¡ v4.size(); i++)–

cout¡¡ v4[i].toString()¡¡ endl;

˝

˝

˝;

/** The main method constructs the test */

int main()–

StudentT1();

˝

14–15

Assignment 4, Deadline Mon. 19th November 2007, 3.30pm. Demonstrations must be
completed by 19th Nov., at 3.00pm. Worth 20% of CA.

1. Compile, link and execute AddressT1.cpp.

[10 marks]

Demonstration 100% of marks.

2. Compile, link and execute PersonT1.cpp.

[10 marks]

Demonstration 100% of marks.

3. Compile, link and execute StudentT1.cpp.

[10 marks]

Demonstration 100% of marks.

4. Virtual functions.

(a) Remove the virtual qualifier from toString() in Person.h and Student.h. Recom-
pile, link and execute StudentT1.cpp.

[10 marks]

Demonstration 100% of marks.

(b) There should be a discrepancy between the Person pointer (contents) list in (a) and the
one in 3. above. Include a printout of the two lists and explain the difference.

[10 marks]

14–16

5. Your own test program for Student.

(a) Write your own test program StudentT2.cpp for Student. You should avoid my auto-
mated test data generation and use instructions like those below

string s =

string(”James,Mulligan;19, First Road,Kilmacrenan,Donegal,Ireland;L200799”);

Student st(s);

sList.push˙back(Student st(s));

In addition to using the constructor

Student(std::string str =

”blankf,blankl;blanknum,blanks,blankc,blankr,blankc;blankid”);

you should asl show examples of use of the constructor

Student(std::string& firstName, std::string& lastName,

Address& address, std::string& id);

There should be at least eight (8) students in your list. Demonstration.

[20 marks]

(b) Commented printout of StudentT2.cpp in hand-in report.

[20 marks]

(c) Commented printout of lists before and after sorting in hand-in report.

[20 marks]

6. (a) Copy LecturerT1.cpp to LecturerT2.cpp and use vector rather than list. Compile
and execute. Demonstration.

[20 marks]

(b) Add code to LecturerT2.cpp to sort the vector and print out the sorted list. Demon-
stration.

[20 marks]

(c) Add code to LecturerT2.cpp to sort the vector according to office number ; print out
the sorted list. See StudentT1 for a closely related example. Demonstration.

[20 marks]

(d) Commented printout of relevant parts of LecturerT2.cpp in the hand-in report.

[20 marks]

(e) Commented printout of the unsorted and sorted tables in hand-in report.

[20 marks]

14–17

7. Now you are going to write an address book program.

(a) First we need a class Contact; Contact inherits from Person, just like Student and
Lecturer.

Contact should have instance variables for email address and for telephone number. It
should have == and ¡ operators; the ¡ operator should take account of email address if
the other fields are equal.

Include properly commented Contact.h and Contact.cpp in your hand-in report.

[50 marks]

(b) Write a test program AddressBook.cpp that tests Contact just like StudentT1.cpp
or StudentT2.cpp. The test program must demonstrate:

(o) Basic test program;

(i) Sorting according to the == and ¡ operators;

(ii) Sorting according to a compare function that compares Contact entries based on
their telephone number; see cmp0 in StudentT1.cpp and its use there.

(iii) Writing to file;

(iv) Reading from file;

(v) Reading from a file when the program starts; use command line arguments; i.e.
¿¿prog addlist.txt reads addlist.txt into a vector.

Demonstration

[6× 10 = 60 marks]

(c) Include a properly commented AddressBook.cpp in your hand-in report.

[50 marks]

(d) Include a UML diagram showing the relationship between AddressBook, Contact,
Person, and Address your hand-in report.

[20 marks]

14–18

Bibliography

Alexandrescu, A. (2001). Modern C++ Design, Addison Wesley.

Blanchette, J. & Summerfield, M. (2008). C++ GUI Programming with Qt7, 2nd edn, Prentice
Hall. ISBN: 0-13-235416-0.

Bornat, R. (1987). Programming from First Principles, Prentice-Hall.

Budd, T. (1997a). Data Structures in C++ Using the Standard Template Library, Addison Wesley.

Budd, T. (1997b). An Introduction to Object-oriented Programming, 2nd edn, Addison Wesley.

Budd, T. (1999a). C++ for Java Programmers, Addison Wesley.

Budd, T. (1999b). Understanding Object-oriented Programming with Java, (updated for Java 2),
Addison-Wesley.

Campbell, J. (2009). Algorithms and Data Structures for Games Programmers, Technical report,
Letterkenny Institute of Technology. URL. http://www.jgcampbell.com/adsgp/.

Cline, M., Lomow, G. & Girou, M. (1999a). C++ FAQs 2nd ed., 2nd edn, Addison Wesley.

Cline, M., Lomow, G. & Girou, M. (1999b). C++ FAQs 2nd ed., 2nd edn, Addison Wesley.

Czarnecki, K. & Eisenecker, U. (2000). Generative Programming, Addison Wesley.

Dawson, M. (2004). Beginning Game Programming, Thompson Course Technology. ISBN: 1-
59200-206-6.

Dewhurst, S. C. (2003). C++ Gotchas: Avoiding Common Problems in Coding and Design,
Addison Wesley.

Dewhurst, S. C. (2005). C++ Common Knowledge : Essential Intermediate Programming, Addi-
son Wesley. ISBN: 0-321-32192-8.

Dickheiser, M. J. (2007). C++ for Game Programmers, 2nd edn, Charles River Media. ISBN:
1-58450-452-8. This is the second edition of a first edition by Llopis.

Eckel, B. (2000). Thinking in C++, vol. 1, Prentice Hall.

Eckel, B. (2003). Thinking in C++, vol. 2, Prentice Hall.

Fitzgerald, J. & Larsen, P. (1998). Modelling Systems: Practical Tools and Techniques in Software
Development, Cambridge University Press.

Freeman, E. & Freeman, E. (2004). Head First Design Patterns, O’Reilly. ISBN: 0-596-00712-4.

14–1

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995). Design Patterns: Elements of Reusable
Object-oriented Software, Addison-Wesley.

Glassborow, F. (2006). You Can Program in C++, Wiley. ISBN: 0-470-01468-7.

Harbison, S. & Steele, G. (2005). C: a Reference Manual, 5th edn, Prentice-Hall.

Horstmann, C. (2005). Java Concepts, 4th edn, Wiley.

Horstmann, C. (2006). Object Oriented Design and Patterns, 2nd edn, Wiley.

Horstmann, C. (accessed 2006-08-28b). Moving from java to c++. online:
http://horstmann.com/ccj2/ccjapp3.html.

Horstmann, C. (accessed 5006-08-28a). C++ pitfalls. online:
http://horstmann.com/cpp/pitfalls.html.

Horstmann, C. & Budd, T. (2005). Big C++, Wiley.

Josuttis, N. (1999). The C++ Standard Library, Addison Wesley.

Karlsson, B. (2006). Beyond the C++ Standard Library: An Introduction to Boost, Addison
Wesley.

Kernighan, B. & Ritchie, D. (1988). The C Programming Language, Prentice-Hall. This is the
best book on C. However, it used to be thought that the best way to learn C++ was to learn
C first; it isn’t thought any more. Don’t do it that way.

Koenig, A. & Moo, B. (2000). Accelerated C++, Addison-Wesley.

Lippman, S. B. (2005). C++ Primer (4th Edition), 4th edn, Addison Wesley.

Lischner, R. (2003). C++ in a Nutshell, O’Reilly. ISBN: 0-596-00298-X.

Louden, K. (1993). Programming Languages: Principles and Practice, PWS-Kent Publishing
Company.

Maguire, S. (1993). Writing Solid Code, Microsoft Press.

McConnell, S. (2004). Code Complete, Second Edition, Microsoft Press.

McShaffry, M. (2005). Game coding complete, 2nd edn, Paraglyph Press. ISBN: 1932111913.

Meyer, B. (1996). An introduction to design by contract, Technical report, Interactive Software
Engineering, inc. Available from www.eiffel.com.

Meyers, S. (1996). More Effective C++: 35 New Ways to Improve Your Programs and Designs.,
Addison-Wesley.

Meyers, S. (2001). Effective STL, Addison-Wesley.

Meyers, S. (2005). Effective C++: 55 Specific Ways to Improve Your Programs and Designs, 3rd
edn, Addison Wesley.

Mitchell, R. & McKim, J. (2002). Design by Contract – by example, Addison Wesley.

O’Luanaigh, P. (2006). Game Design Complete, Paraglyph Press. ISBN: 1-93309700-0.

14–2

Penton, R. (2003). Data Structures for Games Programmers, Premier Press / Thompson Course
Technology. ISBN: 1-931841-94-2.

Reese, G. (2007). C++ Standard Library Practical Tips, Charles River Media. ISBN: 1-58450-
400-5.

Romanik, P. & Muntz, A. (2003). Applied C++: practical techniques for building better software,
Addison Wesley. ISBN: 0321108949.

Sethi, R. (1996). Programming Languages: Concepts and Constructs, Addison-Wesley.

Smart, J. & Csomor, S. (2005). Cross-platform GUI programming with WxWidgets, Prentice Hall.
ISBN: 0131473816.

Stroustrup, B. (1997a). The C++ Programming Language, 3rd edn, Addison-Wesley.

Stroustrup, B. (1997b). The C++ Programming Language, 3rd ed., 3rd edn, Addison-Wesley.

Stroustrup, B. (2009). Programming: Principles and Practice using C++, Addison-Wesley. ISBN:
0-321-54372-6.

Sutter, H. (1999). Exceptional C++, Addison Wesley.

Sutter, H. (2002). More Exceptional C++: 40 More Engineering Puzzles, Programming Problems,
and Solutions, Addison Wesley.

Sutter, H. (2004). Exceptional C++ style, Addison Wesley. ISBN: 0201760428.

Sutter, H. & Alexandrescu, A. (2005). C++ Coding Standards : 101 Rules, Guidelines, and Best
Practices, Addison Wesley. ISBN: 0-321-11358-6.

Tennent, R. (2002). Specifying Software, Cambridge University Press.

Vlissides, J. (1998). Pattern Hatching: Design Patterns Applied, Addison-Wesley.

Wilson, M. (2004). Imperfect C++, Addison Wesley. ISBN: 0321228774.

–3

Appendix A

Where do procedural programs come from?

A.1 Introduction

At this stage, some of you may think that designing and writing programs is some sort of God-given
talent and that programs spring fully formed from the fingers of a chosen few. This opinion may
be confirmed by the fact that, in books and in notes, you see only finished working programs.

In another chapter we will take a quick look at object-oriented analysis and design. In this chapter
we look at one way of deriving (procedural) programs by appropriate analysis of the requirements
leading to a design.

For certain types of problem, one way is to make your program follow the same structure as your
input or output data. (When the structures of output data differs from that of input data, there is
a little more work to be done, but we won’t worry about that here.) An example is that if we were
writing a program to process student marks, we would expect to see a for loop over all students
and inside that a for loop over all assessment items (courseworks and examination results).

Here, we look at a problem which has only output data: patterns on a screen. If we look at patterns
in data, we may be able to identify:

• Sequence;

• Selection;

• Repetition.

Any program can be constructed from these three.

In addition, based on groupings of patterns and repetitions of these groupings, we may identify the
need for:

• Procedures, (methods, functions, subprograms);

• Procedures with parameters.

A–1

During the lectures we will discuss the analogies between certain computer program structures
and cookery recipes. We will show that cookery recipes are frequently composed of patterns
involving: sequence, selection, repetition, subprograms (recipes within a recipe), and subprograms
with parameters (for example a sauce recipe which can be changed by supplying different colours
or different flavours).

See Figure A.1 below.

A–2

Figure A.1: Computer programs have much in common with recipes (recipes from B. Nilsson, The
Penguin Cookery Book)

A–3

A.2 Patterns and Programs

Write a program to display the following.

* *

* *

* *

* *

**

Next, make it general enough to take a parameter h (height); the example has h = 5. We’re going
build up to it — which is sometimes a great way to solve a large problem by chipping away at it
until it gets smaller and smaller and finally solved.

Note, however that by chipping away I do not mean typing some rubbish and then altering random
parts until it works — which is never. If you ever find yourself or anyone else taking this approach,
shout stop! and go for help.

//----- Stars1.cpp ---------------------------------

// j.g.c. 2003/11/29

// prints single ’*’ on screen

//--

#include ¡iostream¿

using namespace std;

int main()

–

cout¡¡ ’*’;

cout¡¡ ’“n’;

return 0;

˝

A–4

A.3 Sequence

Now, print: *****

//----- Line5.cpp ---------------------------------

// j.g.c. 2003/11/29

// prints 5 ’*’ line on screen

//--

#include ¡iostream¿

using namespace std;

int main()

–

cout¡¡ ’*’;

cout¡¡ ’*’;

cout¡¡ ’*’;

cout¡¡ ’*’;

cout¡¡ ’*’;

cout¡¡ ’“n’;

return 0;

˝

Here is Line5.cpp formatted differently — to show that the program replicates the pattern of the
data.

//----- Line51.cpp ---------------------------------

// j.g.c. 2003/11/29

// prints 5 ’*’ line on screen

// now formatted to show similarity between data pattern

// and program pattern

//--

#include ¡iostream¿

using namespace std;

int main()

–

cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’*’;

cout¡¡ ’“n’;

return 0;

˝

A–5

A.4 Repetition

//----- Line5r.cpp ---------------------------------

// j.g.c. 2003/11/29

// prints 5 ’*’ line on screen

// now using repetition to replace a sequence

//--

#include ¡iostream¿

using namespace std;

int main()

–

int n= 5;

for(int i= 0; i¡ n; i++)–

cout¡¡ ’*’;

˝

cout¡¡ ’“n’;

return 0;

˝

A.4.1 Sequence of Repetitions

//----- Tr1.cpp ---------------------------------

// j.g.c. 2003/11/29

// prints a backwards facing triangle

//*

//**

//***

//****

//*****

// Analysis:

// Stars

// Line 0: 1

// 1: 2

// 2: 3 etc...

//--

#include ¡iostream¿

using namespace std;

int main()

–

int n= 1;

for(int i= 0; i¡ n; i++)–

cout¡¡ ’*’;

˝

cout¡¡ ’“n’;

A–6

n= 2;

for(int i= 0; i¡ n; i++)–

cout¡¡ ’*’;

˝

cout¡¡ ’“n’;

n= 3;

for(int i= 0; i¡ n; i++)–

cout¡¡ ’*’; //etc ...

˝

A–7

A.4.2 Repetitions of Repetitions — Nested Loops

We can improve a lot on Tr1.java.

//----- Tr1r.cpp ---------------------------------

// j.g.c. 2003/11/29

// prints a backwards facing triangle

//*

//**

//***

//****

//*****

// Analysis:

// Stars

// Line 0: 1

// 1: 2

// 2: 3 etc...

// i.e. generalising

// Line j j stars

//--

#include ¡iostream¿

using namespace std;

int main()

–

int maxj= 5;

for(int j= 1; j¡= maxj; j++)–

//----- this loop does the stars

for(int i= 0; i¡ j; i++)–

cout¡¡ ’*’;

˝ //------

cout¡¡ ’“n’; // and newline after every line

˝

return 0;

˝

A–8

Data Pattern — Program Pattern

//----- Tr2.cpp ---------------------------------

// j.g.c. 2003/11/29

// this is Tr1r.cpp written with the repetitions translated

// to their sequence meaning; can you see that the program

// has the same pattern as the data?

//*

//**

//***

//****

//*****

//--

#include ¡iostream¿

using namespace std;

int main()

–

cout¡¡ ’*’; cout¡¡ ’“n’;

cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’“n’;

cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’“n’;

cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’“n’;

cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’“n’;

return 0;

˝

A–9

A.5 Procedures — aka Subprograms, Methods, . . . Functions

A.5.1 Without Parameters

//----- Tr2p.cpp ---------------------------------

// j.g.c. 2003/11/29

// this is Tr2 (or Tr1r) now written with procedures

//--

#include ¡iostream¿

using namespace std;

void nl()–

cout¡¡ ’“n’;

˝

void p1()–

cout¡¡ ’*’;

˝

void p2()–

cout¡¡ ’*’; cout¡¡ ’*’;

˝

void p3()–

cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’*’;

˝

void p4()–

cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’*’;

˝

void p5()–

cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’*’; cout¡¡ ’*’;

˝

int main()

–

p1(); nl();

p2(); nl();

p3(); nl();

p4(); nl();

p5(); nl();

return 0;

˝

Question. When does it make sense to create a procedure?

A–10

A.5.2 Procedures with Parameters

//----- Tr3r.cpp ---------------------------------

// j.g.c. 2003/11/29

// this is Tr2p now written with parameterised functions

// and repetitions

//--

#include ¡iostream¿

using namespace std;

void nl()–

cout¡¡ ’“n’;

˝

void stars(int n)–

for(int i= 0; i¡ n; i++)–

cout¡¡ ’*’;

˝

˝

void spaces(int n)–

for(int i= 0; i¡ n; i++)–

cout¡¡ ’ ’;

˝

˝

int main()

–

int height= 5;

for(int j= 1; j¡= height; j++)–

stars(j);

nl();

˝

return 0;

˝

Exercise: change h and see if it generalizes okay.

A–11

Equipped with these procedures, we are now in business, and can create nearly any pattern in very
quick time. The little bit of investment in designing and implementing procedures will pay back in
a major way. The same is true of spending time designing, implementing, and testing OOP classes
(objects); once you have a good library of classes, you can produce new programs in no time. In
the games context, I suppose the next stage would be game engine — once you have a good game
engine, creation of a new game is easy ;-).

//----- Tr4.cpp ---------------------------------

// j.g.c. 2003/11/29

// now onto something more complex; see Tr3r.cpp

//*****

//****

//***

//**

//*

// Analysis:

// Stars

// Line 0 5

// 1 4

// 2 3

// etc ...

// Generalising: let h be height

// Line j no. stars = h -j

//--

#include ¡iostream¿ using namespace std;

void nl()– cout¡¡ ’“n’; ˝

void stars(int n)–

for(int i= 0; i¡ n; i++)–

cout¡¡ ’*’;

˝ ˝

void spaces(int n)–

for(int i= 0; i¡ n; i++)–

cout¡¡ ’ ’;

˝ ˝

// notice how little change from Tr3r.java, just //1, //2

int main()–

int h= 5;

for(int j= 0; j¡ h; j++)– //1

stars(h - j); //2

nl();

˝

return 0;

˝

Exercise: Change h and see if it generalizes okay.

A–12

Now, getting more difficult . . .

//----- Tr5.cpp ---------------------------------

// j.g.c. 2003/11/29

// getting more difficult still; see Tr4.cpp

// *

// **

// ***

// ****

//*****

// Analysis:

// Spaces Stars

// Line 0 4 1

// 1 3 2

// 2 2 3

// etc ...

// Generalising: let h be height

// Line j h - 1 - j j + 1

//--

#include ¡iostream¿

using namespace std;

void nl()–

cout¡¡ ’“n’;

˝

void stars(int n)–

for(int i= 0; i¡ n; i++)–

cout¡¡ ’*’;

˝

˝

void spaces(int n)–

for(int i= 0; i¡ n; i++)–

cout¡¡ ’ ’;

˝

˝

int main()

–

int h= 5;

for(int j= 0; j¡ h; j++)–

spaces(h - 1 - j);

stars(j + 1);

nl();

˝

return 0;

˝

A–13

Exercise: Based on Tr5.cpp, analyse, design and implement a program to do:

**

*

A–14

//----- Tr10.cpp ---------------------------------

// j.g.c. 2003/11/29

// getting more difficult again; see Tr5.cpp

// Spaces Stars

//************ 0 12

// ********** 1 10

// ******** 2 8

// ****** 3 6

// **** 4 4

// ** 5 2

// Let h be height and count from 0

// Spaces Stars

// Line 0 0 h*2

// 1 1 (h-1)*2

// 2 2 (h-2)*2

// etc...

// Generalise: line j: j spaces, (h-j)*2 stars

//--

#include ¡iostream¿

using namespace std;

void nl()–

cout¡¡ ’“n’;

˝

void stars(int n)–

for(int i= 0; i¡ n; i++)–

cout¡¡ ’*’;

˝

˝

void spaces(int n)–

for(int i= 0; i¡ n; i++)–

cout¡¡ ’ ’;

˝

˝

int main()

–

int h= 5;

for(int j= 0; j¡ h; j++)–

spaces(j);

stars((h-j)*2);

nl();

˝

return 0;

˝

Exercise: In Tr10.java, change h and see if it works okay.

A–15

//----- Tr20.cpp ---------------------------------

// j.g.c. 2003/11/29

// finally, we get to the original problem.

// from Tr10.java

// Analysis

// Sp1 St Sp2 St

//

//* * 0 1 8 1

// * * 1 1 6 1

// * * 2 1 4 1

// * * 3 1 2 1

// ** 4 1 0 1

// And let’s generalise (height= h) & count from 0

// Sp1 Sp2

// Line 0: 0 (h-1)*2

// 1: 1 (h-2)*2

// 2: 2 (h-3)*2 etc.

// ---------------------

// i.e.

// Line j: j (h-j-1)*2

//--

#include ¡iostream¿ using namespace std;

void nl()– cout¡¡ ’“n’; ˝

void stars(int n)–

for(int i= 0; i¡ n; i++)–

cout¡¡ ’*’;

˝ ˝

void spaces(int n)–

for(int i= 0; i¡ n; i++)–

cout¡¡ ’ ’;

˝ ˝

int main() –

int h= 5;

for(int j= 0; j¡ h; j++)–

spaces(j);

stars(1);

stars((h-j-1)*2);

stars(1);

nl();

˝

return 0;

˝

Exercise: In Tr20.java, change h and see if it works okay.

A–16

A.6 Selection

//----- Tr10sel.cpp ---------------------------------

// j.g.c. 2003/11/29

// as Tr10.java, but selecting stars, stripes

//************

// ----------

// ********

// ------

// ****

// --

//--

#include ¡iostream¿

using namespace std;

void nl()–

cout¡¡ ’“n’;˝

void stars(int n)–

for(int i= 0; i¡ n; i++)–

cout¡¡ ’*’;

˝ ˝

void dashes(int n)–

for(int i= 0; i¡ n; i++)–

cout¡¡ ’-’;

˝

˝

void spaces(int n)–

for(int i= 0; i¡ n; i++)–

cout¡¡ ’ ’;

˝

˝

int main()–

int h= 6;

for(int j=0; j¡ h; j++)–

spaces(j);

if(j%2==0)stars((h-j)*2); // even number if remainder of j/2 == 0

else dashes((h-j)*2);

nl();

˝

return 0;

˝

A–17

A.7 Exercises

1. Write a C++ Program to display an arbitrary filled rectangle of *s – specified by h(eight) and
w(idth);

2. Write a C++ Program to display a rectangle outline, 5× 5.

3.(a) Write a C++ function, printHexDigit(int n) which will print a Hexadecimal digit — 0,
1, . . . 9, 10 (A), . . . 15 (F) as follows. Design your own font for 3 onwards.

***** * ***** *****

* ** * * *

* * * * ***** *****

** * * * *

***** * ***** *****

(b) If you were writing programs that needed to generate sequences of these digits, can you think
of additional procedures that would be useful, or would you make do with stars, dashes, spaces,
and nl that we already have.

4. Having a nice library of procedures saves programming time (designing the program, typing,
. . .) for programmers. Can you think of any other benefits? Hint: (i) what do you do after you
have written what you think is a correct program? (ii) will a program that has procedures like
one, two, etc. be more or less understandable by a human than one constructed from just stars,
dashes, spaces, and nl? (iii) will a program that has procedures like one, two, etc. have more
or less source lines than on constructed from stars, dashes, spaces, and nl.

A–18

Appendix B

Analysis of Algorithms

This chapter is a slight modification of notes provided by Robert Lyttle of Queen’s University
Belfast.

In considering the trade-offs among alternative solutions to problems, an important factor is the
efficiency. Efficiency, in this context, is measured in terms of memory use and time taken to
complete the task. Time is measured by the number of elementary actions carried out by the
processor in such an execution. In the interests of brevity, this course discusses only time efficiency.

It should be noted that there is often a trade-off between time an memory; often, you can buy
time performance (speed) by using extra memory.

It is difficult to predict the actual computation time of an algorithm without knowing the intimate
details of the underlying computer, the object code generated by the compiler, and other related
factors. But we can measure the time for a given algorithm, language compiler and computer
system by means of some carefully designed performance tests known as benchmarks.

It is also helpful to know the way the running time will vary or grow as a function of the problem
size — a function of the number of elements in an array, the number of records in a file, and so
forth. Programmers sometimes discover that programs that have run in perfectly reasonable time
for the small test sets they have used, take extraordinarily long when run with real world sized data
sets or files. These programmers were deceived by the growth rate of the computation.

For example, it is common to write programs whose running time varies with the square of the
problem size. Thus a program taking, say, 1 second to sort a list of 1000 items will require not
two (2), but four (4) seconds for a list of 2000 items. Increasing the list size by a factor of 10, to
10,000 items, will increase the run-time to 102 = 100 seconds. A list 100,000 items will require
10,000 (104) seconds, or about 3 hours, to complete. Finally, 1,000,000 items (e.g. a telephone
directory for a small country) will need 106 seconds (almost two weeks) to finish! This is a long
time compared to the one second taken by the 1000 item test.

This example shows that it makes sense to be able to analyse growth rates and to be able to
predict (even roughly) what will happen when the problem size gets large.

B–1

B.1 O Notation (Big-oh)

Algorithmic growth rates are expressed as formulae which give the computation time in terms of
the problem size N. It is usually assumed that system dependent factors, such as the programming
language, compiler efficiency and computer speed, do not vary with the problem size and so can
be factored out.

Discussions of growth rate normally use the Big-oh notation (growth rate, order of magnitude).

The most common growth rates we will encounter are the following:

• O(1), or constant;

• O(logN), or logarithmic (logarithm usually taken to the base 2);

• O(N), or linear (directly proportional to N);

• O(N logN), pronounced N log N;

• O(N2), or quadratic (proportional to the square of N).

The table that follows shows the value of each of these functions for a number of different values
of N. It shows that as N grows, logN remains quite small with respect to N and N logN grows
fairly rapidly, but not nearly as large as N2.

In (Campbell 2009) we will see that simple searching grows as O(N) (linear), but a binary search
grows as O(logN). We also see that most good sorting algorithms have a growth rate of
O(N logN) and that the slower, more obvious, ones are O(N2).

log2(N) N N log2 N Nˆ2 2ˆN N!

0 1 0 1 20.000E-1 10.000E-1

1 2 20.000E-1 4 40.000E-1 20.000E-1

2 4 80.000E-1 16 16.000E+0 24.000E+0

3 8 24.000E+0 64 25.600E+1 40.320E+3

4 16 64.000E+0 256 65.536E+3 20.923E+12

5 32 16.000E+1 1024 42.950E+8 26.313E+34

6 64 38.400E+1 40.960E+2 18.447E+18 12.689E+88

7 128 89.600E+1 16.384E+3 34.028E+37 38.562E+214

8 256 20.480E+2 65.536E+3 11.579E+76 *

9 512 46.080E+2 26.214E+4 13.408E+153 *

10 1024 10.240E+3 10.486E+5 * *

11 2048 22.528E+3 41.943E+5 * *

12 4096 49.152E+3 16.777E+6 * *

13 8192 10.650E+4 67.109E+6 * *

14 16384 22.938E+4 26.844E+7 * *

15 32768 49.152E+4 10.737E+8 * *

16 65536 10.486E+5 42.950E+8 * *

* too large to be computed in a double variable

aEp means a x 10ˆp

B–2

B.2 Estimating the Growth Rate of an Algorithm

In estimating performance we can take advantage of the fact that algorithms are developed in a
structured way — that is, they combine simple statements into complex blocks in four useful ways:

• sequence, or writing one statement below the other;

• selection, or the well known if-then or if-then-else;

• repetition, including counting loops, while loops, etc.;

• method calls.

In the rest of this section, some typical algorithm structures are considered and their O() estimated.
The problem size is denoted by N throughout.

B.2.1 Simple Statements

An assignment statement is an example of a simple statement. If we assume that the statement
contains no method calls (whose execution time may, of course, vary with problem size), the
statement takes a fixed a mount of time to execute. This type of performance is denoted by O(1)
because when we factor out the constant execution time we are left with one.

Sequence of Simple Statements

A sequence of simple statements obviously takes an amount of time equal to the sum of the times
it takes each individual statement to execute. If the performances of the individual statements are
O(1), then so is that of the sum.

B.2.2 Decision

When estimating performance, the then clause and the else clause of a conditional structure are
considered to be independent, arbitrary structures in their own right. Then the larger of the two
individual big-Ohs is taken to be the big-Oh of the decision.

A variation of the decision structure is the switch structure, really just a multi-way if-then-else.
Thus in estimating performance of a switch, we just take the largest big-Oh of all of the switch
alternatives.

Performance estimation can sometimes get a bit tricky. For example, the condition tested in a
decision may involve a method call, and the timing of the method call may itself vary with problem
size.

B–3

B.2.3 Counting Loop

A counting loop is a loop in which the counter is incremented (or decremented) each time the
loop is iterated. This is different from some loops we shall consider later, where the counter is
multiplied or divided by a given value.

If the body of a simple counting loop contains only a sequence of simple statements, then the
performance of the loop is just the number of times the loop iterates. If the number of times the
loop iterates is constant — i.e. independent of the problem size — then the performance of the
whole loop is O(1). An example of such a loop is:

for (int i = 0; i ¡ 5; i++)–

statements with O(1)

˝

On the other hand if the loop is something like:

for (int i = 0; i ¡ N; i++)–

statements with O(1)

˝

the number of times the loop iterates depends on N, so the performance is O(N).

Discussion of Single Loop – O(n) Consider the following code in which the individual state-
ments/instructions are numbered:

int sum=0; //s1

//s2 //s3 //s4

for (int i = 0; i ¡ N; i++)–

sum++; //s5

˝

Here, s1, and s2 are performed only once; s3, s4 and s5 are performed N times. Hence, associating
a time tj with instruction j , we have:

ttot = t1 + t2 + N(t3 + t4 + t5)

Normally, it will be the case that s5 will be the most expensive; however, just to be fair, let us
assume that all instructions take the same time – 1 unit, e.g. 1 microsecond. Let us see how ttot
behaves as N get large.

N Ttot

1 5

10 32

100 302

1000 3002

B–4

Hence, we see that it is the term N(t3 + t4 + t5) which becomes dominant for large N. In other
words, we can write:

ttot = cN + negligible terms

and that the algorithm has a running time of O(n).

Consider the double counting loop:

for (int i = 0; i ¡ N; i++)–

for (int j = 0; j ¡ N; j++)–

statements with O(1)

˝

˝

The outer loop is iterated N times. But the inner loop iterates N times for each time the outer
loop iterates, so the body of the inner loop will be iterated N × N times, and the performance of
the entire structure is O(N2).

The next structure:

for (int i = 0; i ¡ N; i++)–

for (int j = 0; j ¡ i; j++)–

statements with O(1)

˝

˝

looks deceptively similar to that of the previous loop. Again, the outer loop iterates N times. But
this time the inner loop depends on the value of i (which depends on N): if i = 1, the inner loop
will be iterated once, if i = 2 it will be iterated twice, and so on, so that, in general, if i = N,
the inner loop will iterate N times. How many times, in total, will the body of the inner loop be
iterated? The number of times is given by the sum:

0 + 1 + 2 + 3 ++ (N − 2) =
�N−2
i=1 i

Noting that
�N
i=1 i =

(N+1)N
2 , the summation above is equivalent to (N−2)(N−1)2 = N2−3N+2

2 . The
performance of such a structure is said to be O(N2), since for large N the contributions of the 3N2
and 22 terms are negligible.

As a general rule: a structure with k nested counting loops — loops where the counter is just
incremented (or decremented) by 1 — has performance O(Nk) if the number of times each loop
is iterated depends only on the problem size. A growth rate of O(Nk) is called polynomial.

In (Campbell 2009) we will show that simple divide-and-conquer algorithms like binary search grow
as logN.

B–5

	Introduction
	Scope
	Recommended Reading
	Programming and Object-oriented Programming through C++
	Games Software Engineering
	General Software Engineering
	Design Patterns
	The C Programming Language
	Games Programming using C++
	Cross Platform Windows Programming
	Specification and Correctness

	Plan for the course

	Tutorial Introduction to C++
	Get Started
	Your First C++ Program

	Variables and Arithmetic
	Do While
	Exceptions
	For Loop
	Symbolic Constants and the Preprocessor
	Character Input and Output
	File copying
	Character counting
	Line Counting
	Word Counting

	Arrays
	Functions in more detail
	Declaration of functions
	Program Split into Modules

	Creation of Executables
	Some Basics -- Compiling and Linking
	Other Libraries
	Static versus Shared Libraries
	Make and Makefile
	Interpreted Languages
	Java --- Compiler AND Interpreter
	Java --- Dynamic Linking
	Java Enterprise Edition (J2EE) and .NET
	Ultimately, All Programs are Interpreted

	Summary

	Variables, Types, etc. in C++
	Introduction
	Variable names
	Elementary Data Types and Sizes
	Integer types
	Floating-point types
	Implementation Dependencies

	References
	Arrays
	Pointers
	Introduction
	Declaration / Definition of Pointers
	Referencing and Dereferencing Operators
	Pointers and Arrays

	Strings in C++
	Introduction
	C-strings

	Standard String Class
	Vector
	Templates, brief introduction
	Template Functions

	Polymorphism -- Parametric
	Constants and their Types
	Declaration versus Definition
	Arithmetic Operators
	Relational and Logical Operators
	Type Conversions and Casts
	Assignment Operators and Expressions
	Increment and Decrement Operators
	Conditional Expressions
	Bitwise Operators
	Precedence and Order of Evaluation of Operators

	Control Flow
	Introduction
	Statements and Blocks
	Selection
	Two-way Selection -- if else
	Multi-way Selection - else if
	Multi-way Selection -- switch - case

	Repetition
	while
	for
	do - while

	break and continue
	goto and Labels

	C++ Program Structure
	Introduction
	Basics
	Declarations of Functions -- Prototypes
	Function parameters
	Parameters
	Pass-by-value parameters
	Pass-by-reference parameters
	Programmed pass-by-reference via pointers
	Semantics of parameter passing
	Arrays as Parameters
	Default parameters

	Function return values
	Overloaded function names
	Inline functions
	External variables
	Scope of variables
	Namespaces
	Heap memory management
	Introduction
	Operator new
	Operator delete
	Anonymous variables
	Garbage

	Lifetime of variables
	Lifetime of variables -- summary

	Memory layout of a C++ program -- a model
	Initialisation
	Register Variables
	Recursion
	The C++ Preprocessor
	File inclusion
	Symbolic constants and text substitution
	Macro substitution
	Conditional compilation / inclusion

	Struct, class, union
	Introduction
	A Point struct
	Operations on Structs
	Unions

	Introduction to Classes and Objects
	Introduction
	A Memory Cell Class
	Informal Specification of the Class
	Class Cell

	Using Separate Files
	Exercises
	3D Affine Transformations
	Homogeneous 3D Vector --- Vector4D.h
	Homogeneous 3D Vector --- Vector4D.cpp
	Test for Vector4D.cpp
	Homogeneous 3D Vector Transformations --- Transform4D.h
	Homogeneous 3D Vector Transformations --- Transform4D.cpp
	Test for Transform4D.cpp

	Inheritance
	Introduction
	Example 1: Class Cell extended via inheritance
	First Attempt
	Protected
	Virtual Functions and Dynamic Binding

	Overriding (virtual functions) versus Overloading
	Strong Typing
	Inheritance & Virtual Functions --- Summary
	Inheritance versus Inclusion, is-a versus has-a
	Inheritance & Virtual Functions and Ease of Software Extension
	Example 2: a Person class hierarchy
	A Student Class
	Use of the Person Hierarchy
	PersonT1.cpp
	PersonT2.cpp

	Standard Library Vector
	Marks

	Classes that manage memory
	Introduction
	A Heap-based Dynamic Array Class
	Class Declaration
	Class implementation code
	Assertions
	A simple client program

	The 'this' pointer
	Copy Constructors and Parameter Passing and Value Return
	Naïve member-wise constructor, shallow copy
	Proper 'deep' copy constructor
	Copy constructor and parameter passing and return

	Assignment
	Destructor
	The Big-Three
	Reference parameters and reference return
	Privacy is class-based, not object-based

	Operator Overloading
	Introduction
	Lead-in --- Add Functions for Array
	Chaining calls to member functions
	Operators
	Member versus Non-member Functions, Conversions
	Introduction
	A String Class
	Member versus Non-member functions
	Coercion of Arguments
	Constructors for conversion --- explicit

	Templates
	Introduction
	Template Functions
	Overloaded Functions recalled
	Template Function

	Polymorphism -- Parametric
	Template Array
	Class declaration and implementation
	A simple client program

	Array Containers
	Introduction
	An Array class
	Major points to note in Array.h
	Iterators

	A Simple Client Program for Array
	The Big-Three
	Defence against naive defaults

	Overloading the Stream Output Operator
	std::vector
	Points to note in vectort1.cpp

	Linked Lists
	Introduction
	A Singly Linked List
	Class Declaration
	Dissection of List
	Class Implementation

	A simple List client program
	Doubly Linked List
	Brief Discussion of the Doubly Linked List
	Simple Test Program, ListT1.cpp
	Doubly Linked List Implementation

	Arrays versus Linked List, Memory Usage
	Arrays versus Linked List, Cache issues

	Case Study --- Person, Student class hierarchy
	Introduction

	Where do procedural programs come from?
	Introduction
	Patterns and Programs
	Sequence
	Repetition
	Sequence of Repetitions
	Repetitions of Repetitions --- Nested Loops

	Procedures --- aka Subprograms, Methods, …Functions
	Without Parameters
	Procedures with Parameters

	Selection
	Exercises

	Analysis of Algorithms
	O Notation (Big-oh)
	Estimating the Growth Rate of an Algorithm
	Simple Statements
	Decision
	Counting Loop

