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Preface to the Third Edition

My goal in writing this book has been to create a very inexpensive
high-quality textbook. The book can be downloaded from my web

page in PDF format for free, and the print version costs considerably less
than comparable traditional textbooks.

In this third edition, Chapter 3 (on counting) has been expanded, and a
new chapter on calculus proofs has been added. New examples and exercises
have been added throughout. My decisions regarding revisions have been
guided by both the Amazon reviews and emails from readers, and I am
grateful for all comments.

I have taken pains to ensure that the third edition is compatible with the
second. Exercises have not been reordered, although some have beed edited
for clarity and some new ones have been appended. (The one exception
is that Chapter 3’s reorganization shifted some exercises.) The chapter
sequencing is identical between editions, with one exception: The final
chapter on cardinality has become Chapter 14 in order to make way for the
new Chapter 13 on calculus proofs. There has been a slight renumbering of
the sections within chapters 10 and 11, but the numbering of the exercises
within the sections is unchanged.

This core of this book is an expansion and refinement of lecture notes I
developed while teaching proofs courses over the past 18 years at Virginia
Commonwealth University (a large state university) and Randolph-Macon
College (a small liberal arts college). I found the needs of these two audiences
to be nearly identical, and I wrote this book for them. But I am mindful of a
larger audience. I believe this book is suitable for almost any undergraduate
mathematics program.

Richard Hammack Lawrenceville, Virginia
February 14, 2018



Introduction

This is a book about how to prove theorems.

Until this point in your education, mathematics has probably been
presented as a primarily computational discipline. You have learned to
solve equations, compute derivatives and integrals, multiply matrices and
find determinants; and you have seen how these things can answer practical
questions about the real world. In this setting your primary goal in using
mathematics has been to compute answers.

But there is another side of mathematics that is more theoretical than
computational. Here the primary goal is to understand mathematical
structures, to provemathematical statements, and even to invent or discover
new mathematical theorems and theories. The mathematical techniques
and procedures that you have learned and used up until now are founded
on this theoretical side of mathematics. For example, in computing the area
under a curve, you use the fundamental theorem of calculus. It is because
this theorem is true that your answer is correct. However, in learning
calculus you were probably far more concerned with how that theorem could
be applied than in understanding why it is true. But how do we know it is
true? How can we convince ourselves or others of its validity? Questions of
this nature belong to the theoretical realm of mathematics. This book is an
introduction to that realm.

This book will initiate you into an esoteric world. You will learn and
apply the methods of thought that mathematicians use to verify theorems,
explore mathematical truth and create new mathematical theories. This
will prepare you for advanced mathematics courses, for you will be better
able to understand proofs, write your own proofs and think critically and
inquisitively about mathematics.

The book is organized into four parts, as outlined below.



ix

PART I Fundamentals
• Chapter 1: Sets
• Chapter 2: Logic
• Chapter 3: Counting
Chapters 1 and 2 lay out the language and conventions used in all advanced
mathematics. Sets are fundamental because every mathematical structure,
object, or entity can be described as a set. Logic is fundamental because it
allows us to understand the meanings of statements, to deduce facts about
mathematical structures and to uncover further structures. All subsequent
chapters build on these first two chapters. Chapter 3 is included partly
because its topics are central to many branches of mathematics, but also
because it is a source of many examples and exercises that occur throughout
the book. (However, the course instructor may choose to omit Chapter 3.)

PART II Proving Conditional Statements
• Chapter 4: Direct Proof
• Chapter 5: Contrapositive Proof
• Chapter 6: Proof by Contradiction
Chapters 4 through 6 are concerned with three main techniques used for
proving theorems that have the “conditional” form “If P, then Q.”

PART III More on Proof
• Chapter 7: Proving Non-Conditional Statements
• Chapter 8: Proofs Involving Sets
• Chapter 9: Disproof
• Chapter 10: Mathematical Induction
These chapters deal with useful variations, embellishments and conse-
quences of the proof techniques introduced in Chapters 4 through 6.

PART IV Relations, Functions and Cardinality
• Chapter 11: Relations
• Chapter 12: Functions
• Chapter 13: Proofs in Calculus
• Chapter 14: Cardinality of Sets
These final chapters are mainly concerned with the idea of functions, which
are central to all of mathematics. Upon mastering this material you will be
ready for advanced mathematics courses such as abstract algebra, analysis,
topology, combinatorics and theory of computation.
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x Introduction

The chapters are organized as in the following dependency tree. The
left-hand column forms the core of the book; each chapter in this column
uses material from all chapters above it. Chapters 3 and 13 may be omitted
without loss of continuity. But the material in Chapter 3 is a great source
of exercises, and the reader who omits it should ignore the later exercises
that draw from it. Chapter 10, on induction, can also be omitted with no
break in continuity. However, induction is a topic that most proof courses
will include.

Dependency TreeChapter 1
Sets

Chapter 2
Logic

Chapter 4
Direct Proof

Chapter 5
Contrapositive Proof

Chapter 6
Proof by Contradiction

Chapter 7
Non-Conditional Proof

Chapter 8
Proofs Involving Sets

Chapter 9
Disproof

Chapter 11
Relations

Chapter 12
Functions

Chapter 14
Cardinality of Sets

Chapter 3
Counting

Chapter 10
Mathematical Induction

Chapter 13
Proofs in Calculus
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xi

To the instructor. The book is designed for a three or four credit course.
A course emphasizing discrete mathematics could cover chapters 1–12. A
course that is more of a preparation for analysis could cover all but Chapter 3.
The following timetable (for a fourteen-week semester) is a hybrid of these
two options. Sections marked with ∗ may require only the briefest mention
in class, or may be best left for the students to digest on their own.

Week Monday Wednesday Friday

1 Section 1.1 Section 1.2 Sections 1.3, 1.4
2 Sections 1.5, 1.6, 1.7 Section 1.8 Sections 1.9∗, 2.1
3 Section 2.2 Sections 2.3, 2.4 Sections 2.5, 2.6
4 Section 2.7 Sections 2.8∗, 2.9 Sections 2.10, 2.11∗, 2.12∗

5 Sections 3.1, 3.2, 3.3 Section 3.4, 3.5 Sections 3.5, 3.6

6 EXAM Sections 4.1, 4.2, 4.3 Sections 4.3, 4.4, 4.5∗

7 Sections 5.1, 5.2, 5.3∗ Section 6.1 Sections 6.2 6.3∗

8 Sections 7.1, 7.2∗, 7.3 Sections 8.1, 8.2 Section 8.3
9 Section 8.4 Sections 9.1, 9.2, 9.3∗ Section 10.1
10 Sections 10.1, 10.4∗ Sections 10.2, 10.3 EXAM
11 Sections 11.1, 11.2 Sections 11.3, 11.4 Sections 11.5, 11.6
12 Section 12.1 Section 12.2 Section 12.2
13 Sections 12.3, 12.4∗ Section 12.5 Sections 12.5, 12.6∗

14 Section 14.1 Section 14.2 Sections 14.3, 14.4∗

The entire book could be covered in a 4-credit course, or in a 3-credit
course pitched to a more mature audience.

Acknowledgments. I thank my students in VCU’s MATH 300 courses
for offering feedback as they read the first edition of this book. Thanks
especially to Cory Colbert and Lauren Pace for rooting out typographical
mistakes and inconsistencies. I am especially indebted to Cory for reading
early drafts of each chapter and catching numerous mistakes before I posted
the final draft on my web page. Cory also created the index, suggested some
interesting exercises, and wrote some solutions. Thanks to Moa Apagodu,
Sean Cox, Brent Cody and Andy Lewis for suggesting many improvements
while teaching from the book. I am indebted to LonMitchell, whose expertise
with typesetting and on-demand publishing made the print version of this
book a reality.

And thanks to countless readers all over the world who contacted me
concerning errors and omissions. Because of you, this is a better book.
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Part I

Fundamentals





CHAPTER 1

Sets

All of mathematics can be described with sets. This becomes more and
more apparent the deeper into mathematics you go. It will be apparent

in most of your upper level courses, and certainly in this course. The theory
of sets is a language that is perfectly suited to describing and explaining all
types of mathematical structures.

1.1 Introduction to Sets
A set is a collection of things. The things are called elements of the set. We
are mainly concerned with sets whose elements are mathematical entities,
such as numbers, points, functions, etc.

A set is often expressed by listing its elements between commas, enclosed
by braces. For example, the collection

{
2,4,6,8

}
is a set which has four

elements, the numbers 2,4,6 and 8. Some sets have infinitelymany elements.
For example, consider the collection of all integers,{

. . . ,−4,−3,−2,−1,0,1,2,3,4, . . .
}
.

Here the dots indicate a pattern of numbers that continues forever in both
the positive and negative directions. A set is called an infinite set if it has
infinitely many elements; otherwise it is called a finite set.

Two sets are equal if they contain exactly the same elements. Thus{
2,4,6,8

}= {
4,2,8,6

}
because even though they are listed in a different order,

the elements are identical; but
{
2,4,6,8

} 6= {
2,4,6,7

}
. Also{

. . .−4,−3,−2,−1,0,1,2,3,4. . .
}= {

0,−1,1,−2,2,−3,3,−4,4, . . .
}
.

We often let uppercase letters stand for sets. In discussing the set{
2,4,6,8

}
wemight declare A = {

2,4,6,8
}
and then use A to stand for

{
2,4,6,8

}
.

To express that 2 is an element of the set A, we write 2 ∈ A, and read this as
“2 is an element of A,” or “2 is in A,” or just “2 in A.” We also have 4 ∈ A, 6 ∈ A
and 8 ∈ A, but 5 ∉ A. We read this last expression as “5 is not an element of
A,” or “5 not in A.” Expressions like 6,2 ∈ A or 2,4,8 ∈ A are used to indicate
that several things are in a set.



4 Sets

Some sets are so significant that we reserve special symbols for them.
The set of natural numbers (i.e., the positive whole numbers) is denoted
by N, that is,

N= {
1,2,3,4,5,6,7, . . .

}
.

The set of integers

Z= {
. . . ,−3,−2,−1,0,1,2,3,4, . . .

}
is another fundamental set. The symbol R stands for the set of all real
numbers, a set that is undoubtedly familiar to you from calculus. Other
special sets will be listed later in this section.

Sets need not have just numbers as elements. The set B = {
T,F

}
consists

of two letters, perhaps representing the values “true” and “false.” The set
C = {

a, e, i, o,u
}
consists of the lowercase vowels in the English alphabet.

The set D = {
(0,0), (1,0), (0,1), (1,1)

}
has as elements the four corner points

of a square on the x-y coordinate plane. Thus (0,0) ∈ D, (1,0) ∈ D, etc.,
but (1,2) ∉ D (for instance). It is even possible for a set to have other sets
as elements. Consider E = {

1,
{
2,3

}
,
{
2,4

}}
, which has three elements: the

number 1, the set
{
2,3

}
and the set

{
2,4

}
. Thus 1 ∈ E and

{
2,3

} ∈ E and{
2,4

} ∈ E. But note that 2 ∉ E, 3 ∉ E and 4 ∉ E.
Consider the set M = {[0 0

0 0
]
,
[1 0

0 1
]
,
[1 0

1 1
]}

of three two-by-two matrices. We
have

[0 0
0 0

] ∈ M, but
[1 1

0 1
] ∉ M. Letters can serve as symbols denoting a set’s

elements: If a = [0 0
0 0

]
, b = [1 0

0 1
]
and c = [1 0

1 1
]
, then M = {

a,b, c
}
.

If X is a finite set, its cardinality or size is the number of elements
it has, and this number is denoted as |X |. Thus for the sets above, |A| = 4,
|B| = 2, |C| = 5, |D| = 4, |E| = 3 and |M| = 3.

There is a special set that, although small, plays a big role. The empty
set is the set

{}
that has no elements. We denote it as ;, so ;= {}

. Whenever
you see the symbol ;, it stands for {}

. Observe that |;| = 0. The empty set
is the only set whose cardinality is zero.

Be careful in writing the empty set. Don’t write
{;}

when you mean ;.
These sets can’t be equal because ; contains nothing while

{;}
contains

one thing, namely the empty set. If this is confusing, think of a set as a
box with things in it, so, for example,

{
2,4,6,8

}
is a “box” containing four

numbers. The empty set ;= {}
is an empty box. By contrast,

{;}
is a box

with an empty box inside it. Obviously, there’s a difference: An empty box
is not the same as a box with an empty box inside it. Thus ; 6= {;}

. (You
might also note |;| = 0 and

∣∣{;}∣∣= 1 as additional evidence that ; 6= {;}
.)

Richard Hammack Book of Proof



Introduction to Sets 5

This box analogy can help us think about sets. The set F = {;,
{;}

,
{{;}}}

may look strange but it is really very simple. Think of it as a box containing
three things: an empty box, a box containing an empty box, and a box
containing a box containing an empty box. Thus |F| = 3. The set G = {

N,Z
}

is a box containing two boxes, the box of natural numbers and the box of
integers. Thus |G| = 2.

A special notation called set-builder notation is used to describe sets
that are too big or complex to list between braces. Consider the infinite set
of even integers E = {

. . . ,−6,−4,−2,0,2,4,6, . . .
}
. In set-builder notation this

set is written as
E = {

2n : n ∈Z}
.

We read the first brace as “the set of all things of form,” and the colon as
“such that.” So the expression E = {

2n : n ∈Z}
reads as “E equals the set of

all things of form 2n, such that n is an element of Z.” The idea is that E
consists of all possible values of 2n, where n takes on all values in Z.

In general, a set X written with set-builder notation has the syntax

X = {
expression : rule

}
,

where the elements of X are understood to be all values of “expression” that
are specified by “rule.” For example, above E is the set of all values of the
expression 2n that satisfy the rule n ∈Z. There can be many ways to express
the same set. For example, E = {

2n : n ∈ Z} = {
n : n is an even integer

} ={
n : n = 2k,k ∈Z}

. Another common way of writing it is

E = {
n ∈Z : n is even

}
,

read “E is the set of all n in Z such that n is even.” Some writers use a bar
instead of a colon; for example, E = {

n ∈Z | n is even
}
. We use the colon.

Example 1.1 Here are some further illustrations of set-builder notation.
1.

{
n : n is a prime number

}= {
2,3,5,7,11,13,17, . . .

}
2.

{
n ∈N : n is prime

}= {
2,3,5,7,11,13,17, . . .

}
3.

{
n2 : n ∈Z}= {

0,1,4,9,16,25, . . .
}

4.
{
x ∈R : x2 −2= 0

}= {p
2,−p2

}
5.

{
x ∈Z : x2 −2= 0

}=;
6.

{
x ∈Z : |x| < 4

}= {−3,−2,−1,0,1,2,3
}

7.
{
2x : x ∈Z, |x| < 4

}= {−6,−4,−2,0,2,4,6
}

8.
{
x ∈Z : |2x| < 4

}= {−1,0,1
}

Free PDF version



6 Sets

Items 6–8 above highlight a conflict of notation that we must always
be alert to. The expression |X | means absolute value if X is a number
and cardinality if X is a set. The distinction should always be clear from
context. Consider

{
x ∈Z : |x| < 4

}
in Example 1.1 (6) above. Here x ∈Z, so x

is a number (not a set), and thus the bars in |x| must mean absolute value,
not cardinality. On the other hand, suppose A = {{

1,2
}
,
{
3,4,5,6

}
,
{
7
}}

and
B = {

X ∈ A : |X | < 3
}
. The elements of A are sets (not numbers), so the |X | in

the expression for B must mean cardinality. Therefore B = {{
1,2

}
,
{
7
}}
.

Example 1.2 Describe the set A = {
7a+3b : a,b ∈Z}

.
Solution: This set contains all numbers of form 7a+3b, where a and b
are integers. Each such number 7a+3b is an integer, so A contains only
integers. But which integers? If n is any integer, then n = 7n+3(−2n), so
n = 7a+3b where a = 7n and b = −2n. Therefore n ∈ A. We’ve now shown
that A contains only integers, and also that every integer is an element
of A. Consequently A =Z.

We close this section with a summary of special sets. These are sets
that are so common that they are given special names and symbols.

• The empty set: ;= {}
• The natural numbers: N= {

1,2,3,4,5, . . .
}

• The integers: Z= {
. . . ,−3,−2,−1,0,1,2,3,4,5, . . .

}
• The rational numbers: Q=

{
x : x = m

n
, where m,n ∈Z and n 6= 0

}
• The real numbers: R

We visualize the set R of real numbers is as an infinitely long number line.

0 1 2 3 4−4 −3 −2 −1

Notice that Q is the set of all numbers in R that can be expressed as a
fraction of two integers. You may be aware that Q 6=R, as p

2 ∉Q but
p

2 ∈R.
(If not, this point will be addressed in Chapter 6.)

In calculus you encountered intervals on the number line. Like R, these
too are infinite sets of numbers. Any two numbers a,b ∈R with a < b give
rise to various intervals. Graphically, they are represented by a darkened
segment on the number line between a and b. A solid circle at an endpoint
indicates that that number is included in the interval. A hollow circle
indicates a point that is not included in the interval.

Richard Hammack Book of Proof



Introduction to Sets 7

• Closed interval: [a,b]= {
x ∈R : a ≤ x ≤ b

} a b

• Open interval: (a,b)= {
x ∈R : a < x < b

} a b

• Half-open interval: (a,b]= {
x ∈R : a < x ≤ b

} a b

• Half-open interval: [a,b)= {
x ∈R : a ≤ x < b

} a b

• Infinite interval: (a,∞)= {
x ∈R : a < x

} a

• Infinite interval: [a,∞)= {
x ∈R : a ≤ x

} a

• Infinite interval: (−∞,b)= {
x ∈R : x < b

} b

• Infinite interval: (−∞,b]= {
x ∈R : x ≤ b

} b

Each of these intervals is an infinite set containing infinitely many
numbers as elements. For example, though its length is short, the interval
(0.1,0.2) contains infinitely many numbers, that is, all numbers between
0.1 and 0.2. It is an unfortunate notational accident that (a,b) can denote
both an open interval on the line and a point on the plane. The difference
is usually clear from context. In the next section we will see yet another
meaning of (a,b).

Exercises for Section 1.1
A. Write each of the following sets by listing their elements between braces.

1.
{
5x−1 : x ∈Z}

2.
{
3x+2 : x ∈Z}

3.
{
x ∈Z :−2≤ x < 7

}
4.

{
x ∈N :−2< x ≤ 7

}
5.

{
x ∈R : x2 = 3

}
6.

{
x ∈R : x2 = 9

}
7.

{
x ∈R : x2 +5x =−6

}
8.

{
x ∈R : x3 +5x2 =−6x

}

9.
{
x ∈R : sinπx = 0

}
10.

{
x ∈R : cos x = 1

}
11.

{
x ∈Z : |x| < 5

}
12.

{
x ∈Z : |2x| < 5

}
13.

{
x ∈Z : |6x| < 5

}
14.

{
5x : x ∈Z, |2x| ≤ 8

}
15.

{
5a+2b : a,b ∈Z}

16.
{
6a+2b : a,b ∈Z}

B. Write each of the following sets in set-builder notation.
17.

{
2,4,8,16,32,64 . . .

}
18.

{
0,4,16,36,64,100, . . .

}
19.

{
. . . ,−6,−3,0,3,6,9,12,15, . . .

}
20.

{
. . . ,−8,−3,2,7,12,17, . . .

}
21.

{
0,1,4,9,16,25,36, . . .

}
22.

{
3,6,11,18,27,38, . . .

}

23.
{
3,4,5,6,7,8

}
24.

{−4,−3,−2,−1,0,1,2
}

25.
{
. . . , 1

8 , 1
4 , 1

2 ,1,2,4,8, . . .
}

26.
{
. . . , 1

27 , 1
9 , 1

3 ,1,3,9,27, . . .
}

27.
{
. . . ,−π,−π

2 ,0, π2 ,π, 3π
2 ,2π, 5π

2 , . . .
}

28.
{
. . . ,− 3

2 ,− 3
4 ,0, 3

4 , 3
2 , 9

4 ,3, 15
4 , 9

2 , . . .
}

Free PDF version



8 Sets

C. Find the following cardinalities.
29.

∣∣{{1
}
,
{
2,

{
3,4

}}
,;}∣∣

30.
∣∣{{1,4

}
,a,b,

{{
3,4

}}
,
{;}}∣∣

31.
∣∣{{{1

}
,
{
2,

{
3,4

}}
,;}}∣∣

32.
∣∣{{{1,4

}
,a,b,

{{
3,4

}}
,
{;}}}∣∣

33.
∣∣{x ∈Z : |x| < 10

}∣∣

34.
∣∣{x ∈N : |x| < 10

}∣∣
35.

∣∣{x ∈Z : x2 < 10
}∣∣

36.
∣∣{x ∈N : x2 < 10

}∣∣
37.

∣∣{x ∈N : x2 < 0
}∣∣

38.
∣∣{x ∈N : 5x ≤ 20

}∣∣
D. Sketch the following sets of points in the x-y plane.

39.
{
(x, y) : x ∈ [1,2], y ∈ [1,2]

}
40.

{
(x, y) : x ∈ [0,1], y ∈ [1,2]

}
41.

{
(x, y) : x ∈ [−1,1], y= 1

}
42.

{
(x, y) : x = 2, y ∈ [0,1]

}
43.

{
(x, y) : |x| = 2, y ∈ [0,1]

}
44.

{
(x, x2) : x ∈R}

45.
{
(x, y) : x, y ∈R, x2 + y2 = 1

}

46.
{
(x, y) : x, y ∈R, x2 + y2 ≤ 1

}
47.

{
(x, y) : x, y ∈R, y≥ x2 −1

}
48.

{
(x, y) : x, y ∈R, x > 1

}
49.

{
(x, x+ y) : x ∈R, y ∈Z}

50.
{
(x, x2

y ) : x ∈R, y ∈N}
51.

{
(x, y) ∈R2 : (y− x)(y+ x)= 0

}
52.

{
(x, y) ∈R2 : (y− x2)(y+ x2)= 0

}

1.2 The Cartesian Product
Given two sets A and B, it is possible to “multiply” them to produce a new
set denoted as A×B. This operation is called the Cartesian product. To
understand it, we must first understand the idea of an ordered pair.

Definition 1.1 An ordered pair is a list (x, y) of two things x and y,
enclosed in parentheses and separated by a comma.

For example, (2,4) is an ordered pair, as is (4,2). These ordered pairs are
different because even though they have the same things in them, the order
is different. We write (2,4) 6= (4,2). Right away you can see that ordered pairs
can be used to describe points on the plane, as was done in calculus, but
they are not limited to just that. The things in an ordered pair don’t have
to be numbers. You can have ordered pairs of letters, such as (`,m), ordered
pairs of sets such as

({
2,5

}
,
{
3,2

})
, even ordered pairs of ordered pairs like(

(2,4), (4,2)
)
. The following are also ordered pairs:

(
2,

{
1,2,3

})
,
(
R, (0,0)

)
. Any

list of two things enclosed by parentheses is an ordered pair. Now we are
ready to define the Cartesian product.

Definition 1.2 The Cartesian product of two sets A and B is another
set, denoted as A×B and defined as A×B = {

(a,b) : a ∈ A,b ∈ B
}
.
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The Cartesian Product 9

Thus A ×B is a set of ordered pairs of elements from A and B. For
example, if A = {

k,`,m
}
and B = {

q, r
}
, then

A×B = {
(k, q), (k, r), (`, q), (`, r), (m, q), (m, r)

}
.

Figure 1.1 shows how to make a schematic diagram of A×B. Line up the
elements of A horizontally and line up the elements of B vertically, as if
A and B form an x- and y-axis. Then fill in the ordered pairs so that each
element (x, y) is in the column headed by x and the row headed by y.

B

A

q
r (k, r) (`, r) (m, r)

(k, q) (`, q) (m, q)

k ` m

A×B

Figure 1.1. A diagram of a Cartesian product

For another example,
{
0,1

}×{
2,1

} = {
(0,2), (0,1), (1,2), (1,1)

}
. If you are a

visual thinker, you may wish to draw a diagram similar to Figure 1.1. The
rectangular array of such diagrams give us the following general fact.

Fact 1.1 If A and B are finite sets, then |A×B| = |A| · |B|.

Example 1.3 Let A = {
, , , , ,

}
be the set consisting of the six faces

of a dice. The Cartesian product A× A is diagramed below. By Fact 1.1 (or
by simple counting), |A× A| = 6 ·6= 36. We might think of A× A as the set
of possible outcomes in rolling a dice two times in a row. Each element of
the product is an ordered pair of form

(
result of 1st roll, result of 2nd roll

)
.

Such constructions are useful in the study of probability.

( , )
( , )
( , )
( , )
( , )
( , )

( , )
( , )
( , )
( , )
( , )
( , )

( , )
( , )
( , )
( , )
( , )
( , )

( , )
( , )
( , )
( , )
( , )
( , )

( , )
( , )
( , )
( , )
( , )
( , )

( , )
( , )
( , )
( , )
( , )
( , )

A× A

A

A
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10 Sets

The set R×R= {
(x, y) : x, y ∈R}

should be very familiar. It can be viewed
as the set of points on the Cartesian plane, as drawn in Figure 1.2(a). The
set R×N = {

(x, y) : x ∈ R, y ∈ N}
can be regarded as all of the points on the

plane whose second coordinate is a natural number. This is illustrated in
Figure 1.2(b), which shows that R×N looks like infinitely many horizontal
lines at integer heights above the x-axis. The set N×N is the set of all points
on the plane whose coordinates are both natural numbers. It looks like a
grid of dots in the first quadrant, as illustrated in Figure 1.2(c).

x x x

y y y

(a) (b) (c)

R×R R×N N×N

Figure 1.2. Drawings of some Cartesian products

It is even possible for one factor of a Cartesian product to be a Cartesian
product itself, as in R× (N×Z) = {

(x, (y, z)) : x ∈R, (y, z) ∈N×Z}
.

We can also define Cartesian products of three or more sets by moving
beyond ordered pairs. An ordered triple is a list (x, y, z). The Cartesian
product of the three sets R, N and Z is R×N×Z= {

(x, y, z) : x ∈R, y ∈N, z ∈Z}
.

Of course there is no reason to stop with ordered triples. In general,

A1 × A2 ×·· ·× An = {
(x1, x2, . . . , xn) : xi ∈ A i for each i = 1,2, . . . ,n

}
.

Be mindful of parentheses. There is a slight difference between R×(N×Z)
and R×N×Z. The first is a Cartesian product of two sets; its elements are
ordered pairs (x, (y, z)). The second is a Cartesian product of three sets; its
elements are ordered triples (x, y, z). To be sure, in many situations there is
no harm in blurring the distinction between expressions like (x, (y, z)) and
(x, y, z), but for now we regard them as different.

For any set A and positive integer n, the Cartesian power An is
An = A× A×·· ·× A = {

(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ A
}
.

In this way, R2 is the familiar Cartesian plane and R3 is three-dimensional
space. You can visualize how, if R2 is the plane, then Z2 = {

(m,n) : m,n ∈Z}
is a grid of points on the plane. Likewise, as R3 is 3-dimensional space,
Z3 = {

(m,n, p) : m,n, p ∈Z}
is a grid of points in space.
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The Cartesian Product 11

In other courses you may encounter sets that are very similar to Rn, but
yet have slightly different shades of meaning. Consider, for example, the
set of all two-by-three matrices with entries from R:

M = {[u v w
x y z

]
: u,v,w, x, y, z ∈R}

.

This is not really all that different from the set

R6 = {
(u,v,w, x, y, z) : u,v,w, x, y, z ∈R}

.

The elements of these sets are merely certain arrangements of six real
numbers. Despite their similarity, we maintain that M 6= R6, for two-by-
three matrices are not the same things as sequences of six numbers.

Example 1.4 Represent the two sides of a coin by the set S = {
h,t

}
. The

possible outcomes of tossing the coin seven times in a row can be described
with the Cartesian power S7. A typical element of S7 looks like

(h,h,t,h,t,t,t),

meaning a head was tossed first, then another head, then a tail, then a head
followed by three tails. Note that

∣∣S7∣∣= 27 = 128, so there are 128 possible
outcomes. If this is not clear, then it will be explained fully in Chapter 3.

Exercises for Section 1.2
A. Write out the indicated sets by listing their elements between braces.

1. Suppose A = {
1,2,3,4

}
and B = {

a, c
}
.

(a) A×B
(b) B× A

(c) A× A
(d) B×B

(e) ;×B
(f) (A×B)×B

(g) A× (B×B)
(h) B3

2. Suppose A = {
π, e,0

}
and B = {

0,1
}
.

(a) A×B
(b) B× A

(c) A× A
(d) B×B

(e) A×;
(f) (A×B)×B

(g) A× (B×B)
(h) A×B×B

3.
{
x ∈R : x2 = 2

}×{
a, c, e

}
4.

{
n ∈Z : 2< n < 5

}×{
n ∈Z : |n| = 5

}
5.

{
x ∈R : x2 = 2

}×{
x ∈R : |x| = 2

}
6.

{
x ∈R : x2 = x

}×{
x ∈N : x2 = x

}
7.

{;}×{
0,;}×{

0,1
}

8.
{
0,1

}4

B. Sketch these Cartesian products on the x-y plane R2 (or R3 for the last two).
9.

{
1,2,3

}×{−1,0,1
}

10.
{−1,0,1

}×{
1,2,3

}
11. [0,1]× [0,1]
12. [−1,1]× [1,2]
13.

{
1,1.5,2

}× [1,2]
14. [1,2]×{

1,1.5,2
}

15.
{
1
}× [0,1]

16. [0,1]×{
1
}

17. N×Z
18. Z×Z
19. [0,1]× [0,1]× [0,1]
20. {

(x, y)∈R2 :x2+y2≤1
}×[0,1]
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12 Sets

1.3 Subsets
It can happen that every element of a set A is an element of another set B.
For example, each element of A = {

0,2,4
}
is also an element of B = {

0,1,2,3,4
}
.

When A and B are related this way we say that A is a subset of B.

Definition 1.3 Suppose A and B are sets. If every element of A is also
an element of B, then we say A is a subset of B, and we denote this as
A ⊆ B. We write A 6⊆ B if A is not a subset of B, that is, if it is not true that
every element of A is also an element of B. Thus A 6⊆ B means that there
is at least one element of A that is not an element of B.

Example 1.5 Be sure you understand why each of the following is true.
1.

{
2,3,7

}⊆ {
2,3,4,5,6,7

}
2.

{
2,3,7

} 6⊆ {
2,4,5,6,7

}
3.

{
2,3,7

}⊆ {
2,3,7

}
4.

{
(x,sin(x)) : x ∈R}⊆R2

5.
{
1,3,5,7,11,13,17, . . .

}⊆N
6. N⊆Z⊆Q⊆R
7. R×N⊆R×R
8. A ⊆ A for any set A

9. ;⊆;.

This brings us to a significant fact: If B is any set whatsoever, then ;⊆ B.
To see why this is true, look at the last sentence of Definition 1.3. It says
that ; 6⊆ B would mean that there is at least one element of ; that is not an
element of B. But this cannot be so because ; contains no elements! Thus
it is not the case that ; 6⊆ B, so it must be that ;⊆ B.

Fact 1.2 The empty set is a subset of all sets, that is, ;⊆ B for any set B.

Here is another way to look at it. Imagine a subset of B as a thing you
make by starting with braces

{}
, then filling them with selections from B.

For example, to make one particular subset of B = {
a,b, c

}
, start with

{}
,

select b and c from B and insert them into
{}

to form the subset
{
b, c

}
.

Alternatively, you could have chosen just a to make
{
a
}
, and so on. But one

option is to simply select nothing from B. This leaves you with the subset
{}
.

Thus
{}⊆ B. More often we write it as ;⊆ B.
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Subsets 13

This idea of “making” a subset can help us list out all the subsets of a
given set B. As an example, let B = {

a,b, c
}
. Let’s list all of its subsets. One

way of approaching this is to make a tree-like structure. Begin with the
subset

{}
, which is shown on the left of Figure 1.3. Considering the element

a of B, we have a choice: insert it into
{}
, or not. The lines from

{}
point to

what we get depending whether or not we insert a, either
{}

or
{
a
}
. Now

move on to the element b of B. For each of the sets just formed we can either
insert or not insert b, and the lines on the diagram point to the resulting
sets

{}
,
{
b
}
,
{
a
}
, or

{
a,b

}
. Finally, to each of these sets, we can either insert

c or not insert it, and this gives us, on the far right-hand column, the sets{}
,
{
c
}
,
{
b
}
,
{
b, c

}
,
{
a
}
,
{
a, c

}
,
{
a,b

}
and

{
a,b, c

}
. These are the eight subsets

of B = {
a,b, c

}
.

Insert a? Insert b? Insert c?

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

{}

{}
{} {}

{
c
}

{
b
}

{
b, c

}
{
a
}

{
a, c

}
{
a,b

}
{
a,b, c

}

{
b
}

{
a
}

{
a,b

}
{
a
}

Figure 1.3. A “tree” for listing subsets

We can see from the way this tree branches that if it happened that
B = {

a
}
, then B would have just two subsets, those in the second column of

the diagram. If it happened that B = {
a,b

}
, then B would have four subsets,

those in the third column, and so on. At each branching of the tree, the
number of subsets doubles. So in general, if |B| = n, then B has 2n subsets.

Fact 1.3 If a finite set has n elements, then it has 2n subsets.
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14 Sets

For a slightly more complex example, consider listing the subsets of
B = {

1,2,
{
1,3

}}
. This B has just three elements: 1, 2 and

{
1,3

}
. At this point

you probably don’t even have to draw a tree to list out B’s subsets. You just
make all the possible selections from B and put them between braces to get{}

,
{
1
}
,

{
2
}
,

{{
1,3

}}
,

{
1,2

}
,

{
1,

{
1,3

}}
,

{
2,

{
1,3

}}
,

{
1,2,

{
1,3

}}
.

These are the eight subsets of B. Exercises like this help you identify what
is and isn’t a subset. You know immediately that a set such as

{
1,3

}
is not a

subset of B because it can’t be made by inserting elements from B into
{}
,

as the 3 is not an element of B and thus is not a valid selection. Notice that
although

{
1,3

} 6⊆ B, it is true that
{
1,3

} ∈ B. Also,
{{

1,3
}}⊆ B.

Example 1.6 Be sure you understand why the following statements are
true. Each illustrates an aspect of set theory that you’ve learned so far.
1. 1 ∈ {

1,
{
1
}}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 is the first element listed in
{
1,

{
1
}}

2. 1 6⊆ {
1,

{
1
}}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .because 1 is not a set
3.

{
1
} ∈ {

1,
{
1
}}
. . . . . . . . . . . . . . . . . . . . . . .

{
1
}
is the second element listed in

{
1,

{
1
}}

4.
{
1
}⊆ {

1,
{
1
}}
. . . . . . . . . . . . . . . . . . . . .make subset

{
1
}
by selecting 1 from

{
1,

{
1
}}

5.
{{

1
}} ∉ {

1,
{
1
}}
. . . . . . . . .because

{
1,

{
1
}}

contains only 1 and
{
1
}
, and not

{{
1
}}

6.
{{

1
}}⊆ {

1,
{
1
}}

. . . . . . . . . . . . . . . make subset
{{

1
}}

by selecting
{
1
}
from

{
1,

{
1
}}

7. N ∉N . . . . . . . . . . . . . . . N is a set (not a number) and N contains only numbers
8. N⊆N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because X ⊆ X for every set X

9. ;∉N . . . . . . . . . . . . . . . . . because the set N contains only numbers and no sets
10. ;⊆N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .because ; is a subset of every set
11. N ∈ {

N
}
. . . . . . . . . . . . . . . . . . . . . . . . . because

{
N

}
has just one element, the set N

12. N 6⊆ {
N

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because, for instance, 1 ∈N but 1 ∉ {

N
}

13. ;∉ {
N

}
. . . . . . . . . . . . . . . . . . . . note that the only element of

{
N

}
is N, and N 6= ;

14. ;⊆ {
N

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because ; is a subset of every set

15. ;∈ {;,N
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .; is the first element listed in

{;,N
}

16. ;⊆ {;,N
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because ; is a subset of every set

17.
{
N

}⊆ {;,N
}
. . . . . . . . . . . . . . . . . . . . . .make subset

{
N

}
by selecting N from

{;,N
}

18.
{
N

} 6⊆ {;,
{
N

}}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because N ∉ {;,

{
N

}}
19.

{
N

} ∈ {;,
{
N

}}
. . . . . . . . . . . . . . . . . . . .

{
N

}
is the second element listed in

{;,
{
N

}}
20.

{
(1,2), (2,2), (7,1)

}⊆N×N . . . . . . . . . . . . . . . . . . each of (1,2), (2,2), (7,1) is in N×N

Though they should help you understand the concept of subset, the
above examples are somewhat artificial. But in general, subsets arise very
naturally. For instance, consider the unit circle C = {

(x, y) ∈R2 : x2 + y2 = 1
}
.
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Power Sets 15

This is a subset C ⊆ R2. Likewise the graph of a function y = f (x) is a set
of points G = {

(x, f (x)) : x ∈ R}
, and G ⊆ R2. Surely sets such as C and G

are more easily understood or visualized when regarded as subsets of R2.
Mathematics is filled with such instances where it is important to regard
one set as a subset of another.

Exercises for Section 1.3
A. List all the subsets of the following sets.

1.
{
1,2,3,4

}
2.

{
1,2,;}

3.
{{
R
}}

4. ;

5.
{;}

6.
{
R,Q,N

}
7.

{
R,

{
Q,N

}}
8.

{{
0,1

}
,
{
0,1,

{
2
}}

,
{
0
}}

B. Write out the following sets by listing their elements between braces.
9.

{
X : X ⊆ {

3,2,a
}
and |X | = 2

}
10.

{
X ⊆N : |X | ≤ 1

} 11.
{
X : X ⊆ {

3,2,a
}
and |X | = 4

}
12.

{
X : X ⊆ {

3,2,a
}
and |X | = 1

}
C. Decide if the following statements are true or false. Explain.

13. R3 ⊆R3

14. R2 ⊆R3

15.
{
(x, y) : x−1= 0

}⊆ {
(x, y) : x2 − x = 0

}
16.

{
(x, y) : x2 − x = 0

}⊆ {
(x, y) : x−1= 0

}

1.4 Power Sets
Given a set, you can form a new set with the power set operation.

Definition 1.4 If A is a set, the power set of A is another set, denoted
as P(A) and defined to be the set of all subsets of A. In symbols, P(A)={
X : X ⊆ A

}
.

For example, suppose A = {
1,2,3

}
. The power set of A is the set of all

subsets of A. We learned how to find these subsets in the previous section,
and they are

{}
,
{
1
}
,
{
2
}
,
{
3
}
,
{
1,2

}
,
{
1,3

}
,
{
2,3

}
and

{
1,2,3

}
. Therefore the

power set of A is

P(A)=
{
;,

{
1
}
,
{
2
}
,
{
3
}
,
{
1,2

}
,
{
1,3

}
,
{
2,3

}
,
{
1,2,3

} }
.

As we saw in the previous section, if a finite set A has n elements, then
it has 2n subsets, and thus its power set has 2n elements.

Fact 1.4 If A is a finite set, then |P(A)| = 2|A|.
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16 Sets

Example 1.7 You should examine the following statements and make
sure you understand how the answers were obtained. In particular, notice
that in each instance the equation |P(A)| = 2|A| is true.

1. P
({

0,1,3
})= {;,

{
0
}
,
{
1
}
,
{
3
}
,
{
0,1

}
,
{
0,3

}
,
{
1,3

}
,
{
0,1,3

} }
2. P

({
1,2

})= {;,
{
1
}
,
{
2
}
,
{
1,2

} }
3. P

({
1
})= {;,

{
1
} }

4. P (;)= {; }
5. P

({
a
})= {;,

{
a
} }

6. P
({;})= {;,

{;} }
7. P

({
a
})×P

({;})= {
(;,;),

(;,
{;})

,
({

a
}
,;)

,
({

a
}
,
{;}) }

8. P
(
P

({;}))= {;,
{;}

,
{{;}}

,
{;,

{;}} }
9. P

({
1,

{
1,2

}})= {;,
{
1
}
,

{{
1,2

}}
,

{
1,

{
1,2

}} }
10. P

({
Z,N

})= {;,
{
Z

}
,

{
N

}
,

{
Z,N

} }
Next are some that are wrong. See if you can determine why they are
wrong and make sure you understand the explanation on the right.

11. P(1)= {;,
{
1
} }

. . . . . . . . . . . . . . . . . . . . . . . . . . meaningless because 1 is not a set
12. P

({
1,

{
1,2

}})= {;,
{
1
}
,
{
1,2

}
,
{
1,

{
1,2

}}}
. . . . . . wrong because

{
1,2

} 6⊆ {
1,

{
1,2

}}
13. P

({
1,

{
1,2

}})= {;,
{{

1
}}

,
{{

1,2
}}

,
{;,

{
1,2

}}}
. . . wrong because

{{
1
}} 6⊆ {

1,
{
1,2

}}
If A is finite, then it is possible (though maybe not practical) to list out

P(A) between braces as was done in the above example. That is not possible
if A is infinite. For example, consider P(N). If you start listing its elements
you quickly discover that N has infinitely many subsets, and it’s not clear
how (or if) they could be arranged in a list with a definite pattern:

P(N)= {;,
{
1
}
,
{
2
}
, . . . ,

{
1,2

}
,
{
1,3

}
, . . . ,

{
39,47

}
,

. . . ,
{
3,87,131

}
, . . . ,

{
2,4,6,8, . . .

}
, . . . ? . . .

}
.

The set P(R2) is mind boggling. Think of R2 = {
(x, y) : x, y ∈R}

as the set
of all points on the Cartesian plane. A subset of R2 (that is, an element of
P(R2)) is a set of points in the plane. Let’s look at some of these sets. Since{
(1,2), (1,1)

} ⊆ R2, we know that
{
(1,2), (1,1)

} ∈ P(R2). We can even draw a
picture of this subset, as in Figure 1.4(a). For another example, the graph
of the equation y = x2 is the set of points G = {

(x, x2) : x ∈ R}
and this is a

subset of R2, so G ∈P(R2). Figure 1.4(b) is a picture of G. Because this can
be done for any function, the graph of any imaginable function f :R→R is
an element of P(R2).
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x x x

y y y

(a) (b) (c)

Figure 1.4. Three of the many, many sets in P(R2)

In fact, any black-and-white image on the plane can be thought of as
a subset of R2, where the black points belong to the subset and the white
points do not. So the text “INFINITE” in Figure 1.4(c) is a subset of R2 and
therefore an element of P(R2). By that token, P(R2) contains a copy of the
page you are reading now.

Thus, in addition to containing every imaginable function and every
imaginable black-and-white image, P(R2) also contains the full text of every
book that was ever written, those that are yet to be written and those that
will never be written. Inside of P(R2) is a detailed biography of your life,
from beginning to end, as well as the biographies of all of your unborn
descendants. It is startling that the five symbols used to write P(R2) can
express such an incomprehensibly large set.

Homework: Think about P(P(R2)).

Exercises for Section 1.4
A. Write the following sets by listing their elements between braces.

1. P
({{

a,b
}
,
{
c
}})

2. P
({

1,2,3,4
})

3. P
({{;}

,5
})

4. P
({
R,Q

})
5. P

(
P

({
2
}))

6. P
({

1,2
})×P

({
3
})

7. P
({

a,b
})×P

({
0,1

})
8. P

({
1,2

}×{
3
})

9. P
({

a,b
}×{

0
})

10.
{
X ∈P

({
1,2,3

})
: |X | ≤ 1

}
11.

{
X ⊆P

({
1,2,3

})
: |X | ≤ 1

}
12.

{
X ∈P

({
1,2,3

})
: 2 ∈ X

}
B. Suppose that |A| = m and |B| = n. Find the following cardinalities.

13. |P(P(P(A)))|
14. |P(P(A))|
15. |P(A×B)|
16. |P(A)×P(B)|

17.
∣∣{X ∈P(A) : |X | ≤ 1

}∣∣
18. |P(A×P(B))|
19. |P(P(P(A×;)))|
20.

∣∣{X ⊆P(A) : |X | ≤ 1
}∣∣
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18 Sets

1.5 Union, Intersection, Difference
Just as numbers are combined with operations such as addition, subtraction
and multiplication, there are various operations that can be applied to sets.
The Cartesian product (defined in Section 1.2) is one such operation; given
sets A and B, we can combine them with × to get a new set A×B. Here are
three new operations called union, intersection and difference.

Definition 1.5 Suppose A and B are sets.
The union of A and B is the set A∪B = {

x : x ∈ A or x ∈ B
}
.

The intersection of A and B is the set A∩B = {
x : x ∈ A and x ∈ B

}
.

The difference of A and B is the set A−B = {
x : x ∈ A and x ∉ B

}
.

In words, the union A∪B is the set of all things that are in A or in B (or
in both). The intersection A∩B is the set of all things in both A and B. The
difference A−B is the set of all things that are in A but not in B.

Example 1.8 Suppose A = {
a,b, c,d, e

}
, B = {

d, e, f
}
and C = {

1,2,3
}
.

1. A∪B = {
a,b, c,d, e, f

}
2. A∩B = {

d, e
}

3. A−B = {
a,b, c

}
4. B− A = {

f
}

5. (A−B)∪ (B− A)= {
a,b, c, f

}
6. A∪C = {

a,b, c,d, e,1,2,3
}

7. A∩C =;
8. A−C = {

a,b, c,d, e
}

9. (A∩C)∪ (A−C)= {
a,b, c,d, e

}
10. (A∩B)×B = {

(d,d), (d, e), (d, f ), (e,d), (e, e), (e, f )
}

11. (A×C)∩ (B×C)= {
(d,1), (d,2), (d,3), (e,1), (e,2), (e,3)

}
Parts 12–15 use interval notation (Section 1.1), so [2,5] = {

x ∈R : 2 ≤ x ≤ 5
}
,

etc. Sketching these on the number line may aid your understanding.

12. [2,5]∪ [3,6]= [2,6]

13. [2,5]∩ [3,6]= [3,5]

14. [2,5]− [3,6]= [2,3)

15. [0,3]− [1,2]= [0,1)∪ (2,3]

Observe that for any sets X and Y it is always true that X ∪Y =Y ∪ X
and X ∩Y =Y ∩ X , but in general X −Y 6=Y − X .
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Union, Intersection, Difference 19

Example 1.9 Let A = {
(x, x2) : x ∈ R}

be the graph of the equation y = x2

and let B = {
(x, x+2) : x ∈R}

be the graph of the equation y= x+2. These sets
are subsets of R2. They are sketched together in Figure 1.5(a). Figure 1.5(b)
shows A∪B, the set of all points (x, y) that are on one (or both) of the two
graphs. Observe that A ∩B = {

(−1,1), (2,4)
}
consists of just two elements,

the two points where the graphs intersect, as illustrated in Figure 1.5(c).
Figure 1.5(d) shows A−B, which is the set A with “holes” where B crossed it.
In set builder notation, we could write A∪B = {

(x, y) : x ∈R, y= x2 or y= x+2
}

and A−B = {
(x, x2) : x ∈R−{−1,2

}}
.

A

B
A∪B

A∩B

A−B

(a) (b) (c) (d)

Figure 1.5. The union, intersection and difference of sets A and B

Exercises for Section 1.5
1. Suppose A = {

4,3,6,7,1,9
}
, B = {

5,6,8,4
}
and C = {

5,8,4
}
. Find:

(a) A∪B

(b) A∩B

(c) A−B

(d) A−C

(e) B− A

(f) A∩C

(g) B∩C

(h) B∪C

(i) C−B

2. Suppose A = {
0,2,4,6,8

}
, B = {

1,3,5,7
}
and C = {

2,8,4
}
. Find:

(a) A∪B

(b) A∩B

(c) A−B

(d) A−C

(e) B− A

(f) A∩C

(g) B∩C

(h) C− A

(i) C−B

3. Suppose A = {
0,1

}
and B = {

1,2
}
. Find:

(a) (A×B)∩ (B×B)

(b) (A×B)∪ (B×B)

(c) (A×B)− (B×B)

(d) (A∩B)× A

(e) (A×B)∩B

(f) P(A)∩P(B)

(g) P(A)−P(B)

(h) P(A∩B)

(i) P(A×B)

4. Suppose A = {
b, c,d

}
and B = {

a,b
}
. Find:

(a) (A×B)∩ (B×B)

(b) (A×B)∪ (B×B)

(c) (A×B)− (B×B)

(d) (A∩B)× A

(e) (A×B)∩B

(f) P(A)∩P(B)

(g) P(A)−P(B)

(h) P(A∩B)

(i) P(A)×P(B)
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5. Sketch the sets X = [1,3]× [1,3] and Y = [2,4]× [2,4] on the plane R2. On separate
drawings, shade in the sets X ∪Y , X ∩Y , X −Y and Y − X . (Hint: X and Y are
Cartesian products of intervals. You may wish to review how you drew sets like
[1,3]× [1,3] in the exercises for Section 1.2.)

6. Sketch the sets X = [−1,3]×[0,2] and Y = [0,3]×[1,4] on the plane R2. On separate
drawings, shade in the sets X ∪Y , X ∩Y , X −Y and Y − X .

7. Sketch the sets X = {
(x, y) ∈ R2 : x2 + y2 ≤ 1

}
and Y = {

(x, y) ∈ R2 : x ≥ 0
}
on R2. On

separate drawings, shade in the sets X ∪Y , X ∩Y , X −Y and Y − X .
8. Sketch the sets X = {

(x, y) ∈ R2 : x2 + y2 ≤ 1
}
and Y = {

(x, y) ∈ R2 : −1 ≤ y ≤ 0
}
on R2.

On separate drawings, shade in the sets X ∪Y , X ∩Y , X −Y and Y − X .
9. Is the statement (R×Z)∩ (Z×R)=Z×Z true or false? What about the statement

(R×Z)∪ (Z×R)=R×R?
10. Do you think the statement (R−Z)×N= (R×N)− (Z×N) is true, or false? Justify.

1.6 Complement
This section introduces yet another set operation, called the set complement.
The definition requires the idea of a universal set, which we now discuss.

When dealing with a set, we almost always regard it as a subset of
some larger set. For example, consider the set of prime numbers P ={
2,3,5,7,11,13, . . .

}
. If asked to name some things that are not in P, we

might mention some composite numbers like 4 or 6 or 423. It probably
would not occur to us to say that Vladimir Putin is not in P. True, Vladimir
Putin is not in P, but he lies entirely outside of the discussion of what is a
prime number and what is not. We have an unstated assumption that

P ⊆N

because N is the most natural setting in which to discuss prime numbers.
In this context, anything not in P should still be in N. This larger set N is
called the universal set or universe for P.

Almost every useful set in mathematics can be regarded as having some
natural universal set. For instance, the unit circle is the set C = {

(x, y) ∈R2 :
x2 + y2 = 1

}
, and since all these points are in the plane R2 it is natural to

regard R2 as the universal set for C. In the absence of specifics, if A is a set,
then its universal set is often denoted as U. We are now ready to define the
complement operation.

Definition 1.6 Let A be a set with a universal set U. The complement
of A, denoted A, is the set A =U − A.
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Example 1.10 If P is the set of prime numbers, then

P =N−P = {
1,4,6,8,9,10,12, . . .

}
.

Thus P is the set of composite numbers and 1.

Example 1.11 Let A = {
(x, x2) : x ∈ R}

be the graph of the equation y = x2.
Figure 1.6(a) shows A in its universal set R2. The complement of A is A =
R2 − A = {

(x, y) ∈R2 : y 6= x2}
, illustrated by the shaded area in Figure 1.6(b).

A A

(a) (b)

Figure 1.6. A set and its complement

Exercises for Section 1.6
1. Let A = {

4,3,6,7,1,9
}
and B = {

5,6,8,4
}
have universal setU = {

0,1,2, . . . ,10
}
. Find:

(a) A

(b) B

(c) A∩ A

(d) A∪ A

(e) A− A

(f) A−B

(g) A−B

(h) A∩B

(i) A∩B

2. Let A = {
0,2,4,6,8

}
and B = {

1,3,5,7
}
have universal set U = {

0,1,2, . . . ,8
}
. Find:

(a) A

(b) B

(c) A∩ A

(d) A∪ A

(e) A− A

(f) A∪B

(g) A∩B

(h) A∩B

(i) A×B

3. Sketch the set X = [1,3]× [1,2] on the plane R2. On separate drawings, shade in
the sets X and X ∩ ([0,2]× [0,3]).

4. Sketch the set X = [−1,3]× [0,2] on the plane R2. On separate drawings, shade in
the sets X and X ∩ ([−2,4]× [−1,3]).

5. Sketch the set X = {
(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 4

}
on the plane R2. On a separate

drawing, shade in the set X .
6. Sketch the set X = {

(x, y) ∈R2 : y< x2}
on R2. Shade in the set X .
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1.7 Venn Diagrams
In thinking about sets, it is sometimes helpful to draw informal, schematic
diagrams of them. In doing this we often represent a set with a circle
(or oval), which we regard as enclosing all the elements of the set. Such
diagrams can illustrate how sets combine using various operations. For
example, Figures 1.7(a–c) show two sets A and B that overlap in a middle
region. The sets A∪B, A∩B and A−B are shaded. Such graphical repre-
sentations of sets are called Venn diagrams, after their inventor, British
logician John Venn, 1834–1923.

A A AB B B

A∪B A∩B A−B

(a) (b) (c)

Figure 1.7. Venn diagrams for two sets

Though you are unlikely to draw Venn diagrams as a part of a proof of
any theorem, you will probably find them to be useful “scratch work” devices
that help you to understand how sets combine, and to develop strategies
for proving certain theorems or solving certain problems. The remainder of
this section uses Venn diagrams to explore how three sets can be combined
using ∪ and ∩.

Let’s begin with the set A∪B∪C. Our definitions suggest this should
consist of all elements which are in one or more of the sets A, B and C.
Figure 1.8(a) shows a Venn diagram for this. Similarly, we think of A∩B∩C
as all elements common to each of A, B and C, so in Figure 1.8(b) the region
belonging to all three sets is shaded.

A AB B

C C

A∪B∪C A∩B∩C

(a) (b)

Figure 1.8. Venn diagrams for three sets
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We can also think of A∩B∩C as the two-step operation (A∩B)∩C. In
this expression the set A∩B is represented by the region common to both A
and B, and when we intersect this with C we get Figure 1.8(b). This is a
visual representation of the fact that A∩B∩C = (A∩B)∩C. Similarly, we
have A∩B∩C = A∩ (B∩C). Likewise, A∪B∪C = (A∪B)∪C = A∪ (B∪C).

Notice that in these examples, where the expression either contains only
the symbol ∪ or only the symbol ∩, the placement of the parentheses is
irrelevant, so we are free to drop them. It is analogous to the situations in
algebra involving expressions (a+b)+c = a+(b+c) or (a·b)·c = a·(b·c). We tend
to drop the parentheses and write simply a+b+ c or a ·b · c. By contrast, in
an expression like (a+b) · c the parentheses are absolutely essential because
(a+b) · c and a+ (b · c) are generally not equal.

Now let’s use Venn diagrams to help us understand the expressions
(A∪B)∩C and A∪ (B∩C), which use a mix of ∪ and ∩. Figure 1.9 shows
how to draw a Venn diagram for (A∪B)∩C. In the drawing on the left, the
set A∪B is shaded with horizontal lines, while C is shaded with vertical
lines. Thus the set (A∪B)∩C is represented by the cross-hatched region
where A∪B and C overlap. The superfluous shadings are omitted in the
drawing on the right showing the set (A∪B)∩C.

A AB B

C C

Figure 1.9. How to make a Venn diagram for (A∪B)∩C

Now think about A ∪ (B∩C). In Figure 1.10 the set A is shaded with
horizontal lines, and B∩C is shaded with vertical lines. The union A∪(B∩C)
is represented by the totality of all shaded regions, as shown on the right.

A AB B

C C

Figure 1.10. How to make a Venn diagram for A∪ (B∩C)
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Compare the diagrams for (A∪B)∩C and A∪ (B∩C) in Figures 1.9 and
1.10. The fact that the diagrams are different indicates that (A∪B)∩C 6=
A∪ (B∩C) in general. Thus an expression such as A∪B∩C is absolutely
meaningless because we can’t tell whether it means (A∪B)∩C or A∪(B∩C).
In summary, Venn diagrams have helped us understand the following.

Important Points:
• If an expression involving sets uses only ∪, then parentheses are optional.
• If an expression involving sets uses only ∩, then parentheses are optional.
• If an expression uses both ∪ and ∩, then parentheses are essential.

In the next section we will study types of expressions that use only ∪ or
only ∩. These expressions will not require the use of parentheses.

Exercises for Section 1.7
1. Draw a Venn diagram for A, where A is a subset of a universal set U.
2. Draw a Venn diagram for B− A.
3. Draw a Venn diagram for (A−B)∩C.
4. Draw a Venn diagram for (A∪B)−C.
5. Draw Venn diagrams for A∪(B∩C) and (A∪B)∩(A∪C). Based on your drawings,

do you think A∪ (B∩C) = (A∪B)∩ (A∪C)?
6. Draw Venn diagrams for A∩(B∪C) and (A∩B)∪(A∩C). Based on your drawings,

do you think A∩ (B∪C) = (A∩B)∪ (A∩C)?
7. Suppose sets A and B are in a universal set U. Draw Venn diagrams for A∩B

and A∪B. Based on your drawings, do you think it’s true that A∩B = A∪B?
8. Suppose sets A and B are in a universal set U. Draw Venn diagrams for A∪B

and A∩B. Based on your drawings, do you think it’s true that A∪B = A∩B?
9. Draw a Venn diagram for (A∩B)−C.

10. Draw a Venn diagram for (A−B)∪C.

Following are Venn diagrams for expressions involving sets A, B and C. Write a
corresponding expression.

11.

A B

C

12.

A B

C

13.

A B

C

14.

A B

C
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1.8 Indexed Sets
When a mathematical problem involves lots of sets, it is often convenient to
keep track of them by using subscripts (also called indices). Thus instead of
denoting three sets as A, B and C, we might instead write them as A1, A2

and A3. These are called indexed sets.
Although we defined union and intersection to be operations that com-

bine two sets, you by now have no difficulty forming unions and intersections
of three or more sets. (For instance, in the previous section we drew Venn
diagrams for the intersection and union of three sets.) But let’s take a
moment to write down careful definitions. Given sets A1, A2, . . . , An, the set
A1 ∪ A2 ∪ A3 ∪ ·· · ∪ An consists of everything that is in at least one of the
sets A i. Likewise A1∩A2∩A3∩·· ·∩An consists of everything that is common
to all of the sets A i. Here is a careful definition.

Definition 1.7 Suppose A1, A2, . . . , An are sets. Then
A1 ∪ A2 ∪ A3 ∪·· ·∪ An = {

x : x ∈ A i for at least one set A i, for 1≤ i ≤ n
}
,

A1 ∩ A2 ∩ A3 ∩·· ·∩ An = {
x : x ∈ A i for every set A i, for 1≤ i ≤ n

}
.

But if the number n of sets is large, these expressions can get messy. To
overcome this, we now develop some notation akin to sigma notation. You
already know that sigma notation is a convenient symbolism for expressing
sums of many numbers. Given numbers a1,a2,a3, . . . ,an, then

n∑
i=1

ai = a1 +a2 +a3 +·· ·+an.

Even if the list of numbers is infinite, the sum
∞∑

i=1
ai = a1 +a2 +a3 +·· ·+ai +·· ·

is often still meaningful. The notation we are about to introduce is very
similar to this. Given sets A1, A2, A3, . . . , An, we define

n⋃
i=1

A i = A1 ∪ A2 ∪ A3 ∪·· ·∪ An and
n⋂

i=1
A i = A1 ∩ A2 ∩ A3 ∩·· ·∩ An.

Example 1.12 Suppose A1 =
{
0,2,5

}
, A2 =

{
1,2,5

}
and A3 =

{
2,5,7

}
. Then

3⋃
i=1

A i = A1 ∪ A2 ∪ A3 =
{
0,1,2,5,7

}
and

3⋂
i=1

A i = A1 ∩ A2 ∩ A3 =
{
2,5

}
.
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This notation is also used when the list of sets A1, A2, A3, A4, . . . is infinite:

∞⋃
i=1

A i = A1 ∪ A2 ∪ A3 ∪·· · = {
x : x ∈ A i for at least one set A i with 1≤ i

}
.

∞⋂
i=1

A i = A1 ∩ A2 ∩ A3 ∩·· · = {
x : x ∈ A i for every set A i with 1≤ i

}
.

Example 1.13 This example involves the following infinite list of sets.
A1 =

{−1,0,1
}
, A2 =

{−2,0,2
}
, A3 =

{−3,0,3
}
, · · · , A i =

{− i,0, i
}
, · · ·

Observe that
∞⋃

i=1
A i =Z, and

∞⋂
i=1

A i =
{
0
}
.

Here is a useful twist on our new notation. We can write
3⋃

i=1
A i = ⋃

i∈{1,2,3}
A i,

which is understood to be the union of the sets A i for i = 1,2,3. Likewise:
3⋂

i=1
A i = ⋂

i∈{1,2,3}
A i

∞⋃
i=1

A i = ⋃
i∈N

A i

∞⋂
i=1

A i = ⋂
i∈N

A i

Here we are taking the union or intersection of a collection of sets A i where
i is an element of some set, be it

{
1,2,3

}
or N. In general, the way this works

is that we will have a collection of sets A i for i ∈ I, where I is the set of
possible subscripts. The set I is called an index set.

It is important to realize that the set I need not even consist of integers.
(We could subscript with letters or real numbers, etc.) Since we are pro-
grammed to think of i as an integer, let’s make a slight notational change:
Use α, not i, to stand for an element of I. Thus we are dealing with a
collection of sets Aα for α ∈ I. This leads to the following definition.

Definition 1.8 If Aα is a set for every α in some index set I 6= ;, then⋃
α∈I

Aα = {
x : x ∈ Aα for at least one set Aα with α ∈ I

}
⋂
α∈I

Aα = {
x : x ∈ Aα for every set Aα with α ∈ I

}
.
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Example 1.14 In this example, all sets Aα are all subsets of the plane R2.
Each α belongs to the index set I = [0,2]= {

x ∈R : 0≤ x ≤ 2
}
, which is the set

of all real numbers between 0 and 2. For each number α ∈ I, define Aα to be
the set Aα = [α,2]× [0,α], which is the rectangle on the xy-plane whose base
runs from α to 2 on the x-axis, and whose height is α. Some of these are
shown shaded below. (The dotted diagonal line y= x is not a part of any of
the sets, but is shown for clarity, as the upper left corner of each Aα touches
it.) Note that these sets are not indexed with just integers. For example, asp

2 ∈ I, there is a set Ap
2, which shown below on the right.

Aα

α

A 3
4

3
4

A1
Ap

2

p
2

α
3
4

p
2

1 2 1 2 1 2 1 2

1

2

1

2

1

2

1

2

Note that A0 = [0,2]× [0,0]= [0,2]×{
0
}
is the interval [0,2] on the x-axis

(a “flat” rectangle). Also, A2 = [2,2]× [0,2]= {
2
}× [0,2] is the vertical side of

the dotted triangle in the above pictures.
Now consider the infinite union

⋃
α∈I

Aα. It is the shaded triangle shown

below, because any point (x, y) on this triangle belongs to the set Ax, and is
therefore in the union. (And any point not on the triangle is not in any Ax.)

1 2

1

2

⋃
α∈I

Aα

Now let’s work out the intersection
⋂
α∈I

Aα. Notice that the point (2,0) on

the x-axis is the lower right corner of any set Aα, so (2,0) ∈ Aα for any α ∈ I.
Therefore the point (2,0) is in the intersection of all the Aα. But any other
point (x, y) 6= (2,0) on the triangle does not belong to all of the sets Aα. The
reason is that if x < 2, then (x, y) ∉ Aα for any x <α≤ 2. (Check this.) And if
x = 2, then (x, y) ∉ Aα for any 0<α≤ y. Consequently⋂

α∈I
Aα = {

(2,0)
}
.

This intersection consists of only one element, the point (2,0).
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Example 1.15 Here our sets are indexed by R2. For any (a,b) ∈R2, let P(a,b)

be the following subset of R3:

P(a,b) =
{
(x, y, z) ∈R3 : ax+by= 0

}
.

In words, given a point (a,b) ∈ R2, the corresponding set P(a,b) consists of
all points (x, y, z) in R3 that satisfy the equation ax+by= 0. From previous
math courses you will recognize this as a plane in R3, that is, P(a,b) is a plane
in R3. Moreover, since any point (0,0, z) on the z-axis automatically satisfies
ax+by= 0, each P(a,b) contains the z-axis.

Figure 1.11 (left) shows the set P(1,2) =
{
(x, y, z) ∈R3 : x+2y= 0

}
. It is the

vertical plane that intersects the xy-plane at the line x+2y= 0.

x

y

z

(−2,1,0)

P(1,2)

Figure 1.11. The sets P(a,b) are vertical planes containing the z-axis.

For any point (a,b) ∈R2 with (a,b) 6= (0,0), we can visualize P(a,b) as the
vertical plane that cuts the xy-plane at the line ax+ by = 0. Figure 1.11
(right) shows a few of the P(a,b). Since any two such planes intersect along
the z-axis, and because the z-axis is a subset of every P(a,b), it is immediately
clear that ⋂

(a,b)∈R2
P(a,b) =

{
(0,0, z) : z ∈R} = “the z-axis”.

For the union, note that any given point (a,b, c) ∈R3 belongs to the set
P(−b,a) because (x, y, z)= (a,b, c) satisfies the equation −bx+ay= 0. (In fact,
any (a,b, c) belongs to the special set P(0,0) =R3, which is the only P(a,b) that
is not a plane.) Since any point in R3 belongs to some P(a,b) we have⋃

(a,b)∈R2
P(a,b) =R3.
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Exercises for Section 1.8
1. Suppose A1 =

{
a,b,d, e, g, f

}
, A2 =

{
a,b, c,d

}
, A3 =

{
b,d,a

}
and A4 =

{
a,b,h

}
.

(a)
4⋃

i=1
A i = (b)

4⋂
i=1

A i =

2. Suppose


A1 = {

0,2,4,8,10,12,14,16,18,20,22,24
}
,

A2 = {
0,3,6,9,12,15,18,21,24

}
,

A3 = {
0,4,8,12,16,20,24

}
.

(a)
3⋃

i=1
A i = (b)

3⋂
i=1

A i =

3. For each n ∈N, let An = {
0,1,2,3, . . . ,n

}
.

(a)
⋃
i∈N

A i = (b)
⋂
i∈N

A i =

4. For each n ∈N, let An = {−2n,0,2n
}
.

(a)
⋃
i∈N

A i = (b)
⋂
i∈N

A i =

5. (a)
⋃
i∈N

[i, i+1]= (b)
⋂
i∈N

[i, i+1]=

6. (a)
⋃
i∈N

[0, i+1]= (b)
⋂
i∈N

[0, i+1]=

7. (a)
⋃
i∈N

R× [i, i+1]= (b)
⋂
i∈N

R× [i, i+1]=

8. (a)
⋃
α∈R

{
α

}× [0,1]= (b)
⋂
α∈R

{
α

}× [0,1]=

9. (a)
⋃

X∈P(N)
X = (b)

⋂
X∈P(N)

X =

10. (a)
⋃

x∈[0,1]
[x,1]× [0, x2]= (b)

⋂
x∈[0,1]

[x,1]× [0, x2]=

11. Is
⋂
α∈I

Aα ⊆ ⋃
α∈I

Aα always true for any collection of sets Aα with index set I?

12. If
⋂
α∈I

Aα = ⋃
α∈I

Aα, what do you think can be said about the relationships between

the sets Aα?

13. If J 6= ; and J ⊆ I, does it follow that
⋃
α∈J

Aα ⊆ ⋃
α∈I

Aα? What about
⋂
α∈J

Aα ⊆ ⋂
α∈I

Aα?

14. If J 6= ; and J ⊆ I, does it follow that
⋂
α∈I

Aα ⊆ ⋂
α∈J

Aα? Explain.
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1.9 Sets That Are Number Systems
In practice, the sets we tend to be most interested in often have special
properties and structures. For example, the sets Z, Q and R are familiar
number systems: Given such a set, any two of its elements can be added
(or multiplied, etc.) together to produce another element in the set. These
operations obey the familiar commutative, associative and distributive
properties that we all have dealt with for years. Such properties lead to
the standard algebraic techniques for solving equations. Even though we
are concerned with the idea of proof, we will not find it necessary to define,
prove or verify such properties and techniques; we will accept them as the
ground rules upon which our further deductions are based.

We also accept as fact the natural ordering of the elements of N,Z,Q and
R, so that (for example) the meaning of “5< 7” is understood and does not
need to be justified or explained. Similarly, if x ≤ y and a 6= 0, we know that
ax ≤ ay or ax ≥ ay, depending on whether a is positive or negative.

Another thing that our ingrained understanding of number order tells
us is that any non-empty subset of N has a smallest element. In other words,
if A ⊆ N and A 6= ;, then there is an element x0 ∈ A that is smaller than
every other element of A. (To find it, start at 1, then move in increments to
2, 3, 4, etc., until you hit a number x0 ∈ A; this is the smallest element of
A.) Similarly, given b ∈Z, any non-empty subset A ⊆ {

b, b+1, b+2, b+3, . . .
}

has a smallest element. This fact is sometimes called the well-ordering
principle. There is no need to remember this term, but do be aware that
we will use this simple, intuitive idea often in proofs, usually without a
second thought.

The well-ordering principle seems innocent enough, but it actually says
something very fundamental and special about the positive integers N.
In fact, the corresponding statement for the positive real numbers is false:
The subset A = { 1

n : n ∈N}
of the positive reals has no smallest element

because for any x0 = 1
n ∈ A we might pick, there is a smaller element 1

n+1 ∈ A.
One consequence of the well-ordering principle (as we will see below) is

the familiar fact that any integer a can be divided by a non-zero integer b,
resulting in a quotient q and remainder r. For example, b = 3 goes into
a = 17 q = 5 times with remainder r = 2. In symbols, 17= 5·3+2, or a = qb+r.
This significant fact is called the division algorithm.

Fact 1.5 (Division Algorithm) Given integers a and b with b > 0,
there exist unique integers q and r for which a = qb+ r and 0≤ r < b.

Richard Hammack Book of Proof



Sets That Are Number Systems 31

Although there is no harm in accepting the division algorithm without
proof, note that it does follow from the well-ordering principle. Here’s how:
Given integers a,b with b > 0, form the set

A = {
a− xb : x ∈Z, 0≤ a− xb ≤ a

}⊆ {
0,1,2,3, . . .

}
.

This is the set of non-negative integers got by subtracting multiples of b
from a. (For example, if a = 17 and b = 3, then we get A = {

2,5,8,11,14,17
}
by

subtracting multiples of 3 from 17. Note that the remainder r = 2 of 17÷3 is
the smallest element of A.) In general, the well-ordering principle says the
set A = {

a−xb : x ∈Z, 0≤ a−xb ≤ a
}
has a smallest element r. Then r = a−qb

for some x = q ∈Z, so a = qb+ r. Because r ∈ A ⊆ {
0,1,2,3. . .

}
, we know 0≤ r.

In addition, it cannot happen that r ≥ b: If this were the case, then the
non-negative number r−b = (a−qb)−b = a−(q+1)b having form a−xb would
be a smaller element of A than r, and r was explicitly chosen as the smallest
element of A. Since it is not true that r ≥ b, it must be that r < b. Therefore
0≤ r < b. We’ve now produced a q and an r for which a = qb+ r and 0≤ r < b.
(Exercise 28 of Chapter 7 asks you to prove q and r are unique in the sense
that no other values of q and r have these properties.)

Moving on, it is time to clarify a small issue. This chapter asserted that
all of mathematics can be described with sets. But at the same time we
maintained that some mathematical entities are not sets. (For instance,
our approach was to say that an individual number, such as 5, is not itself
a set, though it may be an element of a set.) We have made this distinction
because we need a place to stand as we explore sets: After all, it would
appear suspiciously circular to declare that every mathematical entity is a
set, and then go on to define a set as a collection whose members are sets!

But to most mathematicians, saying “The number 5 is not a set,” is like
saying “The number 5 is not a number.”

The truth is that any number can itself be understood as a set. One
way to do this is to begin with the identification 0 = ;. Then 1 = {;} =
{0}, and 2 = {;, {;}

} = {0,1}, and 3 = {;, {;}, {;, {;}}
} = {0,1,2}. In general the

natural number n is the set n = {
0,1,2, . . . ,n−1

}
of the n numbers (which are

themselves sets) that come before it.
We will not undertake such a study here, but the elements of the number

systems Z, Q and R can all be defined in terms of sets. (Even the operations
of addition, multiplication, etc., can be defined in set-theoretic terms.) In
fact, mathematics itself can be regarded as the study of things that can
be described as sets. Any mathematical entity is a set, whether or not we
choose to think of it that way.
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1.10 Russell’s Paradox
This section contains some background information that may be interesting,
but is not used in the remainder of the book.

The philosopher and mathematician Bertrand Russell (1872–1970) did
groundbreaking work on the theory of sets and the foundations of math-
ematics. He was probably among the first to understand how the misuse
of sets can lead to bizarre and paradoxical situations. He is famous for an
idea that has come to be known as Russell’s paradox.

Russell’s paradox involves the following set of sets:

A = {
X : X is a set and X ∉ X

}
. (1.1)

In words, A is the set of all sets that do not include themselves as elements.
Most sets we can think of are in A. The set Z of integers is not an integer
(i.e., Z ∉Z) and therefore Z ∈ A. Also ;∈ A because ; is a set and ;∉;.

Is there a set that is not in A? Consider B = {{{{
. . .

}}}}
. Think of B as a

box containing a box, containing a box, containing a box, and so on, forever.
Or a set of identical Russian dolls, nested one inside the other, endlessly.
The curious thing about B is that it has just one element, namely B itself:

B = { {{{
. . .

}}}︸ ︷︷ ︸
B

}
.

Thus B ∈ B. As B does not satisfy B ∉ B, Equation (1.1) says B ∉ A.
Russell’s paradox arises from the question “Is A an element of A?”
For a set X , Equation (1.1) says X ∈ A means the same thing as X ∉ X .

So for X = A, the previous line says A ∈ A means the same thing as A ∉ A.
Conclusions: If A ∈ A is true, then it is false. If A ∈ A is false, then it is true.
This is Russell’s paradox.

Initially Russell’s paradox sparked a crisis among mathematicians. How
could a mathematical statement be both true and false? This seemed to be
in opposition to the very essence of mathematics.

The paradox instigated a very careful examination of set theory and
an evaluation of what can and cannot be regarded as a set. Eventually
mathematicians settled upon a collection of axioms for set theory—the
so-called Zermelo-Fraenkel axioms. One of these axioms is the well-
ordering principle of the previous section. Another, the axiom of foundation,
states that no non-empty set X is allowed to have the property X ∩ x 6= ; for
all its elements x. This rules out such circularly defined “sets” as B = {

B
}

mentioned above. If we adhere to these axioms, then situations like Russell’s
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paradox disappear. Mostmathematicians accept all this on faith and happily
ignore the Zermelo-Fraenkel axioms. Paradoxes like Russell’s do not tend
to come up in everyday mathematics—you have to go out of your way to
construct them.

Still, Russell’s paradox reminds us that precision of thought and lan-
guage is an important part of doing mathematics. The next chapter deals
with the topic of logic, a codification of thought and language.

Additional Reading on Sets. For a lively account of Bertrand Russell’s
life and work (including his paradox), see the graphic novel Logicomix: An
Epic Search For Truth, by Apostolos Doxiadis and Christos Papadimitriou.
Also see cartoonist Jessica Hagy’s online strip Indexed—it is based largely
on Venn diagrams.
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CHAPTER 2

Logic

Logic is a systematic way of thinking that allows us to parse the meanings
of sentences and to deduce new information from old information. You

use logic informally in everyday life and certainly also in doing mathematics.
For example, say you are working with a certain circle (call it “Circle X”),
and suppose you have available the following two pieces of information.

1. Circle X has a radius of 3 units.
2. If any circle has radius r, then its area is πr2 square units.

You have no trouble putting these two facts together to get:

3. Circle X has area 9π square units.

In doing this you are using logic to combine existing information to
produce new information. Because deducing new information is central to
mathematics, logic plays a fundamental role. This chapter is intended to
give you a sufficient mastery of it.

It is important to realize that logic is a process of deducing information
correctly, not just deducing correct information. For example, suppose we
were mistaken and Circle X actually had a radius of 4, not 3. Let’s look at
our exact same argument again.

1. Circle X has a radius of 3 units.
2. If any circle has radius r, then its area is πr2 square units.

3. Circle X has area 9π square units.

The sentence “Circle X has a radius of 3 units.” is now untrue, and so is our
conclusion “Circle X has area 9π square units.” But the logic is perfectly
correct; the information was combined correctly, even if some of it was false.
This distinction between correct logic and correct information is significant
because it is often important to follow the consequences of an incorrect
assumption. Ideally, we want both our logic and our information to be
correct, but the point is that they are different things.
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In proving theorems, we apply logic to information that is considered
obviously true (such as “Any two points determine exactly one line.”) or is
already known to be true (e.g., the Pythagorean theorem). If our logic is
correct, then anything we deduce from such information will also be true
(or at least as true as the “obviously true” information we began with).

2.1 Statements
The study of logic begins with statements. A statement is a sentence or
a mathematical expression that is either definitely true or definitely false.
You can think of statements as pieces of information that are either correct
or incorrect. Thus statements are pieces of information that we might
apply logic to in order to produce other pieces of information (which are also
statements).
Example 2.1 Here are some examples of statements. They are all true.

If a circle has radius r, then its area is πr2 square units.
Every even number is divisible by 2.
2 ∈Z
p

2 ∉Z
N⊆Z
The set {0,1,2} has three elements.
Some right triangles are isosceles.

Example 2.2 Here are some additional statements. They are all false.

All right triangles are isosceles.
5= 2
p

2 ∉R
Z⊆N
{0,1,2}∩N=;

Example 2.3 Here non-statements are paired with similar statements.

NOT a statement: Statement:
Add 5 to both sides. Adding 5 to both sides of x−5= 37 gives x = 42.
Z 42 ∈Z
42 42 is not a number.
What is the solution of 2x = 84? The solution of 2x = 84 is 42.

Free PDF version



36 Logic

Example 2.4 We will often use the letters P, Q, R and S to stand for
specific statements. When more letters are needed we can use subscripts.
Here are more statements, designated with letters. You decide which of
them are true and which are false.

P : For every integer n > 1, the number 2n −1 is prime.
Q : Every polynomial of degree n has at most n roots.
R : The function f (x)= x2 is continuous.
S1 :Z⊆;
S2 : {0,−1,−2}∩N=;

Designating statements with letters (as was done above) is a very useful
shorthand. In discussing a particular statement, such as “The function
f (x)= x2 is continuous,” it is convenient to just refer to it as R to avoid having
to write or say it many times.

Statements can contain variables. Here is an example.

P : If an integer x is a multiple of 6, then x is even.

This is a sentence that is true. (All multiples of 6 are even, so no matter
whichmultiple of 6 the integer x happens to be, it is even.) Since the sentence
P is definitely true, it is a statement. When a sentence or statement P
contains a variable such as x, we sometimes denote it as P(x) to indicate that
it is saying something about x. Thus the above statement can be denoted as

P(x) : If an integer x is a multiple of 6, then x is even.

A statement or sentence involving two variables might be denoted P(x, y),
and so on.

It is quite possible for a sentence containing variables to not be a state-
ment. Consider the following example.

Q(x) : The integer x is even.

Is this a statement? Whether it is true or false depends on just which integer
x is. It is true if x = 4 and false if x = 7, etc. But without any stipulations on
the value of x it is impossible to say whether Q(x) is true or false. Since it
is neither definitely true nor definitely false, Q(x) cannot be a statement.
A sentence such as this, whose truth depends on the value of one or more
variables, is called an open sentence. The variables in an open sentence
(or statement) can represent any type of entity, not just numbers. Here is
an open sentence where the variables are functions:
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R( f , g) : The function f is the derivative of the function g.

This open sentence is true if f (x) = 2x and g(x) = x2. It is false if f (x) = x3

and g(x)= x2, etc. A sentence such as R( f , g) (that involves variables) can be
denoted either as R( f , g) or just R. We use the expression R( f , g) when we
want to emphasize that the sentence involves variables.

We will have more to say about open sentences later, but for now let’s
return to statements.

Statements are everywhere in mathematics. Any result or theorem
that has been proved true is a statement. The quadratic formula and the
Pythagorean theorem are both statements:

P : The solutions of the equation ax2 +bx+ c = 0 are x = −b±
p

b2 −4ac
2a

.

Q : If a right triangle has legs of lengths a and b and hypotenuse of
length c, then a2 +b2 = c2.

Here is a very famous statement, so famous, in fact, that it has a name.
It is called Fermat’s last theorem after Pierre Fermat, a seventeenth-
century French mathematician who scribbled it in the margin of a book.

R : For all numbers a,b, c,n ∈N with n > 2, it is the case that an+bn 6= cn.

Fermat believed this statement to be true. He noted that he could prove it
was true, except the book’s margin was too narrow to contain his proof. It
is doubtful that he really had a correct proof in mind, for after his death
many generations of brilliant mathematicians tried unsuccessfully to prove
that his statement was true (or false). Finally, in 1993, Andrew Wiles of
Princeton University announced that he had devised a proof. Wiles had
worked on the problem for over seven years, and his proof runs through
hundreds of pages. The moral of this story is that some true statements
are not obviously true.

Here is another statement famous enough to be named. It was first
posed in the eighteenth century by the German mathematician Christian
Goldbach, and thus is called the Goldbach conjecture:

S : Every even integer greater than 2 is a sum of two prime numbers.

You must agree that S is either true or false. It appears to be true, because
when you examine even numbers that are bigger than 2, they seem to be
sums of two primes: 4 = 2+ 2, 6 = 3+ 3, 8 = 3+ 5, 10 = 5+ 5, 12 = 5+ 7,
100 = 17+83 and so on. But that’s not to say there isn’t some large even
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number that’s not the sum of two primes. If such a number exists, then S
is false. The thing is, in the over 260 years since Goldbach first posed this
problem, no one has been able to determine whether it’s true or false. But
since it is clearly either true or false, S is a statement.

This book is about the methods that can be used to prove that S (or any
other statement) is true or false. To prove that S is true, start with obvious
statements (or other statements that have been proven true) and use logic
to deduce more and more complex statements until finally we obtain the
statement S. Of course some statements are more difficult to prove than
others, and S appears to be notoriously difficult; we will concentrate on
statements that are easier to prove.

But the point is this: In proving that statements are true, we use logic
to help us understand statements and to combine pieces of information
to produce new pieces of information. In the next several sections we
explore some standard ways that statements can be combined to form new
statements, or broken down into simpler statements.

Exercises for Section 2.1

Decide whether or not the following are statements. In the case of a statement,
say if it is true or false, if possible.
1. Every real number is an even integer.
2. Every even integer is a real number.
3. If x and y are real numbers and 5x = 5y, then x = y.
4. Sets Z and N.
5. Sets Z and N are infinite.
6. Some sets are finite.
7. The derivative of any polynomial of degree 5 is a polynomial of degree 6.

8. N ∉P(N).
9. cos(x)=−1

10. (R×N)∩ (N×R)=N×N
11. The integer x is a multiple of 7.
12. If the integer x is a multiple of 7, then it is divisible by 7.
13. Either x is a multiple of 7, or it is not.
14. Call me Ishmael.
15. In the beginning, God created the heaven and the earth.
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2.2 And, Or, Not
The word “and” can be used to combine two statements to form a new
statement. Consider for example the following sentence.

R1 : The number 2 is even and the number 3 is odd.

We recognize this as a true statement, based on our ingrained understanding
of the meaning of the word “and.” Notice that R1 is made up of two simpler
statements:

P : The number 2 is even.
Q : The number 3 is odd.

These are joined together by the word “and” to form the more complex
statement R1. The statement R1 asserts that P and Q are both true. Since
both P and Q are in fact true, the statement R1 is also true.

Had one or both of P and Q been false, then R1 would be false. For
instance, each of the following statements is false.

R2 : The number 1 is even and the number 3 is odd.
R3 : The number 2 is even and the number 4 is odd.
R4 : The number 3 is even and the number 2 is odd.

From these examples we see that any two statements P and Q can be
combined to form a new statement “P and Q.” In the spirit of using letters
to denote statements, we now introduce the special symbol ∧ to stand for the
word “and.” Thus if P and Q are statements, P∧Q stands for the statement
“P and Q.” The statement P ∧Q is true if both P and Q are true; otherwise
it is false. This is summarized in the following table, called a truth table.

P Q P ∧Q

T T T
T F F
F T F
F F F

In this table, T stands for “True,” and F stands for “False.” (T and F are
called truth values.) Each line lists one of the four possible combinations
or truth values for P and Q, and the column headed by P ∧Q tells whether
the statement P ∧Q is true or false in each case.
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Statements can also be combined using the word “or.” Consider the
following four statements.

S1 : The number 2 is even or the number 3 is odd.
S2 : The number 1 is even or the number 3 is odd.
S3 : The number 2 is even or the number 4 is odd.
S4 : The number 3 is even or the number 2 is odd.

In mathematics, the assertion “P or Q” is always understood to mean that
one or both of P and Q is true. Thus statements S1, S2, S3 are all true,
while S4 is false. The symbol ∨ is used to stand for the word “or.” So if P
and Q are statements, P∨Q represents the statement “P or Q.” Here is the
truth table.

P Q P ∨Q

T T T
T F T
F T T
F F F

It is important to be aware that the meaning of “or” expressed in the
above table differs from the way it is often used in everyday conversation.
For example, suppose a university official makes the following threat:

You pay your tuition or you will be withdrawn from school.

You understand that this means that either you pay your tuition or you will
be withdrawn from school, but not both. In mathematics we never use the
word “or” in such a sense. For us “or” means exactly what is stated in the
table for ∨. Thus P ∨Q being true means one or both of P and Q is true. If
we ever need to express the fact that exactly one of P and Q is true, we use
one of the following constructions:

P or Q, but not both.
Either P or Q.
Exactly one of P or Q.

If the university official were a mathematician, he might have qualified his
statement in one of the following ways.

Pay your tuition or you will be withdrawn from school, but not both.
Either you pay your tuition or you will be withdrawn from school.
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To conclude this section, we mention another way of obtaining new
statements from old ones. Given any statement P, we can form the new
statement “It is not true that P.” For example, consider the following
statement.

The number 2 is even.

This statement is true. Now change it by inserting the words “It is not true
that” at the beginning:

It is not true that the number 2 is even.

This new statement is false.

For another example, starting with the false statement “2 ∈;,” we get
the true statement “It is not true that 2 ∈;.”

We use the symbol ∼ to stand for the words “It’s not true that,” so ∼ P
means “It’s not true that P.” We can read ∼ P simply as “not P.” Unlike
∧ and ∨, which combine two statements, the symbol ∼ just alters a single
statement. Thus its truth table has just two lines, one for each possible
value of P.

P ∼ P

T F
F T

The statement ∼ P is called the negation of P. The negation of a specific
statement can be expressed in numerous ways. Consider

P : The number 2 is even.

Here are several ways of expressing its negation.

∼ P : It’s not true that the number 2 is even.
∼ P : It is false that the number 2 is even.
∼ P : The number 2 is not even.

In this section we’ve learned how to combine or modify statements with
the operations ∧, ∨ and ∼. Of course we can also apply these operations
to open sentences or a mixture of open sentences and statements. For
example, (x is an even integer)∧ (3 is an odd integer) is an open sentence
that is a combination of an open sentence and a statement.
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Exercises for Section 2.2
Express each statement or open sentence in one of the forms P ∧Q, P ∨Q, or ∼ P.
Be sure to also state exactly what statements P and Q stand for.
1. The number 8 is both even and a power of 2.
2. The matrix A is not invertible.
3. x 6= y 4. x < y 5. y≥ x

6. There is a quiz scheduled for Wednesday or Friday.
7. The number x equals zero, but the number y does not.
8. At least one of the numbers x and y equals 0.

9. x ∈ A−B 10. x ∈ A∪B 11. A ∈ {
X ∈P(N) : |X | <∞}

12. Happy families are all alike, but each unhappy family is unhappy in its own way.
(Leo Tolstoy, Anna Karenina)

13. Human beings want to be good, but not too good, and not all the time.
(George Orwell)

14. A man should look for what is, and not for what he thinks should be.
(Albert Einstein)

2.3 Conditional Statements
There is yet another way to combine two statements. Suppose we have in
mind a specific integer a. Consider the following statement about a.

R : If the integer a is a multiple of 6, then a is divisible by 2.

We immediately spot this as a true statement based on our knowledge of
integers and the meanings of the words “if” and “then.” If integer a is a
multiple of 6, then a is even, so therefore a is divisible by 2. Notice that R is
built up from two simpler statements:

P : The integer a is a multiple of 6.
Q : The integer a is divisible by 2.
R : If P, then Q.
In general, given any two statements P and Q whatsoever, we can form

the new statement “If P, then Q.” This is written symbolically as P ⇒ Q
which we read as “If P, then Q,” or “P implies Q.” Like ∧ and ∨, the symbol
⇒ has a very specific meaning. When we assert that the statement P ⇒Q
is true, we mean that if P is true then Q must also be true. (In other words
we mean that the condition P being true forces Q to be true.) A statement
of form P ⇒Q is called a conditional statement because it means Q will
be true under the condition that P is true.
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Think of P ⇒Q as a promise that whenever P is true, Q will be true also.
There is only one way this promise can be broken (i.e., be false), namely if P
is true but Q is false. So the truth table for the promise P ⇒Q is as follows:

P Q P ⇒Q

T T T
T F F
F T T
F F T

Perhaps you are bothered by how P ⇒Q is true in the last two lines. Here
is an example to explain it. Suppose your professor makes this promise:

If you pass the final exam, then you will pass the course.

Your professor is making the promise

(You pass the exam) ⇒ (You pass the course).

Under what circumstances did she lie? There are four possible scenarios,
depending on whether or not you passed the exam and whether or not you
passed the course. These scenarios are tallied in the following table.

You pass exam You pass course (You pass exam)⇒ (You pass course)
T T T
T F F
F T T
F F T

The first row is the scenario in which you pass the exam and you pass
the course. Clearly the professor kept her promise, so the T in the third
column indicates that she told the truth. In the second row, you passed the
exam but failed the course. In this case your professor broke her promise,
and the F in the third column indicates that what she said was untrue.

The third row describes the scenario in which you failed the exam but
still passed the course. How could that happen? Maybe your professor felt
sorry for you. But that doesn’t make her a liar. Her only promise was that
if you passed the exam then you would pass the course. She did not say
passing the exam was the only way to pass the course. Since she didn’t lie,
then she told the truth, so there is a T in the third column.

Finally look at the fourth row: you failed the exam and failed the course.
Your professor certainly did not lie to you. Hence the T in the third column.
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For another example, consider this statement:

If this month is September, then there is an equinox this month.

An equinox is a day for which there are equal hours of darkness and light.
There are two equinoxes per year, one in September and the other in March.
The above statement is thus unquestionably true, for it asserts correctly
that if the current month is September, then an equinox will occur this
month. In symbolic form, our statement is

(This month is September) ⇒ (There is an equinox this month).

This statement is true, but the open sentences P: “This month is September,”
and Q: “There is an equinox this month,” are either true or false, depending
on what month it is. But P ⇒ Q is always true. This is shown below for
three (out of 12) months. Notice how P ⇒Q is true, even when P is false.

This month
is September

There is an
equinox
this month

(This month
is September

)
⇒

There is an
equinox
this month


Sept. T T T

March F T T
May F F T

As P ⇒Q is a true statement in this particular example, there is no month
with P true and Q false. (Unless we imagine that Earth is destroyed by an
asteroid before September 21, a possibility that we shall not entertain.)

In mathematics, whenever we encounter the construction “If P, then Q,”
it means exactly what the truth table for ⇒ expresses. Of course there are
other grammatical constructions that also mean P ⇒Q. Here is a summary
of the main ones. The meaning of each is encapsulated by the table for ⇒.

If P, then Q.
Q if P.
Q whenever P.
Q, provided that P.
Whenever P, then also Q.
P is a sufficient condition for Q.
For Q, it is sufficient that P.
Q is a necessary condition for P.
For P, it is necessary that Q.
P only if Q.



P ⇒Q

P Q P ⇒Q

T T T
T F F
F T T
F F T
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These can all be used in the place of (and mean exactly the same thing
as) “If P, then Q.” You should analyze the meaning of each one and convince
yourself that it captures the meaning of P ⇒Q. For example, P ⇒Q means
the condition of P being true is enough (i.e., sufficient) to make Q true;
hence “P is a sufficient condition for Q.”

The wording can be tricky. An everyday situation may help clarify it.
For example, consider your professor’s promise:

(You pass the exam)⇒ (You pass the course).

This means that your passing the exam is a sufficient (though perhaps not
necessary) condition for your passing the course. Thus your professor might
just as well have phrased her promise in one of the following ways.

Passing the exam is a sufficient condition for passing the course.
For you to pass the course, it is sufficient that you pass the exam.

However, when we want to say “If P, then Q” in everyday conversation,
we do not normally express this as “Q is a necessary condition for P” or
“P only if Q.” But such constructions are not uncommon in mathematics.
To understand why they make sense, notice that P ⇒Q being true means
that it’s impossible that P is true but Q is false, so in order for P to be true
it is necessary that Q is true; hence “Q is a necessary condition for P.” And
this means that P can only be true if Q is true, i.e., “P only if Q.”

Exercises for Section 2.3
Without changing their meanings, convert each of the following sentences into a
sentence having the form “If P, then Q.”
1. A matrix is invertible provided that its determinant is not zero.
2. For a function to be continuous, it is sufficient that it is differentiable.
3. For a function to be continuous, it is necessary that it is integrable.
4. A function is rational if it is a polynomial.
5. An integer is divisible by 8 only if it is divisible by 4.
6. Whenever a surface has only one side, it is non-orientable.
7. A series converges whenever it converges absolutely.
8. A geometric series with ratio r converges if |r| < 1.
9. A function is integrable provided the function is continuous.

10. The discriminant is negative only if the quadratic equation has no real solutions.
11. You fail only if you stop writing. (Ray Bradbury)
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12. People will generally accept facts as truth only if the facts agree with what they
already believe. (Andy Rooney)

13. Whenever people agree with me I feel I must be wrong. (Oscar Wilde)

2.4 Biconditional Statements
It is important to understand that P ⇒Q is not the same as Q ⇒ P. To see
why, suppose that a is some integer and consider the statements

(a is a multiple of 6) ⇒ (a is divisible by 2),
(a is divisible by 2) ⇒ (a is a multiple of 6).

The first statement asserts that if a is a multiple of 6 then a is divisible
by 2. This is clearly true, for any multiple of 6 is even and therefore divisible
by 2. The second statement asserts that if a is divisible by 2 then it is a
multiple of 6. This is not necessarily true, for a = 4 (for instance) is divisible
by 2, yet not a multiple of 6. Therefore the meanings of P ⇒Q and Q ⇒ P
are in general quite different. The conditional statement Q ⇒ P is called
the converse of P ⇒Q, so a conditional statement and its converse express
entirely different things.

But sometimes, if P and Q are just the right statements, it can happen
that P ⇒Q and Q ⇒ P are both necessarily true. For example, consider the
statements

(a is even) ⇒ (a is divisible by 2),
(a is divisible by 2) ⇒ (a is even).

No matter what value a has, both of these statements are true. Since both
P ⇒Q and Q ⇒ P are true, it follows that (P ⇒Q)∧ (Q ⇒ P) is true.

Let’s introduce a new symbol ⇔ to express the meaning of the statement
(P ⇒Q)∧ (Q ⇒ P). The expression P ⇔Q is understood to have exactly the
samemeaning as (P ⇒Q)∧(Q ⇒ P). According to the previous section, Q ⇒ P
is read as “P if Q,” and P ⇒ Q can be read as “P only if Q.” Therefore we
pronounce P ⇔Q as “P if and only if Q.” For example, given an integer a,
we have the true statement

(a is even)⇔ (a is divisible by 2),

which we can read as “The integer a is even if and only if a is divisible by 2.”
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The truth table for ⇔ is shown below. Notice that in the first and last
rows, both P ⇒Q and Q ⇒ P are true (according to the truth table for ⇒), so
(P ⇒Q)∧ (Q ⇒ P) is true, and hence P ⇔Q is true. However, in the middle
two rows one of P ⇒Q or Q ⇒ P is false, so (P ⇒Q)∧(Q ⇒ P) is false, making
P ⇔Q false.

P Q P ⇔Q

T T T
T F F
F T F
F F T

Compare the statement R : (a is even) ⇔ (a is divisible by 2) with this
truth table. If a is even then the two statements on either side of ⇔ are
true, so according to the table R is true. If a is odd then the two statements
on either side of ⇔ are false, and again according to the table R is true.
Thus R is true no matter what value a has. In general, P ⇔Q being true
means P and Q are both true or both false.

Not surprisingly, there are many ways of saying P ⇔Q in English. The
following constructions all mean P ⇔Q:

P if and only if Q.
P is a necessary and sufficient condition for Q.
For P it is necessary and sufficient that Q.
P is equivalent to Q.
If P, then Q, and conversely.


P ⇔Q

The first three of these just combine constructions from the previous section
to express that P ⇒Q andQ ⇒ P. In the last one, thewords “...and conversely”
mean that in addition to “If P, then Q” being true, the converse statement
“If Q, then P” is also true.

Exercises for Section 2.4
Without changing their meanings, convert each of the following sentences into a
sentence having the form “P if and only if Q.”
1. For matrix A to be invertible, it is necessary and sufficient that det(A) 6= 0.
2. If a function has a constant derivative then it is linear, and conversely.
3. If xy= 0 then x = 0 or y= 0, and conversely.
4. If a ∈Q then 5a ∈Q, and if 5a ∈Q then a ∈Q.
5. For an occurrence to become an adventure, it is necessary and sufficient for one

to recount it. (Jean-Paul Sartre)
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2.5 Truth Tables for Statements
You should now know the truth tables for ∧, ∨, ∼, ⇒ and ⇔. They should
be internalized as well as memorized. You must understand the symbols
thoroughly, for we now combine them to form more complex statements.

For example, suppose we want to convey that one or the other of P and Q
is true but they are not both true. No single symbol expresses this, but we
could combine them as

(P ∨Q)∧∼ (P ∧Q),

which literally means:

P or Q is true, and it is not the case that both P and Q are true.

This statement will be true or false depending on the truth values of P and Q.
In fact we can make a truth table for the entire statement. Begin as usual
by listing the possible true/false combinations of P and Q on four lines. The
statement (P ∨Q)∧∼ (P ∧Q) contains the individual statements (P ∨Q) and
(P ∧Q), so we next tally their truth values in the third and fourth columns.
The fifth column lists values for ∼ (P ∧Q), and these are just the opposites
of the corresponding entries in the fourth column. Finally, combining the
third and fifth columns with ∧, we get the values for (P ∨Q)∧∼ (P ∧Q) in
the sixth column.

P Q (P ∨Q) (P ∧Q) ∼ (P ∧Q) (P ∨Q)∧∼ (P ∧Q)

T T T T F F
T F T F T T
F T T F T T
F F F F T F

This truth table tells us that (P ∨Q)∧∼ (P ∧Q) is true precisely when one
but not both of P and Q are true, so it has the meaning we intended. (Notice
that the middle three columns of our truth table are just “helper columns”
and are not necessary parts of the table. In writing truth tables, you may
choose to omit such columns if you are confident about your work.)

For another example, consider the following familiar statement about
real numbers x and y:

The product xy equals zero if and only if x = 0 or y= 0.

This can be modeled as (xy= 0)⇔ (x = 0 ∨ y= 0). If we introduce letters P,Q
and R for the statements xy= 0, x = 0 and y= 0, it becomes P ⇔ (Q∨R). Notice
that the parentheses are necessary here, for without themwe wouldn’t know
whether to read the statement as P ⇔ (Q∨R) or (P ⇔Q)∨R.
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Making a truth table for P ⇔ (Q∨R) entails a line for each T/F combina-
tion for the three statements P, Q and R. The eight possible combinations
are tallied in the first three columns of the following table.

P Q R Q∨R P ⇔ (Q∨R)

T T T T T
T T F T T
T F T T T
T F F F F
F T T T F
F T F T F
F F T T F
F F F F T

We fill in the fourth column using our knowledge of the truth table for ∨.
Finally the fifth column is filled in by combining the first and fourth columns
with our understanding of the truth table for ⇔. The resulting table gives
the true/false values of P ⇔ (Q∨R) for all values of P, Q and R.

Notice that when we plug in various values for x and y, the statements
P : xy= 0, Q : x = 0 and R : y= 0 have various truth values, but the statement
P ⇔ (Q ∨R) is always true. For example, if x = 2 and y = 3, then P, Q and
R are all false. This scenario is described in the last row of the table, and
there we see that P ⇔ (Q ∨R) is true. Likewise if x = 0 and y = 7, then P
and Q are true and R is false, a scenario described in the second line of
the table, where again P ⇔ (Q ∨R) is true. There is a simple reason why
P ⇔ (Q∨R) is true for any values of x and y: It is that P ⇔ (Q∨R) represents
(xy = 0) ⇔ (x = 0 ∨ y = 0), which is a true mathematical statement. It is
absolutely impossible for it to be false.

This may make you wonder about the lines in the table where P ⇔ (Q∨R)
is false. Why are they there? The reason is that P ⇔ (Q ∨ R) can also
represent a false statement. To see how, imagine that at the end of the
semester your professor makes the following promise.

You pass the class if and only if you get an “A” on the final or you get a
“B” on the final.

This promise has the form P ⇔ (Q∨R), so its truth values are tabulated in
the above table. Imagine it turned out that you got an “A” on the exam but
failed the course. Then surely your professor lied to you. In fact, P is false,
Q is true and R is false. This scenario is reflected in the sixth line of the
table, and indeed P ⇔ (Q∨R) is false (i.e., it is a lie).
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The moral of this example is that people can lie, but true mathematical
statements never lie.

We close this section with a word about the use of parentheses. The
symbol∼ is analogous to theminus sign in algebra. It negates the expression
it precedes. Thus ∼ P ∨Q means (∼ P)∨Q, not ∼ (P ∨Q). In ∼ (P ∨Q), the
value of the entire expression P ∨Q is negated.

Exercises for Section 2.5
Write a truth table for the logical statements in problems 1–9:
1. P ∨ (Q ⇒ R)

2. (Q∨R)⇔ (R∧Q)

3. ∼ (P ⇒Q)

4. ∼ (P ∨Q)∨ (∼ P)

5. (P∧∼ P)∨Q

6. (P∧∼ P)∧Q

7. (P∧∼ P)⇒Q

8. P ∨ (Q∧∼ R)

9. ∼ (∼ P∨∼Q)

10. Suppose the statement ((P ∧Q)∨R)⇒ (R∨S) is false. Find the truth values of
P,Q,R and S. (This can be done without a truth table.)

11. Suppose P is false and that the statement (R ⇒ S) ⇔ (P ∧Q) is true. Find the
truth values of R and S. (This can be done without a truth table.)

2.6 Logical Equivalence
In contemplating the truth table for P ⇔Q, you probably noticed that P ⇔Q
is true exactly when P and Q are both true or both false. In other words,
P ⇔Q is true precisely when at least one of the statements P∧Q or ∼ P∧∼Q
is true. This may tempt us to say that P ⇔ Q means the same thing as
(P ∧Q)∨ (∼ P∧∼Q).

To see if this is really so, we can write truth tables for P ⇔ Q and
(P ∧Q)∨ (∼ P∧ ∼ Q). In doing this, it is more efficient to put these two
statements into the same table, as follows. (This table has helper columns
for the intermediate expressions ∼ P, ∼Q, (P ∧Q) and (∼ P∧∼Q).)

P Q ∼ P ∼Q (P ∧Q) (∼ P∧∼Q) (P ∧Q)∨ (∼ P∧∼Q) P ⇔Q

T T F F T F T T
T F F T F F F F
F T T F F F F F
F F T T F T T T

The table shows that P ⇔ Q and (P ∧Q)∨ (∼ P∧ ∼ Q) have the same truth
value, no matter the values P and Q. It is as if P ⇔Q and (P∧Q)∨(∼ P∧∼Q)
are algebraic expressions that are equal no matter what is “plugged into”
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variables P and Q. We express this state of affairs by writing

P ⇔Q = (P ∧Q)∨ (∼ P∧∼Q)

and saying that P ⇔Q and (P ∧Q)∨ (∼ P∧∼Q) are logically equivalent.
In general, two statements are logically equivalent if their truth

values match up line-for-line in a truth table.
Logical equivalence is important because it can give us different (and

potentially useful) ways of looking at the same thing. As an example, the
following table shows that P ⇒Q is logically equivalent to (∼Q)⇒ (∼ P).

P Q ∼ P ∼Q (∼Q)⇒ (∼ P) P ⇒Q

T T F F T T
T F F T F F
F T T F T T
F F T T T T

The fact P ⇒Q = (∼Q)⇒ (∼ P) is useful because so many theorems have
the form P ⇒Q. As we will see in Chapter 5, proving such a theorem may
be easier if we express it in the logically equivalent form (∼Q)⇒ (∼ P).

Two pairs of logically equivalent statements in particular are significant
enough to have a special name: DeMorgan’s laws.

Fact 2.1 (DeMorgan’s Laws)
1. ∼ (P ∧Q) = (∼ P)∨ (∼Q)
2. ∼ (P ∨Q) = (∼ P)∧ (∼Q)

The first of DeMorgan’s laws is verified by the following table. You are
asked to verify the second in one of the exercises.

P Q ∼ P ∼Q P ∧Q ∼ (P ∧Q) (∼ P)∨ (∼Q)

T T F F T F F
T F F T F T T
F T T F F T T
F F T T F T T

DeMorgan’s laws are actually very natural and intuitive. Consider the
statement ∼ (P ∧Q), which we can interpret as meaning that it is not the
case that both P and Q are true. If it is not the case that both P and Q are
true, then at least one of P or Q is false, in which case (∼ P)∨ (∼Q) is true.
Thus ∼ (P ∧Q) means the same thing as (∼ P)∨ (∼Q).
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DeMorgan’s laws can be very useful. Suppose we happen to know that
some statement of form ∼ (P ∨Q) is true. The second of DeMorgan’s laws
tells us that (∼ Q)∧ (∼ P) is also true, hence ∼ P and ∼ Q are both true as
well. Quickly obtaining this additional information can be extremely useful.

Here is a summary of some significant logical equivalences. Those that
are not immediately obvious can be verified with truth tables.

P ⇒Q = (∼Q)⇒ (∼ P) Contrapositive law (2.1)
∼ (P ∧Q) = ∼ P∨∼Q
∼ (P ∨Q) = ∼ P∧∼Q

}
DeMorgan’s laws (2.2)

P ∧Q = Q∧P
P ∨Q = Q∨P

}
Commutative laws (2.3)

P ∧ (Q∨R) = (P ∧Q)∨ (P ∧R)
P ∨ (Q∧R) = (P ∨Q)∧ (P ∨R)

}
Distributive laws (2.4)

P ∧ (Q∧R) = (P ∧Q)∧R
P ∨ (Q∨R) = (P ∨Q)∨R

}
Associative laws (2.5)

Notice how the distributive law P ∧ (Q ∨R) = (P ∧Q)∨ (P ∧R) has the
same structure as the distributive law p · (q+ r) = p · q+ p · r from algebra.
Concerning the associative laws, the fact that P∧(Q∧R)= (P∧Q)∧R means
that the position of the parentheses is irrelevant, and we can write this as
P ∧Q∧R without ambiguity. Similarly, we may drop the parentheses in an
expression such as P ∨ (Q∨R).

But parentheses are essential when there is a mix of ∧ and ∨, as in
P ∨ (Q∧R). Indeed, P ∨ (Q∧R) and (P ∨Q)∧R are not logically equivalent.
(See Exercise 13 for Section 2.6, below.)

Exercises for Section 2.6
A. Use truth tables to show that the following statements are logically equivalent.

1. P ∧ (Q∨R)= (P ∧Q)∨ (P ∧R)

2. P ∨ (Q∧R)= (P ∨Q)∧ (P ∨R)

3. P ⇒Q = (∼ P)∨Q

4. ∼ (P ∨Q) = (∼ P)∧ (∼Q)

5. ∼ (P ∨Q∨R) = (∼ P)∧ (∼Q)∧ (∼ R)

6. ∼ (P ∧Q∧R) = (∼ P)∨ (∼Q)∨ (∼ R)

7. P ⇒Q = (P∧∼Q)⇒ (Q∧∼Q)

8. ∼ P ⇔Q = (P ⇒∼Q)∧ (∼Q ⇒ P)

B. Decide whether or not the following pairs of statements are logically equivalent.
9. P ∧Q and ∼ (∼ P∨∼Q)

10. (P ⇒Q)∨R and ∼ ((P∧∼Q)∧∼ R)

11. (∼ P)∧ (P ⇒Q) and ∼ (Q ⇒ P)

12. ∼ (P ⇒Q) and P∧∼Q

13. P ∨ (Q∧R) and (P ∨Q)∧R

14. P ∧ (Q∨∼Q) and (∼ P)⇒ (Q∧∼Q)
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2.7 Quantifiers
Using symbols∧, ∨, ∼,⇒ and⇔, we can deconstructmany English sentences
into a symbolic form. As we have seen, this symbolic form can help us
understand the logical structure of sentences and how different sentences
may actually have the same meaning (as in logical equivalence).

But these symbols alone are not powerful enough to capture the full
meaning of every statement. To see why, imagine that we are dealing with
an infinite set S = {

x1, x2, x3, . . .
}
of integers. Suppose we want to express the

statement “Every element of S is odd.” We would have to write

P(x1)∧P(x2)∧P(x3)∧P(x4)∧·· · ,

where P(x) is the open sentence “x is odd.” And if we wanted the express
“There is at least one element of S that is odd,” we’d have to write

P(x1)∨P(x2)∨P(x3)∨P(x4)∨·· · .

The problem is that these expressions trail on forever.
To overcome this defect, we will introduce two new symbols ∀ and ∃. The

symbol ∀ stands for the phrase “for all” and ∃ stands for “there exists.” Thus
the statement “Every element of S is odd.” is written symbolically as

∀x ∈ S, P(x),

and “There is at least one element of S that is odd,” is written succinctly as

∃x ∈ S, P(x),

These new symbols are called quantifiers.

Definition 2.1 The symbols ∀ and ∃ are called quantifiers.
∀ stands for the phrase “For all” or “For every,” or “For each,”
∃ stands for the phrase “There exists a” or “There is a.”

Thus the statement
For every n ∈Z, 2n is even,

can be expressed in either of the following ways:
∀n ∈Z, 2n is even,
∀n ∈Z, E(2n).
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Likewise, a statement such as

There exists a subset X of N for which |X | = 5.

can be translated as

∃X , (X ⊆N)∧ (|X | = 5) or ∃X ⊆N, |X | = 5 or ∃X ∈P(N), |X | = 5.

The symbols ∀ and ∃ are called quantifiers because they refer in some
sense to the quantity (i.e., all or some) of the variable that follows them. The
symbol ∀ is called the universal quantifier and ∃ is called the existential
quantifier. Statements containg them are called quantified statements.
A statement beginning with ∀ is called a universally quantified state-
ment, and one beginning with ∃ is called an existentially quantified
statement.

Example 2.5 The following English statements are paired with their
translations into symbolic form.

Every integer that is not odd is even.
∀n ∈Z,∼ (n is odd )⇒ (n is even), or ∀n ∈Z,∼O(n)⇒ E(n).
There is an integer that is not even.
∃n ∈Z,∼ E(n).
For every real number x, there is a real number y for which y3 = x.
∀x ∈R,∃ y ∈R, y3 = x.

Given any two rational numbers a and b, the product ab is rational.
∀a,b ∈Q, ab ∈Q.

Given a set S (such as, but not limited to, N, Z, Q, etc.), a quantified
statement of form ∀x ∈ S,P(x) is understood to be true if P(x) is true for every
x ∈ S. If there is at least one x ∈ S for which P(x) is false, then ∀x ∈ S,P(x) is
a false statement. Similarly, ∃x ∈ S,P(x) is true provided that P(x) is true
for at least one element x ∈ S; otherwise it is false. Thus each statement in
Example 2.5 is true. Here are some examples of quantified statements that
are false:

Example 2.6 The following false quantified statements are paired with
their translations.

Every integer is even.
∀n ∈Z, E(n).
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There is an integer n for which n2 = 2.
∃n ∈Z, n2 = 2.

For every real number x, there is a real number y for which y2 = x.
∀x ∈R, ∃ y ∈R, y2 = x.

Given any two rational numbers a and b, the number
p

ab is rational.
∀a,b ∈Q,

p
ab ∈Q.

Example 2.7 When a statement contains two quantifiers you must be
very alert to their order, for reversing the order can change the meaning.
Consider the following statement from Example 2.5.

∀x ∈R,∃ y ∈R, y3 = x.

This statement is true, for nomatter what number x is there exists a number
y= 3

p
x for which y3 = x. Now reverse the order of the quantifiers to get the

new statement

∃ y ∈R,∀x ∈R, y3 = x.

This new statement says that there exists a particular number y with the
property that y3 = x for every real number x. Since no number y can have
this property, the statement is false. The two statements above have entirely
different meanings.

Quantified statements are often misused in casual conversation. Maybe
you’ve heard someone say “All students do not pay full tuition.” when they
mean “Not all students pay full tuition.” While the mistake is perhaps
marginally forgivable in casual conversation, it must never be made in a
mathematical context. Do not say “All integers are not even.” because that
means there are no even integers. Instead, say “Not all integers are even.”

Exercises for Section 2.7
Write the following as English sentences. Say whether they are true or false.
1. ∀x ∈R, x2 > 0

2. ∀x ∈R,∃n ∈N, xn ≥ 0

3. ∃a ∈R,∀x ∈R,ax = x

4. ∀X ∈P(N), X ⊆R
5. ∀n ∈N,∃X ∈P(N), |X | < n

6. ∃n ∈N,∀X ∈P(N), |X | < n

7. ∀X ⊆N,∃n ∈Z, |X | = n

8. ∀n ∈Z, ∃X ⊆N, |X | = n

9. ∀n ∈Z,∃m ∈Z,m = n+5

10. ∃m ∈Z,∀n ∈Z,m = n+5
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2.8 More on Conditional Statements
It is time to address a very important point about conditional statements
that contain variables. Tomotivate this, let’s return to the following example
concerning integers x:

(x is a multiple of 6)⇒ (x is even).

As noted earlier, since every multiple of 6 is even, this is a true statement
no matter what integer x is. We could even underscore this fact by writing
this true statement as

∀x ∈Z, (x is a multiple of 6)⇒ (x is even).

But now switch things around to get the different statement

(x is even)⇒ (x is a multiple of 6).

This is true for some values of x such as −6, 12, 18, etc., but false for others
(such as 2, 4, etc.). Thus we do not have a statement, but rather an open
sentence. (Recall from Section 2.1 that an open sentence is a sentence
whose truth value depends on the value of a certain variable or variables.)
However, by putting a universal quantifier in front we get

∀x ∈Z, (x is even)⇒ (x is a multiple of 6),

which is definitely false, so this new expression is a statement, not an open
sentence. In general, given any two open sentences P(x) and Q(x) about
integers x, the expression ∀x ∈Z, P(x)⇒Q(x) is either true or false, so it is
a statement, not an open sentence.

Now we come to the very important point. In mathematics, whenever
P(x) and Q(x) are open sentences concerning elements x in some set S
(depending on context), an expression of form P(x)⇒Q(x) is understood to be
the statement ∀x ∈ S, P(x)⇒Q(x). In other words, if a conditional statement
is not explicitly quantified then there is an implied universal quantifier in
front of it. This is done because statements of the form ∀x ∈ S, P(x)⇒Q(x)
are so common in mathematics that we would get tired of putting the ∀x ∈ S
in front of them.

Thus the following sentence is a true statement (as it is true for all x).

If x is a multiple of 6, then x is even.
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Likewise, the next sentence is a false statement (as it is not true for all x).

If x is even, then x is a multiple of 6.

This leads to the following significant interpretation of a conditional
statement, which is more general than (but consistent with) its definition
in Section 2.3.

Definition 2.2 If P and Q are statements or open sentences, then

“If P, then Q,”

is a statement. This statement is true if it’s impossible for P to be true
while Q is false. It is false if there is at least one instance in which P is
true but Q is false.

Thus the following are true statements:

If x ∈R, then x2 +1> 0.
If a function f is differentiable on R, then f is continuous on R.

Likewise, the following are false statements:

If p is a prime number, then p is odd. (2 is prime.)
If f is a rational function, then f has an asymptote. (x2 is rational.)

2.9 Translating English to Symbolic Logic
In writing (and reading) proofs of theorems, we must always be alert to the
logical structure and meanings of the sentences. Sometimes it is necessary
or helpful to parse them into expressions involving logic symbols. This may
be done mentally or on scratch paper, or occasionally even explicitly within
the body of a proof. The purpose of this section is to give you sufficient
practice in translating English sentences into symbolic form so that you
can better understand their logical structure. Here are some examples:

Example 2.8 Consider the Mean Value Theorem from Calculus:

If f is continuous on the interval [a,b] and differentiable on (a,b), then
there is a number c ∈ (a,b) for which f ′(c)= f (b)− f (a)

b−a .

Here is a translation to symbolic form:((
f cont. on [a,b]

)∧ (
f is diff. on (a,b)

))⇒ (
∃ c ∈ (a,b), f ′(c)= f (b)− f (a)

b−a

)
.
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Example 2.9 Consider Goldbach’s conjecture, from Section 2.1:

Every even integer greater than 2 is the sum of two primes.

This can be translated in the following ways, where P is the set of prime
numbers and S = {4,6,8,10, . . .} is the set of even integers greater than 2.(

n ∈ S
)⇒ (∃ p, q ∈ P, n = p+ q

)
∀ n ∈ S, ∃ p, q ∈ P, n = p+ q

These translations of Goldbach’s conjecture illustrate an important point.
The first has the basic structure (n ∈ S)⇒Q(n) and the second has structure
∀ n ∈ S, Q(n), yet they have exactly the same meaning. This is significant.
Every universally quantified statement can be expressed as a conditional
statement.

Fact 2.2 Suppose S is a set and Q(x) is a statement about x for each
x ∈ S. The following statements mean the same thing:

∀ x ∈ S, Q(x)
(x ∈ S)⇒Q(x).

This fact is significant because so many theorems have the form of
a conditional statement. (The Mean Value Theorem is an example.) In
proving a theorem we have to think carefully about what it says. Sometimes
a theoremwill be expressed as a universally quantified statement, but it will
be more convenient to think of it as a conditional statement. Understanding
the above fact allows us to switch between the two forms.

The section closes with some final points. In translating a statement,
be attentive to its intended meaning. Don’t jump into, for example, auto-
matically replacing every “and” with ∧ and “or” with ∨. An example:

At least one of the integers x and y is even.

Don’t be led astray by the presence of the word “and.” The meaning of
the statement is that one or both of the numbers is even, so it should be
translated with “or,” not “and”:

(x is even) ∨ (y is even).

Finally, the logical meaning of “but” can be captured by “and.” The
sentence “The integer x is even, but the integer y is odd,” is translated as

(x is even) ∧ (y is odd).
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Exercises for Section 2.9

Translate each of the following sentences into symbolic logic.
1. If f is a polynomial and its degree is greater than 2, then f ′ is not constant.
2. The number x is positive but the number y is not positive.
3. If x is prime, then p

x is not a rational number.
4. For every prime number p there is another prime number q with q > p.
5. For every positive number ε, there is a positive number δ for which |x−a| < δ

implies | f (x)− f (a)| < ε.
6. For every positive number ε there is a positive number M for which | f (x)−b| < ε,

whenever x > M.
7. There exists a real number a for which a+ x = x for every real number x.
8. I don’t eat anything that has a face.
9. If x is a rational number and x 6= 0, then tan(x) is not a rational number.

10. If sin(x)< 0, then it is not the case that 0≤ x ≤π.
11. There is a Providence that protects idiots, drunkards, children and the United

States of America. (Otto von Bismarck)
12. You can fool some of the people all of the time, and you can fool all of the people

some of the time, but you can’t fool all of the people all of the time. (Abraham
Lincoln)

13. Everything is funny as long as it is happening to somebody else. (Will Rogers)

2.10 Negating Statements
Given a statement R, the statement ∼ R is called the negation of R. If R is
a complex statement, then it is often the case that its negation ∼ R can be
written in a simpler or more useful form. The process of finding this form
is called negating R. In proving theorems it is often necessary to negate
certain statements. We now investigate how to do this.

We have already examined part of this topic. DeMorgan’s laws

∼ (P ∧Q) = (∼ P)∨ (∼Q) (2.6)
∼ (P ∨Q) = (∼ P)∧ (∼Q) (2.7)

(from Section 2.6) can be viewed as rules that tell us how to negate the
statements P ∧Q and P ∨Q. Here are some examples that illustrate how
DeMorgan’s laws are used to negate statements involving “and” or “or.”
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Example 2.10 Consider negating the following statement.

R : You can solve it by factoring or with the quadratic formula.

Now, R means (You can solve it by factoring) ∨ (You can solve it with Q.F.),
which we will denote as P ∨Q. The negation of this is

∼ (P ∨Q) = (∼ P)∧ (∼Q).

Therefore, in words, the negation of R is
∼ R : You can’t solve it by factoring and you can’t solve it with

the quadratic formula.
Maybe you can find ∼ R without invoking DeMorgan’s laws. That is good;
you have internalized DeMorgan’s laws and are using them unconsciously.

Example 2.11 We will negate the following sentence.

R : The numbers x and y are both odd.

This statement means (x is odd) ∧ (y is odd), so its negation is

∼ (
(x is odd)∧ (y is odd)

) = ∼ (x is odd) ∨ ∼ (y is odd)
= (x is even)∨ (y is even).

Therefore the negation of R can be expressed in the following ways:

∼ R : The number x is even or the number y is even.
∼ R : At least one of x and y is even.

Now let’s move on to a slightly different kind of problem. It’s often
necessary to find the negations of quantified statements. For example,
consider ∼ (∀x ∈N, P(x)). Reading this in words, we have the following:

It is not the case that P(x) is true for all natural numbers x.

This means P(x) is false for at least one x. In symbols, this is ∃x ∈N, ∼ P(x).
Thus ∼ (∀x ∈ N, P(x)) = ∃x ∈ N, ∼ P(x). Similarly, you can reason out that
∼ (∃x ∈N, P(x))=∀x ∈N, ∼ P(x). In general:

∼ (∀x ∈ S, P(x)
) = ∃x ∈ S, ∼ P(x), (2.8)

∼ (∃x ∈ S, P(x)
) = ∀x ∈ S, ∼ P(x). (2.9)

Be sure that you understand these two logical equivalences. They conform
to our everyday use of language, but they pin down the meaning in a
mathematically precise way.
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Example 2.12 Consider negating the following statement.

R : The square of every real number is non-negative.

Symbolically, R can be expressed as ∀x ∈R, x2 ≥ 0, and thus its negation is
∼ (∀x ∈R, x2 ≥ 0) = ∃x ∈R, ∼ (x2 ≥ 0) = ∃x ∈R, x2 < 0. In words, this is

∼ R : There exists a real number whose square is negative.

Observe that R is true and ∼ R is false. Maybe you can get ∼ R immediately,
without using Equation (2.8) as we did above. If so, that is good; if not, you
shoulc be there soon.
Example 2.13 If a statement hasmultiple quantifiers, negating it involves
several iterations of Equations (2.8) and (2.9). Consider the following:

S : For every real number x there is a real number y for which y3 = x.

This statement asserts any real number x has a cube root y, so it’s true.
Symbolically S can be expressed as

∀x ∈R,∃ y ∈R, y3 = x.

Let’s work out the negation of this statement.

∼ (∀x ∈R,∃ y ∈R, y3 = x) = ∃x ∈R,∼ (∃ y ∈R, y3 = x)

= ∃x ∈R,∀ y ∈R, ∼ (y3 = x)

= ∃x ∈R,∀ y ∈R, y3 6= x.

Thus the negation is a (false) statement that can be written in either of the
following ways.

∼ S : There is a real number x such that for all real numbers y, y3 6= x.
∼ S : There is a real number x for which y3 6= x for all real numbers y.

In writing proofs you will occasionally have to negate a conditional
statement P ⇒Q. The remainder of this section describes how to do this.
To begin, look at the expression ∼ (P ⇒ Q), which literally says “P ⇒ Q is
false.” You know from the truth table for ⇒ that the only way that P ⇒Q
can be false is if P is true and Q is false. Therefore

∼ (P ⇒Q) = P∧∼Q. (2.10)

(In fact, in Exercise 12 of Section 2.6, you used a truth table to verify that
these two statements are indeed logically equivalent.)
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Example 2.14 Negate the following statement about a particular (i.e.,
constant) number a.

R : If a is odd then a2 is odd.

Using Equation (2.10), we get the following negation.

∼ R : a is odd and a2 is not odd.

Example 2.15 This example is like the previous one, but the constant a
is replaced by a variable x. We will negate the following statement.

R : If x is odd then x2 is odd.

As in Section 2.8, we interpret this as the universally quantified statement

R : ∀x ∈Z, (x odd)⇒ (x2 odd).

By Equations (2.8) and (2.10), we get the following negation for R.

∼ (∀x ∈Z, (x odd)⇒ (x2 odd)
) = ∃x ∈Z,∼ (

(x odd)⇒ (x2 odd)
)

= ∃x ∈Z, (x odd)∧∼ (x2 odd).

Translating back into words, we have

∼ R : There is an odd integer x whose square is not odd.

Notice that R is true and ∼ R is false.
The above Example 2.15 showed how to negate a conditional statement

P(x) ⇒ Q(x). This type of problem can sometimes be embedded in more
complex negation. See Exercise 5 below (and its solution).

Exercises for Section 2.10
Negate the following sentences.
1. The number x is positive, but the number y is not positive.
2. If x is prime, then p

x is not a rational number.
3. For every prime number p, there is another prime number q with q > p.
4. For every positive number ε, there is a positive number δ such that |x−a| < δ

implies | f (x)− f (a)| < ε.
5. For every positive number ε, there is a positive number M for which | f (x)−b| < ε

whenever x > M.
6. There exists a real number a for which a+ x = x for every real number x.
7. I don’t eat anything that has a face.
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8. If x is a rational number and x 6= 0, then tan(x) is not a rational number.
9. If sin(x)< 0, then it is not the case that 0≤ x ≤π.

10. If f is a polynomial and its degree is greater than 2, then f ′ is not constant.
11. You can fool all of the people all of the time.
12. Whenever I have to choose between two evils, I choose the one I haven’t tried

yet. (Mae West)

2.11 Logical Inference
Suppose we know that a conditional statement P ⇒Q is true. This tells us
that whenever P is true, Q will also be true. By itself, P ⇒Q being true does
not tell us that either P or Q is true (they could both be false, or P could
be false and Q true). But if in addition we happen to know that P is true,
then Q must be true. This is called a logical inference: From two true
statements we infer that a third statement is true. In essence, statements
P ⇒Q and P are “added together” to get Q. We can indicate this by stacking
P ⇒Q and P one atop the other with a line separating them from Q. The
intended meaning is that P ⇒Q combined with P produces Q.

P ⇒Q
P

Q

This is a very frequently-used pattern of thought. (In fact, it is exactly the
pattern we used in the example on page 34.) This rule even has a name. It
is called the modus ponens rule.

Two other logical inferences, called modus tollens and elimination
are listed below. In each case you should convince yourself (based on your
knowledge of the relevant truth tables) that the truth of the statements
above the line forces the statement below the line to be true.

Modus Ponens Modus Tollens Elimination

P ⇒Q
P

Q

P ⇒Q
∼Q

∼ P

P ∨Q
∼ P

Q

It is important to internalize these rules. (You surely already use at least
modus ponens and elimination in daily life anyway.) But you need not
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remember their names; few working mathematicians can recall the names,
though they use the rules constantly. The names are not important, but
the rules are.

Three additional logical inferences are listed below. The first states the
obvious fact that if P and Q are both true, then so is the statement P ∧Q.
On the other hand, P ∧Q being true forces P (also Q) to be true. Finally, if
P is true, then P ∨Q must be true, no matter what statement Q is.

P
Q

P ∧Q

P ∧Q

P

P

P ∨Q

These inferences are so intuitively obvious that they scarcely need to be
mentioned. However, they represent certain patterns of reasoning that we
will frequently apply to sentences in proofs, so we should be cognizant of
the fact that we are using them.

2.12 An Important Note
It is important to be aware of the reasons that we study logic. There are
three very significant reasons. First, the truth tables we studied tell us the
exactmeanings of the words such as “and,” “or,” “not” and so on. For instance,
whenever we use or read the “If..., then” construction in a mathematical
context, logic tells us exactly what is meant. Second, the rules of inference
provide a system in which we can produce new information (statements)
from known information. Finally, logical rules such as DeMorgan’s laws
help us correctly change certain statements into (potentially more useful)
statements with the same meaning. Thus, logic helps us understand the
meanings of statements, and it also produces new meaningful statements.

Logic is the glue that holds strings of statements together and pins down
the exact meaning of certain key phrases such as the “If..., then” or “For
all” constructions. Logic is the common language that all mathematicians
use, so we must have a firm grip on it in order to write and understand
mathematics.

But despite its fundamental role, logic’s place is in the background of
what we do, not the forefront. From here on, the beautiful symbols ∧, ∨,
⇒, ⇔, ∼, ∀ and ∃ are rarely written. But we are aware of their meanings
constantly. When reading or writing a sentence involving mathematics we
parse it with these symbols, either mentally or on scratch paper, so as to
understand the true and unambiguous meaning.
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CHAPTER 3

Counting

It may seem peculiar that a college-level text has a chapter on counting.
At its most basic level, counting is a process of pointing to each object

in a collection and calling off “one, two, three,...” until the quantity of
objects is determined. How complex could that be? Actually, counting
can become quite subtle, and in this chapter we explore some of its more
sophisticated aspects. Our goal is still to answer the question “How many?”
but we introduce mathematical techniques that bypass the actual process of
counting individual objects. Sets play a big role in our discussions because
the things we need to count are often naturally grouped together into a set.
The concept of a list is also extremely useful.

3.1 Lists
A list is an ordered sequence of objects. A list is denoted by an opening
parenthesis, followed by the objects, separated by commas, followed by a
closing parenthesis. For example (a,b, c,d, e) is a list consisting of the first
five letters of the English alphabet, in order. The objects a,b, c,d, e are called
the entries of the list; the first entry is a, the second is b, and so on. If the
entries are rearranged we get a different list, so, for instance,

(a,b, c,d, e) 6= (b,a, c,d, e).

A list is somewhat like a set, but instead of being a mere collection of objects,
the entries of a list have a definite order. For sets we have{

a,b, c,d, e
}= {

b,a, c,d, e
}
,

but—as noted above—the analogous equality for lists does not hold.
Unlike sets, lists can have repeated entries. Thus (5,3,5,4,3,3) is a

perfectly acceptable list, as is (S,O,S). The length of a list is its number of
entries. So (5,3,5,4,3,3) has length six, and (S,O,S) has length three.
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For more examples, (a,15) is a list of length two. And (0, (0,1,1)) is a list
of length two whose second entry is a list of length three. Two lists are
equal if they have exactly the same entries in exactly the same positions.
Thus equal lists have the same number of entries. If two lists have different
lengths, then they can not be equal. Thus (0,0,0,0,0,0) 6= (0,0,0,0,0). Also

( g, r, o, c, e, r, y, l, i, s, t )
bread
milkeggs
bananas
coffee

6=
( )

because the list on the left has length eleven but the list on the right has
just one entry (a piece of paper with some words on it).

There is one very special list which has no entries at all. It is called the
empty list and is denoted ( ). It is the only list whose length is zero.

For brevity we often write lists without parentheses, or even commas.
For instance, we may write (S,O,S) as SOS if there is no risk of confusion.
But be alert that doing this can lead to ambiguity: writing (9,10,11) as
9 10 11 may cause us to confuse it with (9,1,0,1,1). Here it’s best to retain
the parenthesis/comma notation or at least write the list as 9,10,11. A list
of symbols written without parentheses and commas is called a string.

The process of tossing a coin ten times may be described by a string such
as HHTHTTTHHT. Tossing it twice could lead to any of the outcomes HH,
HT, TH or TT. Tossing it zero times is described by the empty list ( ).

Imagine rolling a dice five times and recording the outcomes. This might
be described by the list

(
, , , ,

)
, meaning that you rolled first, then

, then , etc. We might abbreviate this list as , or 3,5,3,1,6.
Now imagine rolling a pair of dice, one white and one black. A typical

outcome might be modeled as a set like
{

,
}
. Rolling the pair six times

might be described with a list of six such outcomes:({
,

}
,
{

,
}
,
{

,
}
,
{

,
}
,
{

,
}
,
{

,
})

.

We might abbreviate this list as , , , , , .
We study lists because many real-world phenomena can be described

and understood in terms of them. Your phone number can be identified
as a list of ten digits. (Order is essential, for rearranging the digits can
produce a different phone number.) A byte is another important example
of a list. A byte is simply a length-eight list of 0’s and 1’s. The world of
information technology revolves around bytes. And the examples above
show that multi-step processes (such as rolling a dice twice) can be modeled
as lists.

We now explore methods of counting or enumerating lists and processes.
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3.2 The Multiplication Principle
Many practical problems involve counting the number of possible lists that
satisfy some condition or property.

For example, suppose we make a list of length three having the property
that the first entry must be an element of the set

{
a,b, c

}
, the second entry

must be in
{
5,7

}
and the third entry must be in

{
a, x

}
. Thus (a,5,a) and

(b,5,a) are two such lists. How many such lists are there all together? To
answer this question, imagine making the list by selecting the first entry,
then the second and finally the third. This is described in Figure 3.1. The
choices for the first list entry are a,b or c, and the left of the diagram
branches out in three directions, one for each choice. Once this choice is
made there are two choices (5 or 7) for the second entry, and this is described
graphically by two branches from each of the three choices for the first entry.
This pattern continues for the choice for the third entry, which is either
a or x. Thus, in the diagram there are 3 ·2 ·2= 12 paths from left to right,
each corresponding to a particular choice for each entry in the list. The
corresponding lists are tallied at the far-right end of each path. So, to
answer our original question, there are 12 possible lists with the stated
properties.

first choice second choice third choice
Resulting list

a

b

c

5

7

5

7

5

7

a
x
a
x
a
x

x
a
x
a
x
a

(a,5,a)
(a,5, x)
(a,7,a)
(a,7, x)
(b,5,a)
(b,5, x)
(b,7,a)
(b,7, x)
(c,5,a)
(c,5, x)
(c,7,a)
(c,7, x)

Figure 3.1. Constructing lists of length 3

In the above example there are 3 choices for the first entry, 2 choices for
the second entry, and 2 for the third, and the total number of possible lists
is the product of choices 3 ·2 ·2= 12. This kind of reasoning is an instance of
what we will call the multiplication principle. We will do one more example
before stating this important idea.
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Consider making a list of length 4 from the four letters
{
a,b, c,d

}
, where

the list is not allowed to have a repeated letter. For example, abcd and cadb
are allowed, but aabc and cacb are not allowed. How many such lists are
there?

Let’s analyze this question with a tree representing the choices we have
for each list entry. In making such a list we could start with the first entry:
we have 4 choices for it, namely a,b, c or d, and the left side of the tree
branches out to each of these choices. But once we’ve chosen a letter for
the first entry, we can’t use that letter in the list again, so there are only 3
choices for the second entry. And once we’ve chosen letters for the first and
second entries we can’t use these letters in the third entry, so there are just
2 choices for it. By the time we get to the fourth entry we are forced to use
whatever letter we have left; there is only 1 choice.

The situation is described fully in the below tree showing how to make
all allowable lists by choosing 4 letters for the first entry, 3 for the second
entry, 2 for the third entry and 1 for the fourth entry. We see that the total
number of lists is the product 4 ·3 ·2 ·1= 24.

1st choice
2nd choice

3rd choice
4th choice

Resulting list

abcd
abdc
acbd
acdb
adbc
adcb
bacd
badc
bcad
bcda
bdac
bdca
cabd
cadb
cbad
cbda
cdab
cdbc
dabc
dacb
dbac
dbca
dcab
dcba

a

b

c

d

b

c

d

a

c

d

a

b

d

a

b

c

c d
d c
b d
d b
b c
c b
c d
d c
a d
d a
a c
c a
b d
d b
a d
d a
a b
b a
b c
c b
a c
c a
a b
b a

Figure 3.2. Constructing lists from letters in
{
a,b, c,d

}
, without repetition.
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These trees show that the number of lists constructible by some specified
process equals the product of the numbers of choices for each list entry. We
summarize this kind of reasoning as an important fact.

Fact 3.1 (Multiplication Principle) Suppose in making a list of
length n there are a1 possible choices for the first entry, a2 possible
choices for the second entry, a3 possible choices for the third entry, and
so on. Then the total number of different lists that can be made this way
is the product a1 ·a2 ·a3 · · · ·an.

In using the multiplication principle you do not need to draw a tree
with a1 ·a2 · · · · ·an branches. Just multiply the numbers!

Example 3.1 A standard license plate consists of three letters followed
by four numbers. For example, JRB-4412 and MMX-8901 are two standard
license plates. How many different standard license plates are possible?
Solution: A license plate such as JRB-4412 corresponds to a length-7 list
(J,R,B,4,4,1,2), so we just need to count how many such lists are possible.
We use the multiplication principle. There are a1 = 26 possibilities (one for
each letter of the alphabet) for the first entry of the list. Similarly, there are
a2 = 26 possibilities for the second entry and a3 = 26 possibilities for the third.
There are a4 = 10 possibilities for the fourth entry. Likewise a5 = a6 = a7 = 10.
So there is a total of a1 · a2 · a3 · a4 · a5 · a6 · a7 = 26 · 26 · 26 · 10 · 10 · 10 · 10 =
175,760,000 possible standard license plates.

Example 3.2 In ordering a café latte, you have a choice of whole, skim or
soy milk; small, medium or large; and either one or two shots of espresso.
How many choices do you have in ordering one drink?
Solution: Your choice is modeled by a list of form (milk, size, shots). There
are 3 choices for the first entry, 3 for the second and 2 for the third. By the
multiplication principle, the number of choices is 3 ·3 ·2= 18.

There are two types of list-counting problems. On one hand, there are
situations in which list entries can be repeated, as in license plates or
telephone numbers. The sequence CCX-4144 is a perfectly valid license
plate in which the symbols C and 4 appear more than once. On the other
hand, for some lists repeated symbols do not make sense or are not allowed,
as in the (milk, size, shots) list from Example 3.2. We say repetition is
allowed in the first type of list and repetition is not allowed in the second
kind of list. (We will call a list in which repetition is not allowed a non-
repetitive list.) The next example illustrates the difference.
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Example 3.3 Consider lists of length 4 made with symbols A,B,C,D,E,F,G.
(a) How many such lists are possible if repetition is allowed?
(b) How many such lists are possible if repetition is not allowed?
(c) How many are there if repetition is not allowed and the list has an E?
(d) How many are there if repetition is allowed and the list has an E?

Solutions:
(a) Imagine the list as containing four boxes that we fill with selections

from the letters A, B, C, D, E, F and G, as illustrated below.

, , ,( )
7 choices

7 choices
7 choices

7 choices

We have 7 choices in filling each box. The multiplication principle says
the total number of lists that can be made this way is 7 ·7 ·7 ·7= 2401.

(b) This problem is the same as the previous one except that repetition
is not allowed. We have seven choices for the first box, but once it is
filled we can no longer use the symbol that was placed in it. Hence
there are only six possibilities for the second box. Once the second
box has been filled we have used up two of our letters, and there are
only five left to choose from in filling the third box. Finally, when the
third box is filled we have only four possible letters for the last box.

, , ,( )
7 choices

6 choices
5 choices

4 choices

Thus there are 7 ·6 ·5 ·4= 840 lists in which repetition does not occur.
(c) We are asked to count the length-4 lists in which repetition is not

allowed and the symbol E must appear somewhere in the list. Thus E
occurs once and only once in each list. Let us divide these lists into
four categories depending on whether the E occurs as the first, second,
third or fourth entry. These four types of lists are illustrated below.

, , , , , , , , , , , ,E E E E

Type 1 Type 2 Type 3 Type 4

( ( ( () ) ) )
6 choices 6 choices 6 choices 6 choices

5 choices 5 choices 5 choices 5 choices
4 choices 4 choices 4 choices 4 choices
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Consider lists of the first type, in which the E appears in the first
entry. We have six remaining choices (A, B, C, D, F orG) for the second
entry, five choices for the third entry and four choices for the fourth
entry. Hence there are 6 ·5 ·4= 120 lists having an E in the first entry.
As shown above, there are also 6 ·5 ·4 = 120 lists having an E in the
second, third or fourth entry. So there are 120+120+120+120= 480
lists with exactly one E.

(d) Now we seek the number of length-4 lists where repetition is allowed
and the list must contain an E. Here is our strategy: By Part (a) of
this exercise there are 7·7·7·7= 74 = 2401 lists with repetition allowed.
Obviously this is not the answer to our current question, for many of
these lists contain no E. We will subtract from 2401 the number of
lists that do not contain an E. In making a list that does not contain
an E, we have six choices for each list entry (because we can choose
any one of the six letters A, B, C, D, F or G). Thus there are 6 ·6 ·6 ·6=
64 = 1296 lists without an E. So the answer to our question is that
there are 2401−1296= 1105 lists with repetition allowed that contain
at least one E.

Before moving on from Example 3.3, let’s address an important point.
Perhaps you wondered if Part (d) could be solved in the same way as Part (c).
Let’s try doing it that way. We want to count the length-4 lists (repetition
allowed) that contain at least one E. The following diagram is adapted from
Part (c). The only difference is that there are now seven choices in each slot
because we are allowed to repeat any of the seven letters.

, , , , , , , , , , , ,E E E E

Type 1 Type 2 Type 3 Type 4

( ( ( () ) ) )
7 choices 7 choices 7 choices 7 choices

7 choices 7 choices 7 choices 7 choices
7 choices 7 choices 7 choices 7 choices

We get a total of 73 +73 +73 +73 = 1372 lists, an answer that is larger
than the (correct) value of 1105 from our solution to Part (d) above. It is
easy to see what went wrong. The list (E,E, A,B) is of type 1 and type 2,
so it got counted twice. Similarly (E,E,C,E) is of type 1, 2 and 4, so it got
counted three times. In fact, you can find many similar lists that were
counted multiple times. In solving counting problems, we must always be
careful to avoid this kind of double-counting or triple-counting, or worse.
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The next section presents two new counting principles that codify the
kind of thinking we used in parts (c) and (d) above. Combined with the
multiplication principle, they solve complex counting problems in ways that
avoid the pitfalls of double counting. But first, one more example of the
multiplication principle highlights another pitfall to be alert to.

Example 3.4 A non-repetitive list of length 5 is to be made from the
symbols A, B, C, D, E, F, G. The first entry must be either a B, C or D, and
the last entry must be a vowel. How many such lists are possible?
Solution: Start by making a list of five boxes. The first box must contain
either B, C or D, so there are three choices for it.

, , , ,( )
3 choices

Now there are 6 letters left for the remaining 4 boxes. The knee-jerk action
is to fill them in, one at a time, using up an additional letter each time.

, , , ,( )
3 choices

6 choices
5 choices

4 choices

But when we get to the last box, there is a problem. It is supposed to
contain a vowel, but for all we know we have already used up one or both
vowels in the previous boxes. The multiplication principle breaks down
because there is no way to tell how many choices there are for the last box.

The correct way to solve this problem is to fill in the first and last boxes
(the ones that have restrictions) first.

, , , ,( )
3 choices 2 choices

Then fill the remaining middle boxes with the 5 remaining letters.

, , , ,( )
3 choices

5 choices
4 choices

3 choices

2 choices

By the multiplication principle, there are 3 ·5 ·4 ·3 ·2= 360 lists.

The new principles to be introduced in the next section are usually used
in conjunction with the multiplication principle. So work a few exercises
now to test your understanding of it.
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Exercises for Section 3.2
1. Consider lists made from the letters T, H, E, O, R, Y, with repetition allowed.

(a) How many length-4 lists are there?
(b) How many length-4 lists are there that begin with T ?
(c) How many length-4 lists are there that do not begin with T ?

2. Airports are identified with 3-letter codes. For example, Richmond, Virginia has
the code RIC, and Memphis, Tennessee has MEM. How many different 3-letter
codes are possible?

3. How many lists of length 3 can be made from the symbols A, B, C, D, E, F if...
(a) ... repetition is allowed.
(b) ... repetition is not allowed.
(c) ... repetition is not allowed and the list must contain the letter A.
(d) ... repetition is allowed and the list must contain the letter A.

4. In ordering coffee you have a choice of regular or decaf; small, medium or large;
here or to go. How many different ways are there to order a coffee?

5. This problem involves 8-digit binary strings such as 10011011 or 00001010 (i.e.,
8-digit numbers composed of 0’s and 1’s).
(a) How many such strings are there?
(b) How many such strings end in 0?
(c) How many such strings have 1’s for their second and fourth digits?
(d) How many such strings have 1’s for their second or fourth digits?

6. You toss a coin, then roll a dice, and then draw a card from a 52-card deck. How
many different outcomes are there? How many outcomes are there in which the
dice lands on ? How many outcomes are there in which the dice lands on an
odd number? How many outcomes are there in which the dice lands on an odd
number and the card is a King?

7. This problem concerns 4-letter codes made from the letters A, B, C, D, ... , Z.
(a) How many such codes can be made?
(b) How many such codes have no two consecutive letters the same?

8. A coin is tossed 10 times in a row. How many possible sequences of heads and
tails are there?

9. A new car comes in a choice of five colors, three engine sizes and two transmis-
sions. How many different combinations are there?

10. A dice is tossed four times in a row. There are many possible outcomes, such as
, or . How many different outcomes are possible?
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3.3 The Addition and Subtraction Principles
We now discuss two new counting principles, the addition and subtraction
principles. Actually, they are not entirely new—you’ve used them intuitively
for years. Here we give names to these two fundamental thought patterns,
and phrase them in the language of sets. Doing this helps us recognize when
we are using them, and, more importantly, it helps us see new situations in
which they can be used.

The addition principle simply asserts that if a set can be broken into
pieces, then the size of the set is the sum of the sizes of the pieces.

Fact 3.2 (Addition Principle)
Suppose a finite set X can be decomposed as a union X = X1∪X2∪·· ·∪Xn,
where X i ∩ X j =; whenever i 6= j. Then

∣∣X ∣∣= ∣∣X1
∣∣+ ∣∣X2

∣∣+·· ·+ ∣∣Xn
∣∣.

X1

X2
X3

X4

X5

· · · XnXX

In our first example we will rework an instance where we used the
addition principle naturally, without comment: in Part (c) of Example 3.3.
Example 3.5 How many length-4 non-repetitive lists can be made from
the symbols A, B, C, D, E, F, G, if the list must contain an E?
In Example 3.3 (c) our approach was to divide these lists into four types,
depending on whether the E is in the first, second, third or fourth position.

E E E E
Type 1 Type 2 Type 3 Type 4

6 6 6 65 5 5 54 4 4 4

Then we used the multiplication principle to count the lists of type 1.
There are 6 choices for the second entry, 5 for the third, and 4 for the fourth.
This is indicated above, where the number below a box is the number of
choices we have for that position. The multiplication principle implies that
there are 6 ·5 ·4= 120 lists of type 1. Similarly there are 6 ·5 ·4= 120 lists of
types 2, 3, and 4.

X1 X2 X3 X4

X

EABC
EACB
EBAC

...

AEBC
AECB
BEAC

...

ABEC
ACEB
BAEC

...

ABCE
ACBE
BACE

...
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We then used the addition principle intuitively, conceiving of the lists to be
counted as the elements of a set X , broken up into parts X1, X2, X3 and X4,
which are the lists of types 1 ,2, 3 and 4, respectively.

The addition principle says that the number of lists that contain an E is
|X | = |X1|+ |X2|+ |X3|+ |X4| = 120+120+120+120= 480.

We use the addition principle when we need to count the things in some
set X . If we can find a way to break X up as X = X1∪X2∪·· ·∪Xn, where each
X i is easier to count than X , then the addition principle gives an answer of
|X | = |X1|+ |X2|+ |X3|+ · · ·+ |Xn|.

But for this to work the intersection of any two pieces X i must be ;,
as stated in Fact 3.2. For instance, if X1 and X2 shared an element, then
that element would be counted once in |X1| and again in |X2|, and we’d
get |X | < |X1|+ |X2|+ · · ·+ |Xn|. (This is precisely the double counting issue
mentioned after Example 3.3.)
Example 3.6 How many even 5-digit numbers are there for which no
digit is 0, and the digit 6 appears exactly once? For instance, 55634 and
16118 are such numbers, but not 63304 (has a 0), nor 63364 (too many 6’s),
nor 55637 (not even).
Solution: Let X be the set of all such numbers. The answer will be |X |, so
our task is to find |X |. Put X = X1 ∪ X2 ∪ X3 ∪ X4 ∪ X5, where X i is the set of
those numbers in X whose ith digit is 6, as diagramed below. Note X i∩X j =;
whenever i 6= j because the numbers in X i have their 6 in a different position
than the numbers in X j. Our plan is to use the multiplication principle to
compute each |X i|, and follow this with the addition principle.

6 6 6 6 6
X1 X2 X3 X4 X5

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 83 3 3 3

The first digit of any number in X1 is 6, and the three digits following it
can be any of the ten digits except 0 (not allowed) or 6 (already appears).
Thus there are eight choices for each of three digits following the first 6.
But because any number in X1 is even, its final digit must be one of 2,4
or 8, so there are just three choices for this final digit. By the multiplication
principle, |X1| = 8 ·8 ·8 ·3= 1536. Likewise |X2| = |X3| = |X4| = 8 ·8 ·8 ·3= 1536.

But X5 is slightly different because we do not choose the final digit,
which is already 6. The multiplication principle gives |X5| = 8 ·8 ·8 ·8= 4096.

The addition principle gives our final answer. The number of even 5-
digit numbers with no 0’s and one 6 is |X | = |X1|+ |X2|+ |X3|+ |X4|+ |X5| =
1536+1536+1536+1536+4096= 10,240.
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X

U

U − X

Now we introduce our next counting
method, the subtraction principle. To set
it up, imagine that a set X is a subset of a
universal set U, as shown on the right.
The complement X = U − X is shaded.
Suppose we wanted to count the things
in this shaded region. Surely this is the number of things in U minus
the number of things in X , which is to say

∣∣U − X
∣∣ = |U |− |X |. That is the

subtraction principle.

Fact 3.3 (Subtraction Principle)
If X is a subset of a finite set U, then

∣∣X ∣∣= |U |− |X |.
In other words, if X ⊆U then

∣∣U − X
∣∣= |U |− |X |.

The subtraction principle is used in situations where it is easier to count
the things in some set U that we wish to exclude from consideration than
it is to count those things that are included. We have seen this kind of
thinking before. We quietly and naturally used it in part (d) of Example 3.3.
For convenience we repeat that example now, casting it into the language
of the subtraction principle.

Example 3.7 How many length-4 lists can be made from the symbols
A, B, C, D, E, F, G if the list has at least one E, and repetition is allowed?

Solution: Such a list might contain one, two, three or four E’s, which could
occur in various positions. This is a fairly complex situation.

But it is very easy to count the set U of all lists of length 4 made from
A, B, C, D, E, F, G if we don’t care whether or not the lists have any E’s.
The multiplication principle says |U | = 7 ·7 ·7 ·7= 2401.

It is equally easy to count the set X of those lists that contain no E’s.
The multiplication principle says |X | = 6 ·6 ·6 ·6= 1296.

We are interested in those lists that have at least one E, and this is
the set U − X . By the subtraction principle, the answer to our question is
|U − X | = |U |− |X | = 2401−1296= 1105.

As we continue with counting we will have many opportunities to use
the multiplication, addition and subtraction principles. Usually these will
arise in the context of other counting principles that we have yet to explore.
It is thus important that you solidify the current ideas now, by working
some exercises before moving on.
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Exercises for Section 3.3
1. Five cards are dealt off of a standard 52-card deck and lined up in a row. How

many such lineups are there that have at least one red card? How many such
lineups are there in which the cards are either all black or all hearts?

2. Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such lineups are there in which all 5 cards are of the same suit?

3. Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such lineups are there in which all 5 cards are of the same color (i.e., all
black or all red)?

4. Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such lineups are there in which exactly one of the 5 cards is a queen?

5. How many integers between 1 and 9999 have no repeated digits? How many
have at least one repeated digit?

6. Consider lists made from the symbols A, B, C, D, E, with repetition allowed.
(a) How many such length-5 lists have at least one letter repeated?
(b) How many such length-6 lists have at least one letter repeated?

7. A password on a certain site must be five characters long, made from letters
of the alphabet, and have at least one upper case letter. How many different
passwords are there? What if there must be a mix of upper and lower case?

8. This problem concerns lists made from the letters A, B, C, D, E, F, G, H, I, J.
(a) How many length-5 lists can be made from these letters if repetition is

not allowed and the list must begin with a vowel?
(b) How many length-5 lists can be made from these letters if repetition is

not allowed and the list must begin and end with a vowel?
(c) How many length-5 lists can be made from these letters if repetition is

not allowed and the list must contain exactly one A?
9. Consider lists of length 6 made from the letters A, B, C, D, E, F, G, H. How

many such lists are possible if repetition is not allowed and the list contains two
consecutive vowels?

10. Consider the lists of length six made with the symbols P, R, O, F, S, where
repetition is allowed. (For example, the following is such a list: (P,R,O,O,F,S).)
How many such lists can be made if the list must end in an S and the symbol O
is used more than once?

11. How many integers between 1 and 1000 are divisible by 5? How many are not
divisible by 5?

12. Six math books, four physics books and three chemistry books are arranged on
a shelf. How many arrangements are possible if all books of the same subject
are grouped together?
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3.4 Factorials and Permutations
In working examples from the previous two sections you may have noticed
that we often need to count the number of non-repetitive lists of length n
that are made from n symbols. This kind of problem occurs so often that a
special idea, called a factorial, is used to handle it.

The table below motivates this. The first column lists successive integer
values n, from 0 onward. The second contains a set

{
a,b, . . .

}
of n symbols.

The third column shows all the possible non-repetitive lists of length n
that can be made from these symbols. Finally, the last column tallies up
how many lists there are of that type. When n = 0 there is only one list of
length 0 that can be made from 0 symbols, namely the empty list ( ). Thus
the value 1 is entered in the last column of that row.

n Symbols Non-repetitive lists of length n made from the symbols n!

0
{}

( ) 1

1
{
a
}

a 1

2
{
a,b

}
ab, ba 2

3
{
a,b, c

}
abc, acb, bac, bca, cab, cba 6

4
{
a,b, c,d

} abcd, acbd, bacd, bcad, cabd, cbad,
abdc, acdb, badc, bcda, cadb, cbda,
adbc, adcb, bdac, bdca, cdab, cdba,
dabc, dacb, dbac, dbca, dcab, dcba,

24

...
...

...
...

For n > 0, the number that appears in the last column can be computed
using the multiplication principle. The number of non-repetitive lists of
length n that can be made from n symbols is n(n−1)(n−2) · · ·3·2·1. Thus, for
instance, the number in the last column of the row for n = 4 is 4 ·3 ·2 ·1= 24.

The number that appears in the last column of Row n is called the
factorial of n. It is denoted with the special symbol n!, which we pronounce
as “n factorial." Here is the definition:

Definition 3.1 If n is a non-negative integer, then n! is the number of
lists of length n that can be made from n symbols, without repetition.
Thus 0!= 1 and 1!= 1. If n > 1, then n!= n(n−1)(n−2) · · ·3 ·2 ·1.
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It follows that 0! = 1
1! = 1
2! = 2 ·1= 2
3! = 3 ·2 ·1= 6
4! = 4 ·3 ·2 ·1= 24
5! = 5 ·4 ·3 ·2 ·1= 120
6! = 6 ·5 ·4 ·3 ·2 ·1= 720, and so on.

Students are often tempted to say 0!= 0, but this is wrong. The correct
value is 0!= 1, as the above definition and table show. Here is another way
to see that 0! must equal 1: Notice that 5!= 5 ·4 ·3 ·2 ·1= 5 · (4 ·3 ·2 ·1)= 5 ·4!.
Also 4!= 4 ·3 ·2 ·1= 4 · (3 ·2 ·1)= 4 ·3!. Generalizing this, we get a formula.

n!= n · (n−1)! (3.1)

Plugging in n = 1 gives 1!= 1·(1−1)!= 1·0!, that is, 1!= 1·0!. If we mistakenly
thought 0! were 0, this would give the incorrect result 1!= 0.

Example 3.8 This problem involves making lists of length seven from the
letters a, b, c, d, e, f and g

(a) How many such lists are there if repetition is not allowed?
(b) How many such lists are there if repetition is not allowed and the first

two entries must be vowels?
(c) How many such lists are there in which repetition is allowed, and the

list must contain at least one repeated letter?

To answer the first question, note that there are seven letters, so the
number of lists is 7! = 5040. To answer the second question, notice that
the set

{
a, b, c, d, e, f, g

}
contains two vowels and five consonants. Thus in

making the list the first two entries must be filled by vowels and the final
five must be filled with consonants. By the multiplication principle, the
number of such lists is 2 ·1 ·5 ·4 ·3 ·2 ·1= 2!5!= 440.

To answer part (c) we use the subtraction principle. LetU be the set of all
lists made from a, b, c, d, e, f, g, with repetition allowed. The multiplication
principle gives |U | = 7 ·7 ·7 ·7 ·7 ·7 ·7 = 77 = 823,543. Notice that U includes
lists that are non-repetitive, like (a,g,f,b,d,c,e), as well as lists that have
some repetition, like (f,g,b,g,a,a,a). We want to find the number of lists that
have at least one repeated letter, so we will subtract away from U all those
lists that have no repetition. Let X ⊆U be those lists that have no repetition,
so |X | = 7!. Thus the answer to our question is |U − X | = |U |− |X | = 77 −7! =
823,543−5040= 818,503.
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In part (a) of Example 3.8 we counted the number of non-repetitive lists
made from all seven of the symbols in the set X = {

a, b, c, d, e, f, g
}
, and

there were 7! = 5040 such lists. Any such list, such as cedagf, gfedcba or
abcdefg is simply an arrangement of the elements of X in a row. There is a
name for such an arrangement. It is called a permutation of X .

A permutation of a set is an arrangement of all of the set’s elements
in a row, that is, a list without repetition that uses every element of the set.
For example, the permutations of the set X = {

1,2,3
}
are the six lists

123, 132, 213, 231, 312, 321.

That we get six different permutations of X is predicted by Definition 3.1,
which says there are 3! = 3 ·2 ·1 = 6 non-repetitive lists that can be made
from the three symbols in X .

Think of the numbers 1, 2 and 3 as representing three books. The above
shows that there are six ways to arrange them on a shelf.

From a deck of cards you take the four queens and lay them in a row.
By the multiplication principle there are 4!= 4 ·3 ·2 ·1= 24 ways to do this,
that is, there are 24 permutations of the set of four Queen cards.

Q
♣

Q
♥

Q
♠

Q
♦

Q
♣

Q
♥

Q
♦

Q
♠

Q
♣

Q
♠

Q
♥

Q
♦

Q
♣

Q
♠

Q
♦

Q
♥

Q
♣

Q
♦

Q
♥

Q
♠

Q
♣

Q
♦

Q
♠

Q
♥

Q
♥

Q
♣

Q
♠

Q
♦

Q
♥

Q
♣

Q
♦

Q
♠

Q
♥

Q
♠

Q
♣

Q
♦

Q
♥

Q
♠

Q
♦

Q
♣

Q
♥

Q
♦

Q
♣

Q
♠

Q
♥

Q
♦

Q
♠

Q
♣

Q
♠

Q
♥

Q
♣

Q
♦

Q
♠

Q
♥

Q
♦

Q
♣

Q
♠

Q
♣

Q
♥

Q
♦

Q
♠

Q
♣

Q
♦

Q
♥

Q
♠

Q
♦

Q
♥

Q
♣

Q
♠

Q
♦

Q
♣

Q
♥

Q
♦

Q
♥

Q
♠

Q
♣

Q
♦

Q
♥

Q
♣

Q
♠

Q
♦

Q
♣

Q
♥

Q
♠

Q
♦

Q
♣

Q
♠

Q
♥

Q
♦

Q
♠

Q
♣

Q
♥

Q
♦

Q
♠

Q
♥

Q
♣

In general, a set with n elements will have n! different permutations.
Above, the set

{
1,2,3

}
has 3! = 6 permutations, while

{
Q
♦ , Q

♠ , Q
♥ , Q

♣

}
has

4! = 24 permutations. The set
{
a,b,c,d,e,f,g

}
has 7! = 5040 permutations,

though there’s not much point in listing them all out. The important thing
is that the factorial counts the number of permutations.

In saying a permutation of a set is an arrangement of its elements in a
row, we are speaking informally because sometimes the elements are not
literally in a row. Imagine a classroom of 20 desks, in four rows of five desks
each. Let X be a class (set) of 20 students. If the students walk in and seat
themselves, one per desk, we can regard this as a permutation of the 20
students because we can number the desks 1,2,3, . . . ,20 and in this sense
the students have arranged themselves in a list of length 20. There are
20!= 2,432,902,008,176,640,000 permutations of the students.
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Now we discuss a variation of the idea of a permutation of a set X .
Imagine taking some number k ≤ |X | of elements from the set X and then
arranging them in a row. The result is what we call a k-permutation of X .
A permutation of X is a non-repetitive list made from all elements of X .
A k-permutation of X is a non-repetitive list made from k elements of X .

For example, take X = {
a,b, c,d

}
. The 1-permutations of X are the lists

we could make with just one element from X . There are only 4 such lists:

a b c d.

The 2-permutations of X are the non-repetitive lists that we could make
from two elements of X . There are 12 of them:

ab ac ad ba bc bd ca cb cd da db dc.

Even before writing them all down, we’d know there are 12 of them because
in making a non-repetitive length-2 list from X we have 4 choices for the first
element, then 3 choices for the second, so by the multiplication principle
the total number of 2-permutations of X is 4 ·3= 12.

Now let’s count the number of 3-permutations of X . They are the length-
3 non-repetitive lists made from elements of X . The multiplication principle
says there will be 4 ·3 ·2= 24 of them. Here they are:

abc acb bac bca cab cba
abd adb bad bda dab dba
acd adc cad cda dac dca
bcd bdc cbd cdb dbc dcb

The 4-permutations of X are the non-repetitive lists made from all 4
elements of X . These are simply the 4!= 4 ·3 ·2 ·1= 24 permutations of X .

Let’s go back and think about the 0-permutations of X . They are the
non-repetitive lists of length 0 made from the elements of X . Of course
there is only one such list, namely the empty list ().

Now we are going to introduce some notation. The expression P(n,k)
denotes the number of k-permutations of an n-element set. By the examples
on this page we have P(4,0) = 1, P(4,1) = 4, P(4,2) = 12, P(4,3) = 24, and
P(4,4)= 24.

What about, say, P(4,5)? This is the number of 5-permutations of a
4-element set, that is, the number of non-repetitive length-5 lists that can
be made from 4 symbols. There is no such list, so P(4,5)= 0.
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If n > 0, then P(n,k) can be computed with the multiplication principle.
In making a non-repetitive length-k list from n symbols we have n choices
for the 1st entry, n−1 for the 2nd, n−2 for the 3rd, and n−3 for the 4th.

1st 2nd 3rd 4th 5th kth

n (n−1)(n−2)(n−3)(n−4) (n−k+1)· · ·

· · ·
· · ·

Notice that the number of choices for the ith position is n− i+1. For example,
the 5th position has n−5+1= n−4 choices. Continuing in this pattern, the
last (kth) entry has n−k+1 choices. Therefore

P(n,k)= n(n−1)(n−2) · · · (n−k+1). (3.2)

All together there are k factors in this product, so to compute P(n,k) just
perform n(n−1)(n−2)(n−3) · · · until you’ve multiplied k numbers. Examples:

P(10,1) = 10 = 10
P(10,2) = 10 ·9 = 90
P(10,3) = 10 ·9 ·8 = 720
P(10,4) = 10 ·9 ·8 ·7 = 5040

...
...

...
P(10,10) = 10 ·9 ·8 ·7 ·6 ·5 ·4 ·3 ·2 ·1 = 3,628,800
P(10,11) = 10 ·9 ·8 ·7 ·6 ·5 ·4 ·3 ·2 ·1 ·0 = 0.

Note P(10,11) = 0, as the 11th factor in the product is 0. This makes
sense because P(10,11) is the number of non-repetitive length-11 lists made
from just 10 symbols. There are no such lists, so P(10,11) = 0 is right. In
fact you can check that Equation (3.2) gives P(n,k)= 0 whenever k > n.

Also notice above that P(10,10)= 10!. In general P(n,n)= n!.
We now derive another formula for P(n,k), one that works for 0≤ k ≤ n.

Using Equation (3.2) with cancellation and the definition of a factorial,

P(n,k) = n(n−1)(n−2) · · · (n−k+1)

= n(n−1)(n−2) · · · (n−k+1)(n−k)(n−k−1) · · ·3 ·2 ·1
(n−k)(n−k−1) · · ·3 ·2 ·1 = n!

(n−k)!
.

To illustrate, let’s find P(8,5) in two ways. Equation (3.2) says P(8,5)=
8·7·6·5·4= 6720. By the above formula, P(8,5)= 8!

(8−5)!
= 8!

3!
= 40,320

6
= 6720.
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We summarize these ideas in the following definition and fact.

Fact 3.4 A k-permutation of an n-element set is a non-repetitive
length-k list made from elements of the set. Informally we think of
a k-permutation as an arrangement of k of the set’s elements in a row.

The number of k-permutations of an n-element set is denoted P(n,k), and

P(n,k) = n(n−1)(n−2) · · · (n−k+1).

If 0≤ k ≤ n, then P(n,k) = n(n−1)(n−2) · · · (n−k+1) = n!
(n−k)!

.

Notice that P(n,0)= n!
(n−0)! = n!

n! = 1, which makes sense because only one
list of length 0 can be made from n symbols, namely the empty list. Also
P(0,0)= 0!

(0−0)! = 0!
0! = 1

1 = 1, which is to be expected because there is only one
list of length 0 that can be made with 0 symbols, again the empty list.

Example 3.9 Ten contestants run a marathon. All finish, and there are
no ties. How many different possible rankings are there for first-, second-
and third-place?
Solution: Call the contestants A, B, C, D, E, F, G, H, I and J. A ranking
of winners can be regarded as a 3-permutation of the set of 10 contestants.
For example, ECH means E in first-place, C in second-place and H in third.
Thus there are P(10,3)= 10 ·9 ·8= 720 possible rankings.

Example 3.10 You deal five cards off of a standard 52-card deck, and line
them up in a row. How many such lineups are there that either consist of
all red cards, or all clubs?
Solution: There are 26 red cards. The number of ways to line up five of
them is P(26,5)= 26 ·25 ·24 ·23 ·22= 343,200.
There are 13 club cards (which are black). The number of ways to line up
five of them is P(13,5)= 13 ·12 ·11 ·10 ·9= 154,440.
By the addition principle, the answer to our question is that there are
P(26,5)+P(13,5)= 497,640 lineups that are either all red cards, or all club
cards.

Notice that we do not need to use the notation P(n,k) to solve the prob-
lems on this page. Straightforward applications of the multiplication and
addition principles would suffice. However, the P(n,k) notation often proves
to be a convenient shorthand.
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Exercises for Section 3.4
1. What is the smallest n for which n! has more than 10 digits?
2. For which values of n does n! have n or fewer digits?
3. How many 5-digit positive integers are there in which there are no repeated

digits and all digits are odd?
4. Using only pencil and paper, find the value of 100!

95! .
5. Using only pencil and paper, find the value of 120!

118! .
6. There are two 0’s at the end of 10! = 3,628,800. Using only pencil and paper,

determine how many 0’s are at the end of the number 100!.
7. Find how many 9-digit numbers can be made from the digits 1, 2, 3, 4, 5, 6, 7,

8, 9 if repetition is not allowed and all the odd digits occur first (on the left)
followed by all the even digits (i.e., as in 137598264, but not 123456789).

8. Compute how many 7-digit numbers can be made from the digits 1, 2, 3, 4, 5, 6, 7
if there is no repetition and the odd digits must appear in an unbroken sequence.
(Examples: 3571264 or 2413576 or 2467531, etc., but not 7234615.)

9. How many permutations of the letters A, B, C, D, E, F, G are there in which the
three letters ABC appear consecutively, in alphabetical order?

10. How many permutations of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are there in which
the digits alternate even and odd? (For example, 2183470965.)

11. You deal 7 cards off of a 52-card deck and line them up in a row. How many
possible lineups are there in which not all cards are red?

12. You deal 7 cards off of a 52-card deck and line them up in a row. How many
possible lineups are there in which no card is a club?

13. How many lists of length six (with no repetition) can be made from the 26 letters
of the English alphabet?

14. Five of ten books are arranged on a shelf. In how many ways can this be done?
15. In a club of 15 people, we need to choose a president, vice-president, secretary,

and treasurer. In how many ways can this be done?
16. How many 4-permutations are there of the set

{
A,B,C,D,E,F

}
if whenever A

appears in the permutation, it is followed by E?
17. Three people in a group of ten line up at a ticket counter to buy tickets. How

many lineups are possible?
18. There is a very interesting function Γ : [0,∞)→R called the gamma function.

It is defined as Γ(x)= ∫ ∞
0 tx−1e−tdt. It has the remarkable property that if x ∈N,

then Γ(x)= (x−1)!. Check that this is true for x = 1,2,3,4.
Notice that this function provides a way of extending factorials to numbers other
than integers. Since Γ(n)= (n−1)! for all n ∈N, we have the formula n!=Γ(n+1).
But Γ can be evaluated at any number in [0,∞), not just at integers, so we have
a formula for n! for any real number n ∈ [0,∞). Extra credit: Compute π!.
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3.5 Counting Subsets
The previous section dealt with counting lists made by selecting k entries
from a set of n elements. We turn now to a related question: How many
subsets can be made by selecting k elements from a set with n elements?

To see the difference between these two problems, take A = {
a,b, c,d, e

}
.

Consider the non-repetitive lists made from selecting two elements from A.
Fact 3.4 says there are P(5,2)= 5 ·4= 20 such lists, namely

(a,b), (a, c), (a,d), (a, e), (b, c), (b,d), (b, e), (c,d), (c, e), (d, e),
(b,a), (c,a), (d,a), (e,a), (c,b), (d,b), (e,b), (d, c), (e, c), (e,d).

But there are only ten 2-element subsets of A. They are{
a,b

}
,

{
a, c

}
,

{
a,d

}
,

{
a, e

}
,

{
b, c

}
,

{
b,d

}
,

{
b, e

}
,

{
c,d

}
,

{
c, e

}
,

{
d, e

}
.

The reason that there are more lists than subsets is that changing the
order of the entries of a list produces a different list, but changing the order
of the elements of a set does not change the set. Using elements a,b ∈ A, we
can make two lists (a,b) and (b,a), but only one subset

{
a,b

}
.

This section is concerned with counting subsets, not lists. As noted above,
the basic question is this: How many subsets can be made by choosing k
elements from an n-element set? We begin with some notation that gives a
name to the answer to this question.

Definition 3.2 If n and k are integers, then
(n

k
)
denotes the number of

subsets that can be made by choosing k elements from an n-element set.
We read

(n
k
)
as “n choose k.” (Some textbooks write C(n,k) instead of

(n
k
)
.)

This is illustrated in the following table that tallies the k-element subsets
of the 4-element set A = {

a,b, c,d
}
, for various values of k.

k k-element subsets of A = {
a,b, c,d

} (4
k
)

−1
( 4
−1

)= 0

0 ; (4
0
)= 1

1
{
a
}
,
{
b
}
,
{
c
}
,
{
d
} (4

1
)= 4

2
{
a,b

}
,
{
a, c

}
,
{
a,d

}
,
{
b, c

}
,
{
b,d

}
,
{
c,d

} (4
2
)= 6

3
{
a,b, c

}
,
{
a,b,d

}
,
{
a, c,d

}
,
{
b, c,d

} (4
3
)= 4

4
{
a,b, c,d

} (4
4
)= 1

5
(4
5
)= 0
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The values of k appear in the far-left column of the table. To the right of
each k are all of the subsets (if any) of A of size k. For example, when k = 1,
set A has four subsets of size k, namely

{
a
}
,

{
b
}
,

{
c
}
and

{
d
}
. Therefore(4

1
)= 4. When k = 2 there are six subsets of size k so

(4
2
)= 6.

When k = 0, there is only one subset of A that has cardinality k, namely
the empty set, ;. Therefore (4

0
)= 1.

Notice that if k is negative or greater than |A|, then A has no subsets of
cardinality k, so

(4
k
)= 0 in these cases. In general

(n
k
)= 0 whenever k < 0 or

k > n. In particular this means
(n

k
)= 0 if n is negative.

Although it was not hard to work out the values of
(4
k
)
by writing out

subsets in the above table, this method of actually listing sets would not
be practical for computing

(n
k
)
when n and k are large. We need a formula.

To find one, we will now carefully work out the value of
(5
3
)
in a way that

highlights a pattern that points the way to a formula for any
(n

k
)
.

To begin, note that
(5
3
)
is the number of 3-element subsets of

{
a,b, c,d, e

}
.

These are listed in the top row of the table below, where we see
(5
3
) = 10.

The column under each subset tallies the 3!= 6 permutations of that subset.
The first subset

{
a,b, c

}
has 3! = 6 permutations; these are listed below it.

The second column tallies the permutations of
{
a,b,d

}
, and so on.

{
a,b,c

}{
a,b,d

}{
a,b,e

} {
a,c,d

} {
a,c,e

} {
a,d,e

}{
b,c,d

} {
b,c,e

} {
b,d,e

} {
c,d,e

}
(5
3
)

abc abd abe acd ace ade bcd bce bde cde
acb adb aeb adc aec aed bdc bec bed ced
bac bad bae cad cae dae cbd cbe dbe dce
bca bda bea cda cea dea cdb ceb deb dec
cba dba eba dca eca eda dcb ecb edb edc
cab dab eab dac eac ead dbc ebc ebd ecd

3!

The body of this table has
(5
3
)
columns and 3! rows, so it has a total of

3!
(5
3
)
lists. But notice also that the table consists of every 3-permutation of{

a,b, c,d, e
}
. Fact 3.4 says that there are P(5,3)= 5!

(5−3)! such 3-permutations.
Thus the total number of lists in the table can be written as either 3!

(5
3
)
or

5!
(5−3)! , which is to say 3!

(5
3
)= 5!

(5−3)! . Dividing both sides by 3! yields(
5
3

)
= 5!

3!(5−3)!
.

Working this out, you will find that it does give the correct value of 10.

Richard Hammack Book of Proof



Counting Subsets 87

But there was nothing special about the values 5 and 3. We could do the
above analysis for any

(n
k
)
instead of

(5
3
)
. The table would have

(n
k
)
columns

and k! rows. We would get (
n
k

)
= n!

k!(n−k)!
.

We have established the following fact, which holds for all k,n ∈Z.

Fact 3.5 If 0≤ k ≤ n, then
(
n
k

)
= n!

k!(n−k)!
. Otherwise

(
n
k

)
= 0.

Let’s now use our new knowledge to work some exercises.

Example 3.11 How many size-4 subsets does
{
1,2,3,4,5,6,7,8,9

}
have?

The answer is
(9
4
)= 9!

4!(9−4)! = 9!
4!5! = 9·8·7·6·5!

4!5! = 9·8·7·6
4! = 9·8·7·6

24 = 126.

Example 3.12 How many 5-element subsets of A = {
1,2,3,4,5,6,7,8,9

}
have exactly two even elements?
Solution: Making a 5-element subset of A with exactly two even elements
is a 2-step process. First select two of the four even elements from A.
There are

(4
2
)= 6 ways to do this. Next, there are

(5
3
)= 10 ways select three

of the five odd elements of A. By the multiplication principle, there are(4
2
)(5

3
)= 6 ·10= 60 ways to select two even and three odd elements from A. So

there are 60 5-element subsets of A with exactly two even elements.

Example 3.13 A single 5-card hand is dealt off of a standard 52-card deck.
How many different 5-card hands are possible?
Solution: Think of the deck as a set D of 52 cards. Then a 5-card hand is
just a 5-element subset of D. There are many such subsets, such as{

7

♣ ,
2

♣ ,
3

♥ ,
A

♠ ,
5

♦

}
.

Thus the number of 5-card hands is the number of 5-element subsets of D,
which is(

52
5

)
= 52!

5! ·47!
= 52 ·51 ·50 ·49 ·48 ·47!

5! ·47!
= 52 ·51 ·50 ·49 ·48

5!
= 2,598,960.

Answer: There are 2,598,960 different five-card hands that can be dealt
from a deck of 52 cards.
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Example 3.14 This problem concerns 5-card hands that can be dealt off
of a 52-card deck. How many such hands are there in which two of the cards
are clubs and three are hearts?
Solution: Such a hand is described by a list of length two of the form( { ∗

♣ ,
∗

♣

}
,
{ ∗

♥ ,
∗

♥ ,
∗

♥

} )
,

where the first entry is a 2-element subset of the set of 13 club cards, and
the second entry is a 3-element subset of the set of 13 heart cards. There
are

(13
2
)
choices for the first entry and

(13
3
)
choices for the second, so by

the multiplication principle there are
(13

2
)(13

3
)= 13!

2!11!
13!

3!10! = 22,308 such lists.
Thus there are 22,308 such 5-card hands.

Example 3.15 A lottery features a bucket of 36 balls numbered 1 through
36. Six balls will be drawn randomly. For $1 you buy a ticket with six blanks:
ääääää . You fill in the blanks with six different numbers between 1
and 36. You win $1,000,000 if you chose the same numbers that are drawn,
regardless of order. What are your chances of winning?
Solution: In filling out the ticket you are choosing six numbers from a set of
36 numbers. Thus there are

(36
6
)= 36!

6!(36−6)! = 1,947,792 different combinations
of numbers you might write. Only one of these will be a winner. Your
chances of winning are one in 1,947,792.

Example 3.16 How many 7-digit binary strings (0010100, 1101011, etc.)
have an odd number of 1’s?

Solution: Let A be the set of all 7-digit binary strings with an odd number
of 1’s, so the answer will be |A|. To find |A|, we break A into smaller parts.
Notice any string in A will have either one, three, five or seven 1’s. Let A1 be
the set of 7-digit binary strings with only one 1. Let A3 be the set of 7-digit
binary strings with three 1’s. Let A5 be the set of 7-digit binary strings with
five 1’s, and let A7 be the set of 7-digit binary strings with seven 1’s. Then
A = A1∪A3∪A5∪A7. Any two of the sets A i have empty intersection, so the
addition principle gives |A| = |A1|+ |A3|+ |A5|+ |A7|.

Now we must compute the individual terms of this sum. Take A3, the
set of 7-digit binary strings with three 1’s. Such a string can be formed by
selecting three out of seven positions for the 1’s and putting 0’s in the other
spaces. Thus |A3| =

(7
3
)
. Similarly |A1| =

(7
1
)
, |A5| =

(7
5
)
, and |A7| =

(7
7
)
.

Answer: |A| = |A1|+ |A3|+ |A5|+ |A7| =
(7
1
)+ (7

3
)+ (7

5
)+ (7

7
) = 7+35+21+1 = 64.

There are 64 7-digit binary strings with an odd number of 1’s.
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Exercises for Section 3.5
1. Suppose a set A has 37 elements. How many subsets of A have 10 elements?

How many subsets have 30 elements? How many have 0 elements?
2. Suppose A is a set for which |A| = 100. How many subsets of A have 5 elements?

How many subsets have 10 elements? How many have 99 elements?
3. A set X has exactly 56 subsets with 3 elements. What is the cardinality of X?
4. Suppose a set B has the property that

∣∣{X : X ∈P(B), |X | = 6
}∣∣= 28. Find |B|.

5. How many 16-digit binary strings contain exactly seven 1’s? (Examples of such
strings include 0111000011110000 and 0011001100110010, etc.)

6.
∣∣{X ∈P(

{
0,1,2,3,4,5,6,7,8,9

}
) : |X | = 4

}∣∣=
7.

∣∣{X ∈P(
{
0,1,2,3,4,5,6,7,8,9

}
) : |X | < 4

}∣∣=
8. This problem concerns lists made from the symbols A, B, C, D, E, F, G, H, I.

(a) How many length-5 lists can be made if there is no repetition and the list
is in alphabetical order? (Example: BDEFI or ABCGH, but not BACGH.)

(b) How many length-5 lists can be made if repetition is not allowed and the
list is not in alphabetical order?

9. This problem concerns lists of length 6 made from the letters A,B,C,D,E,F,
without repetition. How many such lists have the property that the D occurs
before the A?

10. A department consists of 5 men and 7 women. From this department you select
a committee with 3 men and 2 women. In how many ways can you do this?

11. How many positive 10-digit integers contain no 0’s and exactly three 6’s?
12. Twenty-one people are to be divided into two teams, the Red Team and the Blue

Team. There will be 10 people on Red Team and 11 people on Blue Team. In
how many ways can this be done?

13. Suppose n,k ∈Z, and 0 ≤ k ≤ n. Use Fact 3.5, the formula
(n

k
)= n!

k!(n−k)! , to show
that

(n
k
)= ( n

n−k
)
.

14. Suppose n,k ∈Z, and 0≤ k ≤ n. Use Definition 3.2 alone (without using Fact 3.5)
to show that

(n
k
)= ( n

n−k
)
.

15. How many 10-digit binary strings are there that do not have exactly four 1’s?
16. How many 6-element subsets of A = {

0,1,2,3,4,5,6,7,8,9
}
have exactly three even

elements? How many do not have exactly three even elements?
17. How many 10-digit binary strings are there that have exactly four 1’s or exactly

five 1’s? How many do not have exactly four 1’s or exactly five 1’s?
18. How many 10-digit binary strings have an even number of 1’s?
19. A 5-card poker hand is called a flush if all cards are the same suit. How many

different flushes are there?
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3.6 Pascal’s Triangle and the Binomial Theorem
There are some beautiful and significant patterns among the numbers

(n
k
)
.

We now investigate a pattern based on one equation in particular. It happens
that (

n+1
k

)
=

(
n

k−1

)
+

(
n
k

)
(3.3)

for any integers n and k with 1≤ k ≤ n.
To see why this is true, notice that the left-hand side

(n+1
k

)
is the number

of k-element subsets of the set A = {
0,1,2,3, . . . ,n

}
, which has n+1 elements.

Such a subset either contains 0 or it does not. The
( n
k−1

)
on the right is

the number of subsets of A that contain 0, because to make such a subset
we can start with

{
0
}
and append it an additional k−1 numbers selected

from
{
1,2,3, . . . ,n

}
, and there are

( n
k−1

)
ways to do this. Also, the

(n
k
)
on the

right is the number of subsets of A that do not contain 0, for it is the
number of ways to select k elements from

{
1,2,3, . . . ,n

}
. In light of all this,

Equation (3.3) just states the obvious fact that the number of k-element
subsets of A equals the number of k-element subsets that contain 0 plus
the number of k-element subsets that do not contain 0.

Having seen why Equation (3.3) is true, we now highlight it by arranging
the numbers

(n
k
)
in a triangular pattern. The left-hand side of Figure 3.3

shows the numbers
(n

k
)
arranged in a pyramid with

(0
0
)
at the apex, just

above a row containing
(1
k
)
with k = 0 and k = 1. Below this is a row listing

the values of
(2
k
)
for k = 0,1,2, and so on.

(0
0
)(1

0
) (1

1
)(2

0
) (2

1
) (2

2
)(3

0
) (3

1
) (3

2
) (3

3
)(4

0
) (4

1
) (4

2
) (4

3
) (4

4
)(5

0
) (5

1
) (5

2
) (5

3
) (5

4
) (5

5
)(6

0
) (6

1
) (6

2
) (6

3
) (6

4
) (6

5
) (6

6
)(7

0
) (7

1
) (7

2
) (7

3
) (7

4
) (7

5
) (7

6
) (7

7
)
. . .

...
...

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1 . . .

...
...

Figure 3.3. Pascal’s triangle

Any number
(n+1

k
)
for 0< k < n in this pyramid is just below and between

the two numbers
( n
k−1

)
and

(n
k
)
in the previous row. But Equation (3.3) says(n+1

k
) = ( n

k−1
)+ (n

k
)
. Therefore any number (other than 1) in the pyramid is

the sum of the two numbers immediately above it.
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This pattern is especially evident on the right of Figure 3.3, where each(n
k
)
is worked out. Notice how 21 is the sum of the numbers 6 and 15 above

it. Similarly, 5 is the sum of the 1 and 4 above it and so on.
This arrangement is calledPascal’s triangle, after Blaise Pascal, 1623–

1662, a French philosopher and mathematician who discovered many of its
properties. We’ve shown only the first eight rows, but the triangle extends
downward forever. We can always add a new row at the bottom by placing
a 1 at each end and obtaining each remaining number by adding the two
numbers above its position. Doing this in Figure 3.3 (right) gives a new
bottom row

1 8 28 56 70 56 28 8 1.

This row consists of the numbers
(8
k
)
for 0 ≤ k ≤ 8, and we have computed

them without the formula
(8
k
)= 8!

k!(8−k)! . Any
(n

k
)
can be computed this way.

The very top row (containing only 1) of Pascal’s triangle is called Row 0.
Row 1 is the next down, followed by Row 2, then Row 3, etc. Thus Row n
lists the numbers

(n
k
)
for 0≤ k ≤ n. Exercises 3.5.13 and 3.5.14 established(

n
k

)
=

(
n

n−k

)
, (3.4)

for each 0 ≤ k ≤ n. In words, the kth entry of Row n of Pascal’s triangle
equals the (n−k)th entry. This means that Pascal’s triangle is symmetric
with respect to the vertical line through its apex, as is evident in Figure 3.3.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
. . .

...
...

1

1x + 1y

1x2 + 2xy + 1y2

1x3 + 3x2 y + 3xy2 + 1y3

1x4 + 4x3 y +6x2 y2 + 4xy3 + 1y4

1x5 + 5x4 y +10x3 y2+10x2 y3+ 5xy4 + 1y5

. . .
...

...

Figure 3.4. The nth row of Pascal’s triangle lists the coefficients of (x+ y)n

Notice that Row n appears to be a list of the coefficients of (x + y)n.
For example (x+ y)2 = 1x2 +2xy+1y2, and Row 2 lists the coefficients 1 2 1.
Also (x+ y)3 = 1x3 +3x2 y+3xy2 +1y3, and Row 3 is 1 3 3 1. See Figure 3.4,
which suggests that the numbers in Row n are the coefficients of (x+ y)n.
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In fact this turns out to be true for every n. This fact is known as the
binomial theorem, and it is worth mentioning here. It tells how to raise
a binomial x+ y to a non-negative integer power n.
Theorem 3.1 (Binomial Theorem) If n is a non-negative integer, then
(x+ y)n = (n

0
)
xn + (n

1
)
xn−1 y+ (n

2
)
xn−2 y2 + (n

3
)
xn−3 y3 +·· ·+ ( n

n−1
)
xyn−1 + (n

n
)
yn.

For now we will be content to accept the binomial theorem without proof.
(You will be asked to prove it in an exercise in Chapter 10.) You may find it
useful from time to time. For instance, you can use it if you ever need to
expand an expression such as (x+ y)7. To do this, look at Row 7 of Pascal’s
triangle in Figure 3.3 and apply the binomial theorem to get

(x+ y)7 = x7 +7x6 y+21x5 y2 +35x4 y3 +35x3 y4 +21x2 y5 +7xy6 + y7.

For another example,

(2a−b)4 = (
(2a)+ (−b)

)4

= (2a)4 +4(2a)3(−b)+6(2a)2(−b)2 +4(2a)(−b)3 + (−b)4

= 16a4 −32a3b+24a2b2 −8ab3 +b4.

Exercises for Section 3.6
1. Write out Row 11 of Pascal’s triangle.
2. Use the binomial theorem to find the coefficient of x8 y5 in (x+ y)13.
3. Use the binomial theorem to find the coefficient of x8 in (x+2)13.
4. Use the binomial theorem to find the coefficient of x6 y3 in (3x−2y)9.
5. Use the binomial theorem to show ∑n

k=0

(n
k
)= 2n.

6. Use Definition 3.2 (page 85) and Fact 1.3 (page 13) to show ∑n
k=0

(n
k
)= 2n.

7. Use the binomial theorem to show ∑n
k=0 3k(n

k
)= 4n.

8. Use Fact 3.5 (page 87) to derive Equation 3.3 (page 90).
9. Use the binomial theorem to show

(n
0
)−(n

1
)+(n

2
)−(n

3
)+(n

4
)−·· ·+(−1)n(n

n
)= 0, for n > 0.

10. Show that the formula k
(n

k
)= n

(n−1
k−1

)
is true for all integers n,k with 0≤ k ≤ n.

11. Use the binomial theorem to show 9n =∑n
k=0(−1)k(n

k
)
10n−k.

12. Show that
(n

k
)( k

m
)= (n

m
)(n−m

k−m
)
.

13. Show that
(n
3
)= (2

2
)+ (3

2
)+ (4

2
)+ (5

2
)+·· ·+ (n−1

2
)
.

14. The first five rows of Pascal’s triangle appear in the digits of powers of 11: 110 = 1,
111 = 11, 112 = 121, 113 = 1331 and 114 = 14641. Why is this so? Why does the
pattern not continue with 115?
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3.7 The Inclusion-Exclusion Principle
Many counting problems involve computing the cardinality of a union A∪B
of two finite sets. We examine this kind of problem now.

First we develop a formula for |A∪B|. It is tempting to say that |A∪B|
must equal |A|+ |B|, but that is not quite right. If we count the elements of
A and then count the elements of B and add the two figures together, we
get |A|+ |B|. But if A and B have some elements in common, then we have
counted each element in A∩B twice.

A B

Therefore |A| + |B| exceeds |A ∪B| by |A ∩B|, and consequently |A ∪B| =
|A|+ |B|− |A∩B|. This can be a useful equation.

Fact 3.6 Inclusion-Exclusion Formula
If A and B are finite sets, then |A∪B| = |A|+ |B|− |A∩B|.

Notice that the sets A, B and A∩B are all generally smaller than A∪B,
so Fact 3.6 has the potential of reducing the problem of determining |A∪B|
to three simpler counting problems. It is called the inclusion-exclusion
formula because elements in A ∩B are included (twice) in |A| + |B|, then
excluded when |A∩B| is subtracted. Notice that if A∩B = ;, then we do
in fact get |A∪B| = |A|+ |B|. (This is an instance of the addition principle!)
Conversely, if |A∪B| = |A|+ |B|, then it must be that A∩B =;.
Example 3.17 A 3-card hand is dealt off of a standard 52-card deck. How
many different such hands are there for which all three cards are red or all
three cards are face cards?
Solution: Let A be the set of 3-card hands where all three cards are red
(i.e., either ♥ or ♦). Let B be the set of 3-card hands in which all three cards
are face cards (i.e., J,K or Q of any suit). These sets are illustrated below.

A =
{{

5

♥ ,
K

♦ ,
2

♥

}
,

{
K

♥ ,
J

♥ ,
Q

♥

}
,

{
A

♦ ,
6

♦ ,
6

♥

}
, . . .

}
(Red cards)

B =
{{

K

♠ ,
K

♦ ,
J

♣

}
,

{
K

♥ ,
J

♥ ,
Q

♥

}
,

{
Q

♦ ,
Q

♣ ,
Q

♥

}
, . . .

}
(Face cards)
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We seek the number of 3-card hands that are all red or all face cards, and
this number is |A∪B|. By Fact 3.6, |A∪B| = |A|+ |B|− |A∩B|. Let’s examine
|A|, |B| and |A∩B| separately. Any hand in A is formed by selecting three
cards from the 26 red cards in the deck, so |A| = (26

3
)
. Similarly, any hand in

B is formed by selecting three cards from the 12 face cards in the deck, so
|B| = (12

3
)
. Now think about A∩B. It contains all the 3-card hands made up

of cards that are red face cards.

A∩B =
{{

K

♥ ,
K

♦ ,
J

♥

}
,

{
K

♥ ,
J

♥ ,
Q

♥

}
,

{
,

Q

♦ ,
J

♦ ,
Q

♥

}
, . . .

}
(Red face

cards)

The deck has only 6 red face cards, so |A∩B| = (6
3
)
.

Now we can answer our question. The number of 3-card hands that are
all red or all face cards is |A∪B| = |A|+ |B|− |A∩B| = (26

3
)+ (12

3
)− (6

3
)= 2600+

220−20= 2800.

Example 3.18 A 3-card hand is dealt off of a standard 52-card deck. How
many different such hands are there for which it is not the case that all 3
cards are red or all three cards are face cards?
Solution: We will use the subtraction principle combined with our answer
to Example 3.17, above. The total number of 3-card hands is

(52
3
)= 52!

3!(52−3)! =
52!

3!49! = 52·51·50
3! = 26 ·51 ·17= 22,542. To get our answer, we must subtract from

this the number of 3-card hands that are all red or all face cards, that is,
we must subtract the answer from Example 3.17. Thus the answer to our
question is 22,542−2800= 19,742.

There is an analogue of Fact 3.6 that involves three sets. Consider three
sets A, B and C, as represented in the following Venn Diagram.

A B

C

Using the same kind of reasoning that resulted in Fact 3.6, you can convince
yourself that

|A∪B∪C| = |A|+ |B|+ |C|− |A∩B|− |A∩C|− |B∩C|+ |A∩B∩C|. (3.5)
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There’s probably not much harm in ignoring this one for now, but if you
find this kind of thing intriguing you should definitely take a course in
combinatorics. (Ask your instructor!)

Exercises for Section 3.7
1. At a certain university 523 of the seniors are history majors or math majors (or

both). There are 100 senior math majors, and 33 seniors are majoring in both
history and math. How many seniors are majoring in history?

2. How many 4-digit positive integers are there for which there are no repeated
digits, or for which there may be repeated digits, but all digits are odd?

3. How many 4-digit positive integers are there that are even or contain no 0’s?
4. This problem involves lists made from the letters T, H, E, O, R, Y, with repetition

allowed.
(a) How many 4-letter lists are there that don’t begin with T, or don’t end in Y?
(b) How many 4-letter lists are there in which the sequence of letters T, H, E

appears consecutively (in that order)?
(c) How many 6-letter lists are there in which the sequence of letters T, H, E

appears consecutively (in that order)?
5. How many 7-digit binary strings begin in 1 or end in 1 or have exactly four 1’s?
6. Is the following statement true or false? Explain. If A1 ∩ A2 ∩ A3 = ;, then

|A1 ∪ A2 ∪ A3| = |A1|+ |A2|+ |A3|.
7. Consider 4-card hands dealt off of a standard 52-card deck. How many hands

are there for which all 4 cards are of the same suit or all 4 cards are red?
8. Consider 4-card hands dealt off of a standard 52-card deck. How many hands

are there for which all 4 cards are of different suits or all 4 cards are red?
9. A 4-letter list is made from the letters L, I, S, T, E, D according to the following

rule: Repetition is allowed, and the first two letters on the list are vowels or the
list ends in D. How many such lists are possible?

10. How many 6-digit numbers are even or are divisible by 5?
11. How many 7-digit numbers are even or have exactly three digits equal to 0?
12. How many 5-digit numbers are there in which three of the digits are 7, or two of

the digits are 2?
13. How many 8-digit binary strings end in 1 or have exactly four 1’s?
14. How many 3-card hands (from a standard 52-card deck) have the property that

it is not the case that all cards are black or all cards are of the same suit?
15. How many 10-digit binary strings begin in 1 or end in 1?
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3.8 Counting Multisets
You have in your pocket four pennies, two nickels, a dime and three quarters.
You might be tempted to regard this collection as a set{

1,1,1,1,5,5,10,25,25
}
.

But this is not a valid model of your collection of change, because a set
cannot have repeated elements. To overcome this difficulty, we make a new
construction called amultiset. A multiset is like a set, except that elements
can be repeated. Wewill use square brackets [ ] instead of braces

{ }
to denote

multisets. For example, your multiset of change is[
1,1,1,1,5,5,10,25,25

]
.

A multiset is a hybrid of a set and a list; in a multiset, elements can be
repeated, but order does not matter. For instance

[1,1,1,1,5,5,10,25,25
] = [

25,5,1,1,10,1,1,5,25
]

= [
25,10,25,1,5,1,5,1,1

]
.

Given a multiset A, its cardinality |A| is the number of elements it
has, including repetition. So if A = [

1,1,1,1,5,5,10,25,25
]
, then |A| = 9. The

multiplicity of an element x ∈ A is the number of times that x appears, so
1 ∈ A has multiplicity 4, while 5 and 25 each have multiplicity 2, and 10 has
multiplicity 1. Notice that every set can be regarded as a multiset for which
each element has multiplicity 1. In this sense we can think of ;= {}= [] as
the multiset that has no elements.

To illustrate the idea of multisets, consider the multisets of cardinality 2
that can be made from the symbols

{
a,b, c,d

}
. They are

[a,a] [a,b] [a, c] [a,d] [b,b] [b, c] [b,d] [c, c] [c,d] [d,d].

We have listed them so that the letters in each multiset are in alphabetical
order (remember, we can order the elements of a multiset in any way we
choose), and the 10 multisets are arranged in dictionary order.

For multisets of cardinality 3 made from
{
a,b, c,d

}
, we have

[a,a,a] [a,a,b] [a,a, c] [a,a,d] [a,b,b]
[a,b, c] [a,b,d] [a, c, c] [a, c,d] [a,d,d]
[b,b,b] [b,b, c] [b,b,d] [b, c, c] [b, c,d]
[b,d,d] [c, c, c] [c, c,d] [c,d,d] [d,d,d].
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Though X = {
a,b, c,d

}
has no subsets of cardinality 5, there are many

multisets of cardinality 5 made from these elements, including [a,a,a,a,a],
[a,a,b, c,d] and [b, c, c,d,d], and so on. Exactly how many are there?

This is the first question about multisets that we shall tackle: Given a
finite set X , how many cardinality-k multisets can be made from X?

Let’s start by counting the cardinality-5 multisets made from symbols
X = {

a,b, c,d
}
. (Our approach will lead to a general formula.) We know we

can write any such multiset with its letters in alphabetical order. Tweaking
the notation slightly, we could write any such multiset with bars separating
the groupings of a,b, c,d, as shown in the table below. Notice that if a
symbol does not appear in the multiset, we still write the bar that would
have separated it from the others.

Multiset with separating bars encoding

[a,a,b, c,d] aa
∣∣b∣∣c∣∣d ∗∗|∗ |∗ |∗

[a,b,b, c,d] a
∣∣bb

∣∣c∣∣d ∗|∗∗|∗ |∗
[a,b, c, c,d] a

∣∣b∣∣cc
∣∣d ∗|∗ |∗∗|∗

[a,a, c, c,d] aa
∣∣∣∣cc

∣∣d ∗∗||∗∗|∗
[b,b,d,d,d]

∣∣bb
∣∣∣∣ddd |∗∗||∗∗∗

[a,a,a,a,a] aaaaa
∣∣∣∣∣∣ ∗∗∗∗∗|||

This suggests that we can encode the multisets as lists made from the two
symbols ∗ and |, with an ∗ for each element of the multiset, as follows.

∗ for each a︷ ︸︸ ︷∗ ·· · · · · ∗ ∣∣ ∗ for each b︷ ︸︸ ︷∗ ·· · · · · ∗ ∣∣ ∗ for each c︷ ︸︸ ︷∗ ·· · · · · ∗ ∣∣ ∗ for each d︷ ︸︸ ︷∗ ·· · · · · ∗

For examples see the right-hand column of the table. Any such encoding is
a list made from 5 stars and 3 bars, so the list has a total of 8 entries. How
many such lists are there? We can form such a list by choosing 3 of the 8
positions for the bars, and filling the remaining three positions with stars.
Therefore the number of such lists is

(8
3
)= 8!

3!5! = 56.
That is our answer. There are 56 cardinality-5 multisets that can

be made from the symbols in X = {a,b, c,d}.
If we wanted to count the cardinality-3 multisets made from X , then the

exact same reasoning would apply, but with 3 stars instead of 5. We’d be
counting the length-6 lists with 3 stars and 3 bars. There are

(6
3
)= 6!

3!3! = 20
such lists. So there are 20 cardinality-3 multisets made from X = {a,b, c,d}.
This agrees with our accounting on the previous page.
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In general, given a set X = {x1, x2, . . . , xn} of n elements, any cardinality-k
multiset made from its elements can be encoded in a star-and-bar list

∗ for each x1︷ ︸︸ ︷∗ ∗ ∗ ∗ ∗ ∣∣ ∗ for each x2︷ ︸︸ ︷∗ ∗ ∗ ∗ ∗ ∣∣ ∗ for each x3︷ ︸︸ ︷∗ ∗ ∗ ∗ ∗ ∣∣ · · · · · · ∣∣ ∗ for each xn︷ ︸︸ ︷∗ ∗ ∗ ∗ ∗ .

Such a list has k stars (one for each element of the multiset) and n− 1
separating bars (a bar between each of the n groupings of stars). Therefore
its length is k+n−1. We can make such a list by selecting n−1 list positions
out of k+ n−1 positions for the bars and inserting stars in the left-over
positions. Thus there are

(k+n−1
n−1

)
such lists. Alternatively we could choose k

positions for the stars and fill in the remaining n−k with bars, so there are(k+n−1
k

)
such lists. Note that

(k+n−1
k

)= (k+n−1
n−1

)
by Equation (3.4) on page 91.

Let’s summarize our reckoning.

Fact 3.7 The number of k-element multisets that can be made from the
elements of an n-element set X = {

x1, x2, . . . , xn
}
is(

k+n−1
k

)
=

(
k+n−1

n−1

)
.

This works because any cardinality-k multiset made from the n elements
of X can be encoded in a star-and-bar list of length k+n−1, having form

∗ for each x1︷ ︸︸ ︷∗ ∗ ∗ ∗ ∗ ∣∣ ∗ for each x2︷ ︸︸ ︷∗ ∗ ∗ ∗ ∗ ∣∣ ∗ for each x3︷ ︸︸ ︷∗ ∗ ∗ ∗ ∗ ∣∣ · · · · · · ∣∣ ∗ for each xn︷ ︸︸ ︷∗ ∗ ∗ ∗ ∗

with k stars and n−1 bars separating the n groupings of stars. Such a
list can be made by selecting n−1 positions for the bars, and filling the
remaining positions with stars, and there are

(n+k−1
n−1

)
ways to do this.

For example, the number of 2-element multisets that can be made from
the 4-element set X = {a,b, c,d} is

(2+4−1
2

) = (5
2
) = 10. This agrees with our

accounting of them on page 96. The number of 3-element multisets that
can be made from the elements of X is

(3+4−1
3

)= (6
3
)= 20. Again this agrees

with our list of them on page 96.
The number of 1-element multisets made from X is

(1+4−1
1

) = (4
1
) = 4.

Indeed, the four multisets are [a], [b], [c] and [d]. The number of 0-element
multisets made from X is

(0+4−1
0

) = (3
0
) = 1. This is right, because there is

only one such multiset, namely ;.
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Example 3.19 A bag contains 20 identical red marbles, 20 identical green
marbles, and 20 identical blue marbles. You reach in and grab 20 marbles.
There are many possible outcomes. You could have 11 reds, 4 greens and 5
blues. Or you could have 20 reds, 0 greens and 0 blues, etc. All together,
how many outcomes are possible?

Solution: Each outcome can be thought of as a 20-element multiset made
from the elements of the 3-element set X = {

r,g,b
}
. For example, 11 reds, 4

greens and 5 blues would correspond to the multiset

[ r,r,r,r,r,r,r,r,r,r,r,g,g,g,g,b,b,b,b,b ].

The outcome consisting of 10 reds and 10 blues corresponds to the multiset

[ r,r,r,r,r,r,r,r,r,r,b,b,b,b,b,b,b,b,b,b ].

Thus the total number of outcomes is the number of 20-element multisets
made from the elements of the 3-element set X = {R,G,B}. By Fact 3.7, the
answer is

(20+3−1
20

)= (22
20

)= 231 possible outcomes.

Rather than remembering the formula in Fact 3.7, it is probably best
to work out a new stars-and-bars model as needed. This is because it is
often easy to see how a particular problem can be modeled with stars and
bars, and once they have been set up, the formula in Fact 3.7 falls out
automatically.

For instance, we could solve Example 3.19 by noting that each outcome
has a star-and-bar encoding using 20 stars and 2 bars. (The outcome
[r,r,r,r,r,r,r,r,r,r,r,g,g,g,g,b,b,b,b,b] can be encoded in stars and bars as
∗∗∗∗∗∗∗∗∗∗∗| ∗ ∗∗∗| ∗ ∗∗∗∗, etc.) We can form such a list by choosing
2 out of 22 slots for bars and filling the remaining 20 slots with stars. There
are

(22
2
)= 231 ways of doing this.

Our next example involves counting the number of non-negative integer
solutions of the equation w+x+ y+ z = 20. By a non-negative integer solution
to the equation, we mean an assignment of non-negative integers to the vari-
ables that makes the equation true. For example, one solution is w = 7, x = 3,
y = 5, z = 5. We can write this solution compactly as (w, x, y, z) = (7,3,5,5).
Two other solutions are (w, x, y, z)= (1,3,1,15) and (w, x, y, z)= (0,20,0,0). We
would not include (w, x, y, z)= (1,−1,10,10) as a solution because even though
it satisfies the equation, the value of x is negative. How many solutions are
there all together? The next example presents a way of solving this type of
question.
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Example 3.20 How many non-negative integer solutions does the equa-
tion w+ x+ y+ z = 20 have?

Solution: We can model a solution with stars and bars. For example,
encode the solution (w, x, y, z)= (3,4,5,8) as

3︷ ︸︸ ︷∗∗∗ ∣∣ 4︷ ︸︸ ︷∗∗∗∗ ∣∣ 5︷ ︸︸ ︷∗∗∗∗∗ ∣∣ 8︷ ︸︸ ︷∗∗∗∗∗∗∗∗ .

In general, any solution (w, x, y, z)= (a,b, c,d) gets encoded as

a stars︷ ︸︸ ︷∗∗∗·· ·∗ ∣∣ b stars︷ ︸︸ ︷∗∗∗·· ·∗ ∣∣ c stars︷ ︸︸ ︷∗∗∗·· ·∗ ∣∣ d stars︷ ︸︸ ︷∗∗∗·· ·∗,

where all together there are 20 stars and 3 bars. So, for instance the solution
(w, x, y, z)= (0,0,10,10) gets encoded as ||∗∗∗∗∗∗∗∗∗∗|∗∗∗∗∗∗∗∗∗∗, and
the solution (w, x, y, z)= (7,3,5,5) is encoded as ∗∗∗∗∗∗∗|∗∗∗|∗∗∗∗∗|∗∗∗∗∗.
Thus we can describe any non-negative integer solution to the equation as
a list of length 20+3= 23 that has 20 stars and 3 bars. We can make any
such list by choosing 3 out of 23 spots for the bars, and filling the remaining
20 spots with stars. The number of ways to do this is

(23
3
)= 23!

3!20! = 23·22·21
3·2 =

23 · 11 · 7 = 1771. Thus there are 1771 non-negative integer solutions of
w+ x+ y+ z = 20.

For another approach to this example, model solutions of w+x+ y+z = 20
as 20-element multisets made from the elements of

{
w, x, y, z

}
. For example,

solution (5,5,4,6) corresponds to [w,w,w,w,w, x, x, x, x, x, y, y, y, y, z, z, z, z, z].
By Fact 3.7, there are

(20+4−1
20

) = (23
20

) = 1771 such multisets, so this is the
number of solutions to w+ x+ y+ z = 20.

Example 3.21 This problem concerns the lists (w, x, y, z) of integers with
the property that 0 ≤ w ≤ x ≤ y ≤ z ≤ 10. That is, each entry is an integer
between 0 and 10, and the entries are ordered from smallest to largest. For
example, (0,3,3,7), (1,1,1,1) and (2,3,6,9) have this property, but (2,3,6,4)
does not. How many such lists are there?

Solution: We can encode such a list with 10 stars and 4 bars, where w is
the number of stars to the left of the first bar, x is the number of stars to
the left of the second bar, y is the number of stars to the left of the third
bar, and z is the number of stars to the left of the fourth bar.

For example, (2,3,6,9) is encoded as ∗∗|∗ |∗∗∗ |∗∗∗|∗, and (1,2,3,4) is
encoded as ∗|∗ |∗ |∗ |∗∗∗∗∗∗.
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Here are some other examples of lists paired with their encodings.

(0,3,3,7) |∗∗∗ ||∗∗∗∗|∗∗∗
(1,1,1,1) ∗|| | |∗∗∗∗∗∗∗∗∗
(9,9,9,10) ∗∗∗∗∗∗∗∗∗|| |∗ |

Such encodings are lists of length 14, with 10 stars and 4 bars. We can
make such a list by choosing 4 of the 14 slots for the bars and filling the
remaining slots with stars. The number of ways to do this is

(14
4
) = 1001.

Answer: There are 1001 such lists.

We will examine one more type of multiset problem. To motivate it,
consider the permutations of the letters of the word “BOOK.” At first glance
there are 4 letters, so we should get 4! = 24 permutations. But this is not
quite right because two of the letters are identical. We could interchange the
two O’s but still have the same permutation. To get a grip on the problem,
let’s make one of the letters lower case: BOoK. Now our 24 permutations
are listed below in the oval.

BOoK KOoB OoKB OoBK OBoK OKoB OKBo OBKo BKOo KBOo KOBo BOKo
BoOK KoOB oOKB oOBK oBOK oKOB oKBO oBKO BKoO KBoO KoBO BoKO

BOOK KOOB OOKB OOBK OBOK OKOB OKBO OBKO BKOO KBOO KOBO BOKO

The columns in the oval correspond to the same permutation of the letters
of BOOK, as indicated in the row below the oval. Thus there are actually
4!
2 = 24

2 = 12 permutations of the letters of BOOK.
This is actually a problem about multisets. The letters in “BOOK” form a

multiset
[
B,O,O,K

]
, and we have determined that there are 12 permutations

of this multiset.
For another motivational example, consider the permutations of the

letters of the word BANANA. Here there are two N’s and three A’s. Though
some of the letters look identical, think of them as distinct physical objects
that we can permute into different orderings. It helps to subscript the
letters to emphasize that they are actually six distinct objects:

B A1 N1 A2 N2 A3.

Now, there are 6!= 720 permutations of these six letters. It’s not practical
to write out all of them, but we can get a sense of the problem by making a
partial listing in the box below.
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B A1 N1 A2 N2 A3
B A1 N1 A3 N2 A2
B A2 N1 A1 N2 A3
B A2 N1 A3 N2 A1
B A3 N1 A2 N2 A1
B A3 N1 A1 N2 A2
B A1 N2 A2 N1 A3
B A1 N2 A3 N1 A2
B A2 N2 A1 N1 A3
B A2 N2 A3 N1 A1
B A3 N2 A2 N1 A1
B A3 N2 A1 N1 A2

A1 B N1 A2 N2 A3
A1 B N1 A3 N2 A2
A2 B N1 A1 N2 A3
A2 B N1 A3 N2 A1
A3 B N1 A2 N2 A1
A3 B N1 A1 N2 A2
A1 B N2 A2 N1 A3
A1 B N2 A3 N1 A2
A2 B N2 A1 N1 A3
A2 B N2 A3 N1 A1
A3 B N2 A2 N1 A1
A3 B N2 A1 N1 A2

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

720 permutations
of B A1 N1 A2 N2 A3

BANANA ABNANA

The first column lists the permutations of B A1 N1 A2 N2 A3 corresponding to
the word BANANA. By the multiplication principle, the column has 3!2!= 12
permutations because the three A i ’s can be permuted in 3! ways within
their positions, and the two Ni ’s can be permuted in 2! ways. Similarly, the
second column lists the 3!2!= 12 permutations corresponding to the “word”
ABNANA.

All together there are 6! = 720 permutations of B A1 N1 A2 N2 A3, and
groupings of 12 of them correspond to particular permutations of BANANA.
Therefore the total number of permutations of BANANA is 6!

3!2! = 720
12 = 60.

The kind of reasoning used here generalizes to the following fact.

Fact 3.8 Suppose a multiset A has n elements, with multiplicities
p1, p2, . . . , pk. Then the total number of permutations of A is

n!
p1! p2! · · · pk!

.

Example 3.22 Count the permutations of the letters in MISSISSIPPI.

Solution: Think of this word as an 11-element multiset with one M, four
I’s, four S’s and two P’s. By Fact 3.8, it has 11!

1! 4! 4! 2! = 34,650 permutations.

Example 3.23 Determine the number of permutations of the multiset[
1,1,1,1,5,5,10,25,25

]
.

Solution: By Fact 3.8 the answer is 9!
4! 2! 1! 2! = 3780.
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Exercises for Section 3.8
1. How many 10-element multisets can be made from the symbols

{
1,2,3,4

}
?

2. How many 2-element multisets can be made from the 26 letters of the alphabet?
3. You have a dollar in pennies, a dollar in nickels, a dollar in dimes, and a dollar

in quarters. You give a friend four of your coins. In how many can this be done?
4. A bag contains 20 identical red balls, 20 identical blue balls, 20 identical green

balls, and 20 identical white balls. You reach in and grab 15 balls. How many
different outcomes are possible?

5. A bag contains 20 identical red balls, 20 identical blue balls, 20 identical green
balls, and one white ball. You reach in and grab 15 balls. How many different
outcomes are possible?

6. A bag contains 20 identical red balls, 20 identical blue balls, 20 identical green
balls, one white ball, and one black ball. You reach in and grab 20 balls. How
many different outcomes are possible?

7. In how many ways can you place 20 identical balls into five different boxes?
8. How many lists (x, y, z) of three integers are there with 0≤ x ≤ y≤ z ≤ 100?
9. A bag contains 50 pennies, 50 nickels, 50 dimes and 50 quarters. You reach in

and grab 30 coins. How many different outcomes are possible?
10. How many non-negative integer solutions does u+v+w+ x+ y+ z = 90 have?
11. How many integer solutions does the equation w+ x+ y+ z = 100 have if w ≥ 4,

x ≥ 2, y≥ 0 and z ≥ 0?
12. How many integer solutions does the equation w+ x+ y+ z = 100 have if w ≥ 7,

x ≥ 0, y≥ 5 and z ≥ 4?
13. How many length-6 lists can be made from the symbols {a, b, c, d, e, f, g}, if

repetition is allowed and the list is in alphabetical order? (Examples: bbcegg,
but not bbbagg.)

14. How many permutations are there of the letters in the word “PEPPERMINT”?
15. How many permutations are there of the letters in the word “TENNESSEE”?
16. A community in Canada’s Northwest Territories is known in the local language

as “TUKTUYAAQTUUQ.” How many permutations does this name have?
17. You roll a dice six times in a row. How many possible outcomes are there that

have two 1’s three 5’s and one 6?
18. Flip a coin ten times in a row. How many outcomes have 3 heads and 7 tails?
19. In how many ways can you place 15 identical balls into 20 different boxes if each

box can hold at most one ball?
20. You distribute 25 identical pieces of candy among five children. In how many

ways can this be done?
21. How many numbers between 10,000 and 99,999 contain one or more of the digits

3, 4 and 8, but no others?
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3.9 The Division and Pigeonhole Principles
Our final fundamental counting principle is called the division principle.
Before discussing it, we need some notation. Given a number x, its floor
bxc is x rounded down to the nearest integer. Thus b10

4 c = 2, and b9.31c = 9,
and b7c = 7, etc. The ceiling of x, denoted dxe, is x rounded up to the nearest
integer. Thus d10

4 e = 3, and b9.31e = 10, and d7e = 7.
The division principle is often illustrated by a simple situation involving

pigeons. Imagine n pigeons that live in k pigeonholes, or boxes. (Possibly
n 6= k.) At night all the pigeons fly into the boxes. When this happens, some
of the k boxes may contain more than one pigeon, and some may be empty.
But no matter what, the average number of pigeons per box is n

k . Obviously,
at least one of the boxes contains n

k or more pigeons. (Because not all the
boxes can contain fewer than the average number of pigeons per box.) And
because a box must contain a whole number of pigeons, we round up to
conclude that at least one box contains d n

k e or more pigeons.
Similarly, at least one box must contain n

k or fewer pigeons, because not
all boxes can contain more than the average number of pigeons per box.
Rounding down, at least one box contains b n

k c or fewer pigeons.
We call this line of reasoning the division principle. (Some texts call it

the strong form of the pigeonhole principle.)

Fact 3.9 (Division Principle)
Suppose n objects are placed into k boxes.
Then at least one box contains d n

k e or more objects,
and at least one box contains b n

k c or fewer objects.

This has a useful variant. If n > k, then n
k > 1, so d n

k e > 1, and this means
some box contains more than one object. On the other hand, if n < k then
n
k < 1, so b n

k c < 1, meaning at least one box is empty. Thus the division
principle yields the following consequence, called the pigeonhole principle.

Fact 3.10 (Pigeonhole Principle)
Suppose n objects are placed into k boxes.
If n > k, then at least one box contains more than one object.
If n < k, then at least one box is empty.

The pigeonhole principle is named for the scenario in which n pigeons
fly into k pigeonholes (or boxes). If there are more pigeons than boxes (n > k)
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then some box gets more than one pigeon. And if there are fewer pigeons
than boxes (n < k) then there must be at least one empty box.

Like the multiplication, addition and subtraction principles, the division
and pigeonhole principles are intuitive and obvious, but they can prove
things that are not obvious. The challenge is seeing where and how to apply
them. Our examples will start simple and get progressively more complex.

For an extremely simple application, notice that in any group of 13
people, at least two of them were born on the same month. Although this is
obvious, it really does follow from the pigeonhole principle. Think of the 13
people as objects, and put each person in the “box” that is his birth month.
As there are more people than boxes (months), at least one box (month) has
two or more people in it, meaning at least two of the 13 people were born in
the same month.

Further, for any group of 100 people, the division principle says that
there is a month in which d100

12 e = 9 or more of the people were born. It also
guarantees a month in which b100

12 c = 8 or fewer of the people were born.

Example 3.24 Pick six numbers between 0 and 9 (inclusive). Show that
two of them must add up to 9.

For example, suppose you picked 0, 1, 3, 5, 7 and 8. Then 1+8 = 9. If you
picked 4, 5, 6, 7, 8, 9. then 4+5= 9. The problem asks us to show that this
happens no matter how we pick the numbers.

Solution: Pick six numbers between 0 and 9. Here’s why two of them sum
to 9: Imagine five boxes, each marked with two numbers, as shown below.
Each box is labeled so that the two numbers written on it sum to 9.

0, 9 1, 8 2, 7 3, 6 4, 5

For each number that was picked, put it in the box having that number
written on it. For example, if we picked 7, it goes in the box labeled “2, 7.”
(The number 2, if picked, would go in that box too.) In this way we place the
six chosen numbers in five boxes. As there are more numbers than boxes,
the pigeonhole principle says that some box has more than one (hence two)
of the picked numbers in it. Those two numbers sum to 9.

Notice that if we picked only five numbers from 0 to 9, then it’s possible
that no two sum to 9: we could be unlucky and pick 0, 1, 2, 3, 4. But the
pigeonhole principle ensures that if six are picked then two do sum to 9.
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Example 3.25 A store has a gumball machine containing a large number
of red, green, blue and white gumballs. You get one gumball for each nickel
you put into the machine. The store offers the following deal: You agree to
buy some number of gumballs, and if 13 or more of them have the same
color you get $5. What is the fewest number of gumballs you need to buy to
be 100% certain that you will make money on the deal?

Solution: Let n be the number of gumballs that you buy. Imagine sorting
your n gumballs into four boxes labeled RED, GREEN, BLUE, and WHITE.
(That is, red balls go in the red box, green balls go in the green box, etc.)

RED GREEN BLUE WHITE

The division principle says that one box contains d n
4 e or more gumballs.

Provided d n
4 e ≥ 13, you will know you have 13 gumballs of the same color.

This happens if n
4 > 12 (so the ceiling of n

4 rounds to a value larger than 12).
Therefore you need n > 4 ·12 = 48, so if n = 49 you know you have at least
d49

4 e = d12.25e = 13 gumballs of the same color.

Answer: Buy 49 gumballs for 49 nickels, which is $2.45. You get $5, and
therefore have made $2.55.

Note that if you bought just 48 gumballs, you might win, but there is a
chance that you’d get 12 gumballs of each color and miss out on the $5. And
if you bought more than 49, you’d still get the $5, but you would have spent
more nickels.

Explicitly mentioning the boxes in the above solution is not necessary.
Some people prefer to draw a conclusion based averaging alone. They
might solve the problem by letting n be the number of gumballs bought,
so n = r+ g+ b+w, where r is the number of them that are red, g is the
number that are green, b is the number of blues and w is the number
of whites. Then the average number of gumballs of a particular color is
r+ g+b+w

4
= n

4
. We need this to be greater than 12 to ensure 13 of the

same color, and the smallest number that does the job is n = 49. This is still
the division principle, in a pure form.
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Example 3.26 Nine points are randomly placed on the right triangle
shown below. Show that three of these points form a triangle whose area is
1
8 square unit or less. (We allow triangles with zero area, in which case the
three points lie on a line.)

︸ ︷︷ ︸
1

1

Solution: Divide the triangle into four smaller triangles, as indicated
by the dashed lines below. Each of these four triangles has an area of

︸ ︷︷ ︸
1


1

1
2 bh = 1

2
1
2

1
2 = 1

8 square units. Think of these smaller
triangles as “boxes.” So we have placed 9 points in 4
boxes. (If one of the 9 points happens to be on a
dashed line, say it belongs to the box below or to its
left.) The division principle says one of the boxes
has at least d9

4e = 3 of the points in it. Those three
points form a triangle whose area is no larger than
the area of the “box” that it is in. Thus these three
points form a triangle whose area is 1

8 or less.

Exercises for Section 3.9
1. Show that if six numbers are chosen at random, then at least two of them will

have the same remainder when divided by 5.

2. You deal a pile of cards, face down, from a standard 52-card deck. What is
the least number of cards the pile must have before you can be assured that it
contains at least five cards of the same suit?

3. What is the fewest number of times you must roll a six-sided dice before you can
be assured that 10 or more of the rolls resulted in the same number?

4. Select any five points on a square whose side-length is one unit. Show that at
least two of these points are within

p
2

2 units of each other.
5. Prove that any set of seven distinct natural numbers contains a pair of numbers

whose sum or difference is divisible by 10.

6. Given a sphere S, a great circle of S is the intersection of S with a plane through
its center. Every great circle divides S into two parts. A hemisphere is the union
of the great circle and one of these two parts. Show that if five points are placed
arbitrarily on S, then there is a hemisphere that contains four of them.
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3.10 Combinatorial Proof
Combinatorial proof is a method of proving two different expressions are
equal by showing that they are both answers to the same counting question.
We have already used combinatorial proof (without calling it combinatorial
proof) in proving Pascal’s formula

(n+1
k

)= ( n
k−1

)+ (n
k
)
on page 90.

There we argued that the left-hand side
(n+1

k
)
is, by definition, the number

of k-element subsets of the set S = {
0,1,2, . . . ,n

}
with |S| = n+1. But the right-

hand side also gives the number of k-element subsets of S, because such a
subset either contains 0 or it does not. We can make any k-element subset of
S that contains 0 by starting with 0 and selecting k−1 other elements from{
1,2, . . . ,n

}
, in

( n
k−1

)
ways. We can make any k-element subset that does not

contain 0 by selecting k elements from
{
1,2, . . . ,n

}
, and there are

(n
k
)
ways to

do this. Thus, (
n+1

k

)
︸ ︷︷ ︸

number of
k-element
subsets of

S={
0,1, . . . ,n

}

=
(

n
k−1

)
︸ ︷︷ ︸

number of
k-element
subsets of
S with 0

+
(
n
k

)
.︸ ︷︷ ︸

number of
k-element
subsets of

S without 0

Both sides count the number of k-element subsets of S, so they are equal.
This is combinatorial proof.

Example 3.27 Use combinatorial proof to show
(n

k
)= ( n

n−k
)
.

Solution. First, by definition, if k < 0 or k > n, then both sides are 0, and
thus equal. Therefore for the rest of the proof we can assume 0≤ k ≤ n.

The left-hand side
(n

k
)
is the number of k-element subsets of S = {

1,2, . . . ,n
}
.

Every k-element subset X ⊆ S pairs with a unique (n−k)-element subset
X = S−X ⊆ S. Thus the number of k-element subsets of S equals the number
of (n−k)-element subsets of S, which is to say

(n
k
)= ( n

n−k
)
.

We could also derive
(n

k
)= ( n

n−k
)
by using the formula for

(n
k
)
and quickly

get (
n

n−k

)
= n!

(n−k)!
(
n− (n−k)!

) = n!
(n−k)!k!

= n!
k! (n−k)!

=
(
n
k

)
.

But you may feel that the combinatorial proof is “slicker” because it uses
the meanings of the terms. Often it is flat-out easier than using formulas,
as in the next example.
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Our next example will prove that
n∑

k=0

(n
k
)2 = (2n

n
)
, for any positive integer n,

which is to say that
(n
0
)2+(n

1
)2+(n

2
)2+·· ·+(n

n
)2 = (2n

n
)
. For example, if n = 5, this

statement asserts
(5
0
)2 + (5

1
)2 + (5

2
)2 + (5

3
)2 + (5

4
)2 + (5

5
)2 = (2·5

5
)
, which is

12 +52 +102 +102 +52 +12 = (10
5
)
,

and this is true, as both sides equal 252. In general, the statement says the
the squares of the entries in the nth row of Pascal’s triangle add up to

(2n
n

)
.

Example 3.28 Use a combinatorial proof to show that
n∑

k=0

(
n
k

)2

=
(
2n
n

)
.

First, the right-hand side
(2n

n
)
is the number of ways to select n things

from a set S that has 2n elements.
Now let’s count this a different way. Divide S into two equal-sized parts,

S = A∪B, where |A| = n and |B| = n, and A∩B =;.
For any fixed k with 0≤ k ≤ n, we can select n things from S by taking k

things from A and n−k things from B for a total of k+ (n−k)= n things. By
the multiplication principle, we get

(n
k
)( n

n−k
)

n-element subsets of S this way.
As k could be any number from 0 to n, the number of ways to select n

things from S is thus

(
n
0

)
︸︷︷︸

0
fr
om

A

(
n

n−0

)
︸ ︷︷ ︸

n
fr
om

B

+
(
n
1

)
︸︷︷︸

1
fr
om

A

(
n

n−1

)
︸ ︷︷ ︸

n−
1
fr
om

B

+
(
n
2

)
︸︷︷︸

2
fr
om

A

(
n

n−2

)
︸ ︷︷ ︸

n−
2
fr
om

B

+
(
n
3

)
︸︷︷︸

3
fr
om

A

(
n

n−3

)
︸ ︷︷ ︸

n−
3
fr
om

B

+ ·· · +
(
n
n

)
︸︷︷︸

n
fr
om

A

(
n
0

)
.︸︷︷︸

0
fr
om

B

But because
( n
n−k

)= (n
k
)
, this expression equals

(n
0
)(n

0
)+(n

1
)(n

1
)+(n

2
)(n

2
)+·· ·+(n

n
)(n

n
)
,

which is
(n
0
)2 + (n

1
)2 + (n

2
)2 +·· ·+ (n

n
)2 =

n∑
k=0

(n
k
)2.

In summary, we’ve counted the ways to choose n elements from the set
S with two methods. One method gives

(2n
n

)
, and the other gives

n∑
k=0

(n
k
)2.

Therefore
n∑

k=0

(n
k
)2 = (2n

n
)
.
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Be on the lookout for opportunities to use combinatorial proof, and watch
for it in your readings outside of this course. Also, try some of the exercises
below. Sometimes it takes some creative thinking and false starts before
you hit on an idea that works, but once you find it the solution is usually
remarkably simple.

Exercises for Section 3.10
Use combinatorial proof to solve the following problems. You may assume that any
variables m,n,k and p are non-negative integers.

1. Show that 1(n−0)+2(n−1)+3(n−2)+4(n−3)+·· ·+ (n−1)2+ (n−0)1= (n+2
3

)
.

2. Show that 1+2+3+·· ·+n = (n+1
2

)
.

3. Show that
(n
2
)(n−2

k−2
)= (n

k
)(k

2
)
.

4. Show that P(n,k)= P(n−1,k)+k ·P(n−1,k−1).
5. Show that

(2n
2

)= 2
(n
2
)+n2.

6. Show that
(3n

3
)= 3

(n
3
)+6n

(n
2
)+n3.

7. Show that
p∑

k=0

(m
k
)( n

p−k
)= (m+n

p
)
.

8. Show that
m∑

k=0

(m
k
)( n

p+k
)= (m+n

m+p
)
.

9. Show that
n∑

k=m

( k
m

)= (n+1
m+1

)
.

10. Show that
n∑

k=1
k
(n

k
)= n2n−1.

11. Show that
n∑

k=0
2k(n

k
)= 3n.

12. Show that
n∑

k=0

(n
k
)( k

m
)= (n

m
)
2n−m.
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How to Prove Conditional
Statements





CHAPTER 4

Direct Proof

It is time to prove some theorems. There are various strategies for doing
this; we now examine the most straightforward approach, a technique

called direct proof. As we begin, it is important to keep inmind themeanings
of three key terms: Theorem, proof and definition.

A theorem is a mathematical statement that is true and can be (and
has been) verified as true. A proof of a theorem is a written verification
that shows that the theorem is definitely and unequivocally true. A proof
should be understandable and convincing to anyone who has the requisite
background and knowledge. This knowledge includes an understanding of
the meanings of the mathematical words, phrases and symbols that occur
in the theorem and its proof. It is crucial that both the writer of the proof
and the readers of the proof agree on the exact meanings of all the words,
for otherwise there is an intolerable level of ambiguity. A definition is an
exact, unambiguous explanation of the meaning of a mathematical word or
phrase. We will elaborate on the terms theorem and definition in the next
two sections, and then finally we will be ready to begin writing proofs.

4.1 Theorems
A theorem is a statement that is true and has been proved to be true. You
have encountered many theorems in your mathematical education. Here
are some theorems taken from an undergraduate calculus text. They will
be familiar to you, though you may not have read all the proofs.

Theorem: Let f be differentiable on an open interval I and let c ∈ I. If
f (c) is the maximum or minimum value of f on I, then f ′(c)= 0.

Theorem: If ∑∞
k=1 ak converges, then lim

k→∞
ak = 0.

Theorem: Suppose f is continuous on the interval [a,b]. Then f is
integrable on [a,b].

Theorem: Every absolutely convergent series converges.
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Observe that each of these theorems either has the conditional form “If
P, then Q,” or can be put into that form. The first theorem has an initial
sentence “Let f be differentiable on an open interval I, and let c ∈ I,” which
sets up some notation, but a conditional statement follows it. The third
theorem has form “Suppose P. Then Q,” but this means the same thing
as “If P, then Q.” The last theorem can be re-expressed as “If a series is
absolutely convergent, then it is convergent.”

For another example, the equation ∑n
k=0

(n
k
)2 = (2n

n
)
from Example 3.28

(page 109) is best phrased as a conditional statement, to make clear the
assumption that n is an integer.

Theorem: If n is a non-negative integer, then
n∑

k=0

(n
k
)2 = (2n

n
)
.

A theorem of form “If P, then Q,” can be regarded as a device that
produces new information from P. Whenever we are dealing with a situation
in which P is true, then the theorem guarantees that, in addition, Q is true.
Since this kind of expansion of information is useful, theorems of form “If
P, then Q,” are very common.

But not every theorem is a conditional statement. Some have the form
of the biconditional P ⇔Q, but, as we know, that can be expressed as two
conditional statements. Other theorems simply state facts about specific
things. For example, here is another theorem from your study of calculus.

Theorem: The harmonic series 1+ 1
2 + 1

3 + 1
4 + 1

5 +·· · diverges.

It would be difficult (or at least awkward) to restate this as a conditional
statement. Still, it is true that most theorems are conditional statements,
so much of this book will concentrate on that type of theorem.

It is important to be aware that there are a number of words that mean
essentially the same thing as the word “theorem,” but are used in slightly
different ways. In general the word “theorem” is reserved for a statement
that is considered important or significant (the Pythagorean theorem, for
example). A statement that is true but not as significant is sometimes called
a proposition. A lemma is a theorem whose main purpose is to help prove
another theorem. A corollary is a result that is an immediate consequence
of a theorem or proposition. It is not important that you remember all these
words now, for their meanings will become clear with usage.

Our main task is to learn how to prove theorems. As the above examples
suggest, proving theorems requires a clear understanding of the conditional
statement, and that is the main reason we studied it so extensively in
Chapter 2. It is also crucial to understand the role of definitions.
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4.2 Definitions
A proof of a theorem should be absolutely convincing. Ambiguity must be
avoided. Everyone must agree on the exact meaning of each mathematical
term. In Chapter 1 we defined the meanings of the sets N, Z, R, Q and ;, as
well as the meanings of the symbols ∈ and ⊆, and we shall make frequent
use of these things. Here is another definition that we use often.

Definition 4.1 An integer n is even if n = 2a for some integer a ∈Z.

Thus, for example, 10 is even because 10 = 2 ·5. Also, according to the
definition, 7 is not even because there is no integer a for which 7= 2a. While
there would be nothing wrong with defining an integer to be odd if it’s not
even, the following definition is more concrete.

Definition 4.2 An integer n is odd if n = 2a+1 for some integer a ∈Z.

Thus 7 is odd because 7= 2 ·3+1. We will use these definitions whenever
the concept of even or odd numbers arises. If in a proof a certain number is
even, the definition allows us to write it as 2a for an appropriate integer a.
If some quantity has form 2b+1 where b is an integer, then the definition
tells us the quantity is odd.

Definition 4.3 Two integers have the same parity if they are both
even or they are both odd. Otherwise they have opposite parity.

Thus 5 and −17 have the same parity, as do 8 and 0; but 3 and 4 have
opposite parity.

Two points about definitions are in order. First, in this book the word
or term being defined appears in boldface type. Second, it is common to
express definitions as conditional statements even though the biconditional
would more appropriately convey the meaning. Consider the definition of an
even integer. You understand full well that if n is even then n = 2a (for a ∈Z),
and if n = 2a, then n is even. Thus, technically the definition should read
“An integer n is even if and only if n = 2a for some a ∈Z.” However, it is an
almost-universal convention that definitions are phrased in the conditional
form, even though they are interpreted as being in the biconditional form.
There is really no good reason for this, other than economy of words. It is
the standard way of writing definitions, and we have to get used to it.

Here is another definition that we will use often.
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Definition 4.4 Suppose a and b are integers. We say that a divides b,
written a | b, if b = ac for some c ∈Z. In this case we also say that a is a
divisor of b, and that b is a multiple of a.

For example, 5 divides 15 because 15 = 5 · 3. We write this as 5 | 15.
Similarly 8 | 32 because 32= 8 ·4, and −6 | 6 because 6=−6 ·−1. However, 6
does not divide 9 because there is no integer c for which 9= 6 · c. We express
this as 6 - 9, which we read as “6 does not divide 9.”

Be careful of your interpretation of the symbols. There is a big difference
between the expressions a | b and a/b. The expression a | b is a statement,
while a/b is a fraction. For example, 8 | 16 is true and 8 | 20 is false. By
contrast, 8/16= 0.5 and 8/20= 0.4 are numbers, not statements. Be careful
not to write one when you mean the other.

Every integer has a set of integers that divide it. For example, the set of
divisors of 6 is

{
a ∈Z : a | 6} = {−6,−3,−2,−1,1,2,3,6

}
. The set of divisors of 5

is
{−5,−1,1,5

}
. The set of divisors of 0 is Z. This brings us to the following

definition, with which you are already familiar.

Definition 4.5 A number n ∈N is prime if it has exactly two positive
divisors, 1 and n. If n has more than two positive divisors, it is called
composite. (Thus n is composite if and only if n = ab for 1< a,b < n.)

For example, 2 is prime, as are 5 and 17. The definition implies that 1 is
neither prime nor composite, as it only has one positive divisor, namely 1.

Definition 4.6 The greatest common divisor of integers a and b,
denoted gcd(a,b), is the largest integer that divides both a and b.
The least common multiple of non-zero integers a and b, denoted
lcm(a,b), is the smallest integer in N that is a multiple of both a and b.

So gcd(18,24) = 6, gcd(5,5) = 5 and gcd(32,−8) = 8. Also gcd(50,18) = 2,
but gcd(50,9) = 1. Note that gcd(0,6) = 6, because, although every integer
divides 0, the largest divisor of 6 is 6.

The expression gcd(0,0) is problematic. Every integer divides 0, so the
only conclusion is that gcd(0,0) = ∞. We circumvent this irregularity by
simply agreeing to consider gcd(a,b) only when a and b are not both zero.

Continuing our examples, lcm(4,6)= 12, and lcm(7,7)= 7.
Of course not all terms can be defined. If every word in a definition were

defined, there would be separate definitions for the words that appeared
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in those definitions, and so on, until the chain of defined terms became
circular. Thus we accept some ideas as being so intuitively clear that they
require no definitions or verifications. For example, we will not find it
necessary to define what an integer (or a real number) is. Nor will we define
addition, multiplication, subtraction and division, though we will use these
operations freely. We accept and use such things as the distributive and
commutative properties of addition and multiplication, as well as other
standard properties of arithmetic and algebra.

As mentioned in Section 1.9, we accept as fact the natural ordering of the
elements of N,Z,Q and R, so that (for example) statements such as “5< 7,”
and “x < y implies −x >−y,” do not need to be justified.

In addition, we accept the following fact without justification or proof.

Fact 4.1 If a and b are integers, then so are their sum, product and
difference. That is, if a,b ∈Z, then a+b ∈Z, a−b ∈Z and ab ∈Z

It follows that any combination of integers using the operations +, − and ·
is an integer. For example, if a,b and c are integers, then a2b− ca+b ∈Z.

We will also accept as obvious the fact that any integer a can be divided
by a positive integer b, resulting in a unique quotient q and remainder r.
For example, b = 3 goes into a = 17 q = 5 times with remainder r = 2. In
symbols, 17= 5 ·3+2, or a = qb+ r. This fact, called the division algorithm,
was mentioned on page 30.

(The Division Algorithm)Given integers a and b with b > 0, there exist
unique integers q and r for which a = qb+ r and 0≤ r < b.

Another fact that we will accept without proof (at least for now) is
that every natural number greater than 1 has a unique factorization into
primes. For example, the number 1176 can be factored into primes as
1176 = 2 ·2 ·2 ·3 ·7 ·7 = 23 ·3 ·72. By unique we mean that any factorization
of 1176 into primes will have exactly the same factors (i.e., three 2’s, one 3
and two 7’s). Thus, for example, there is no valid factorization of 1176 that
has a factor of 5. You may be so used to factoring numbers into primes that
it seems obvious that there cannot be different prime factorizations of the
same number, but in fact this is a fundamental result whose proof is not
transparent. Nonetheless, we will be content to assume that every natural
number greater than 1 has a unique factorization into primes. (We will
revisit the issue of a proof in Section 10.3.)

We will introduce other accepted facts, as well as definitions, as needed.
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4.3 Direct Proof
This section explains a simple way to prove theorems or propositions that
have the form of conditional statements. The technique is called direct
proof. To simplify the discussion, our first examples will involve proving
statements that are almost obviously true. Thus we will call the statements
propositions rather than theorems. (Remember, a proposition is a statement
that, although true, is not as significant as a theorem.)

To understand how the technique of direct proof works, suppose we have
some proposition of the following form.

Proposition If P, then Q.

This proposition is a conditional statement of form P ⇒Q. Our goal is
to show that this conditional statement is true. To see how to proceed, look
at the truth table for P ⇒Q.

P Q P ⇒Q

T T T

T F F
F T T
F F T

The table shows that if P is false, the statement P ⇒ Q is automatically
true. This means that if we are concerned with showing P ⇒Q is true, we
don’t have to worry about the situations where P is false (as in the last two
lines of the table) because the statement P ⇒Q will be automatically true
in those cases. But we must be very careful about the situations where P is
true (as in the first two lines of the table). We must show that the condition
of P being true forces Q to be true also, for that means the second line of
the table cannot happen.

This gives a fundamental outline for proving statements of the form
P ⇒Q. Begin by assuming that P is true (remember, we don’t need to worry
about P being false) and show this forces Q to be true.

Outline for Direct Proof
Proposition If P, then Q.

Proof. Suppose P.
...

Therefore Q. ■
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So the setup for direct proof is remarkably simple. The first line of the
proof is the sentence “Suppose P.” The last line is the sentence “Therefore Q.”
Between the first and last line we use logic, definitions and standard math
facts to transform the statement P to the statement Q. It is common to use
the word “Proof” to indicate the beginning of a proof, and the symbol to
indicate the end.

As our first example, let’s prove that if x is odd then x2 is also odd.
(Granted, this is not a terribly impressive result, but we will move on to
more significant things in due time.) The first step in the proof is to fill in
the outline for direct proof. This is a lot like painting a picture, where the
basic structure is sketched in first. We leave some space between the first
and last line of the proof. The following series of frames indicates the steps
you might take to fill in this space with a logical chain of reasoning.

Proposition If x is odd, then x2 is odd.

Proof. Suppose x is odd.

Therefore x2 is odd. ■

Now that we have written the first and last lines, we need to fill in the space
with a chain of reasoning that shows that x being odd forces x2 to be odd.

In doing this it’s always advisable to use any definitions that apply. The
first line says x is odd, and by Definition 4.2 it must be that x = 2a+1 for
some a ∈Z, so we write this in as our second line.

Proposition If x is odd, then x2 is odd.

Proof. Suppose x is odd.
Then x = 2a+1 for some a ∈Z, by definition of an odd number.

Therefore x2 is odd. ■

Now jump down to the last line, which says x2 is odd. Think about what
the line immediately above it would have to be in order for us to conclude
that x2 is odd. By the definition of an odd number, we would have to have
x2 = 2a+1 for some a ∈Z. However, the symbol a now appears earlier in the
proof in a different context, so we should use a different symbol, say b.
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Proposition If x is odd, then x2 is odd.

Proof. Suppose x is odd.
Then x = 2a+1 for some a ∈Z, by definition of an odd number.

Thus x2 = 2b+1 for an integer b.
Therefore x2 is odd, by definition of an odd number. ■

We are almost there. We can bridge the gap as follows.

Proposition If x is odd, then x2 is odd.

Proof. Suppose x is odd.
Then x = 2a+1 for some a ∈Z, by definition of an odd number.
Thus x2 = (2a+1)2 = 4a2 +4a+1= 2(2a2 +2a)+1.
So x2 = 2b+1 where b is the integer b = 2a2 +2a.
Thus x2 = 2b+1 for an integer b.
Therefore x2 is odd, by definition of an odd number. ■

Finally, we may wish to clean up our work and write the proof in paragraph
form. Here is our final version.

Proposition If x is odd, then x2 is odd.

Proof. Suppose x is odd. Then x = 2a+1 for some a ∈Z, by definition
of an odd number. Thus x2 = (2a+1)2 = 4a2+4a+1= 2(2a2+2a)+1, so
x2 = 2b+1 where b = 2a2 +2a ∈Z. Therefore x2 is odd, by definition
of an odd number. ■

At least initially, it’s generally a good idea to write the first and last line
of your proof first, and then fill in the gap, sometimes jumping alternately
between top and bottom until you meet in the middle, as we did above. This
way you are constantly reminded that you are aiming for the statement
at the bottom. Sometimes you will leave too much space, sometimes not
enough. Sometimes you will get stuck before figuring out what to do. This
is normal. Mathematicians do scratch work just as artists do sketches for
their paintings.
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Here is another example. Consider proving the following proposition.

Proposition Let a,b and c be integers. If a | b and b | c, then a | c.

Let’s apply the basic outline for direct proof. To clarify the procedure we
will write the proof in stages again.

Proposition Let a,b and c be integers. If a | b and b | c, then a | c.

Proof. Suppose a | b and b | c.

Therefore a | c. ■

Our first step is to apply Definition 4.4 to the first line. The definition
says a | b means b = ac for some integer c, but since c already appears in
a different context on the first line, we must use a different letter, say d.
Similarly let’s use a new letter e in the definition of b | c.

Proposition Let a,b and c be integers. If a | b and b | c, then a | c.

Proof. Suppose a | b and b | c.
By Definition 4.4, we know a | b means b = ad for some d ∈Z.
Likewise, b | c means c = be for some e ∈Z.

Therefore a | c. ■

We have almost bridged the gap. The line immediately above the last line
should show that a | c. According to Definition 4.4, this line should say that
c = ax for some integer x. We can get this equation from the lines at the top,
as follows.

Proposition Let a,b and c be integers. If a | b and b | c, then a | c.

Proof. Suppose a | b and b | c.
By Definition 4.4, we know a | b means b = ad for some d ∈Z.
Likewise, b | c means c = be for some e ∈Z.
Thus c = be = (ad)e = a(de), so c = ax for the integer x = de.
Therefore a | c. ■

The next example is presented all at once rather than in stages.

Free PDF version



122 Direct Proof

Proposition If x is an even integer, then x2 −6x+5 is odd.

Proof. Suppose x is an even integer.
Then x = 2a for some a ∈Z, by definition of an even integer.
So x2−6x+5= (2a)2−6(2a)+5= 4a2−12a+5= 4a2−12a+4+1= 2(2a2−6a+2)+1.
Therefore we have x2 −6x+5= 2b+1, where b = 2a2 −6a+2 ∈Z.
Consequently x2 −6x+5 is odd, by definition of an odd number. ■

One doesn’t normally use a separate line for each sentence in a proof,
but for clarity we will often do this in the first few chapters of this book.

Our next example illustrates a standard technique for showing two
quantities are equal. If we can show m ≤ n and n ≤ m then it follows that
m = n. In general, the reasoning involved in showing m ≤ n can be quite
different from that of showing n ≤ m.

Recall Definition 4.6 of a least common multiple on page 116.

Proposition If a,b, c ∈N, then lcm(ca, cb)= c · lcm(a,b).

Proof. Assume a,b, c ∈ N. Let m = lcm(ca, cb) and n = c · lcm(a,b). We will
show m = n. By definition, lcm(a,b) is a positive multiple of both a and b, so
lcm(a,b)= ax = by for some x, y ∈N. From this we see that n = c · lcm(a,b)=
cax = cby is a positive multiple of both ca and cb. But m = lcm(ca, cb) is the
smallest positive multiple of both ca and cb. Thus m ≤ n.

On the other hand, as m = lcm(ca, cb) is a multiple of both ca and cb, we
have m = cax = cby for some x, y ∈Z. Then 1

c m = ax = by is a multiple of both
a and b. Therefore lcm(a,b)≤ 1

c m, so c · lcm(a,b)≤ m, that is, n ≤ m.
We’ve shown m ≤ n and n ≤ m, so m = n. The proof is complete. ■

The examples we’ve looked at so far have all been proofs of statements
about integers. In our next example, we are going to prove that if x and y
are positive real numbers for which x ≤ y, then p

x ≤py. You may feel that
the proof is not as “automatic” as the proofs we have done so far. Finding
the right steps in a proof can be challenging, and that is part of the fun.

Proposition Let x and y be positive numbers. If x ≤ y, then p
x ≤py.

Proof. Suppose x ≤ y. Subtracting y from both sides gives x− y≤ 0.
This can be written as p

x2 −py2 ≤ 0.
Factor this as a difference of two squares to get (

p
x−py)(

p
x+py)≤ 0.

Dividing both sides by the positive number p
x+py produces p

x−py≤ 0.
Adding py to both sides gives p

x ≤py. ■
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This proposition tells us that whenever x ≤ y, we can take the square
root of both sides and be assured that px ≤py. This can be useful, as we
will see in our next proposition.

That proposition will concern the expression 2
pxy≤ x+ y. Notice when

you substitute random positive values for the variables, the expression is
true. For example, for x = 6 and y = 4, the left side is 2

p
6 ·4 = 4

p
6 ≈ 9.79,

which is less than the right side 6+4 = 10. Is it true that 2
pxy ≤ x+ y for

any positive x and y? How could we prove it?
To see how, let’s first cast this into the form of a conditional statement:

If x and y are positive real numbers, then 2
pxy ≤ x+ y. The proof begins

with the assumption that x and y are positive, and ends with 2
pxy≤ x+ y.

In mapping out a strategy, it can be helpful to work backwards, working
from 2

pxy≤ x+ y to something that is obviously true. Then the steps can be
reversed in the proof. In this case, squaring both sides of 2

pxy≤ x+ y gives
us

4xy≤ x2 +2xy+ y2.

Now subtract 4xy from both sides and factor:

0 ≤ x2 −2xy+ y2

0 ≤ (x− y)2.

But this last line is clearly true, since the square of x− y cannot be negative!
This gives us a strategy for the proof, which follows.

Proposition If x and y are positive real numbers, then 2
pxy≤ x+ y.

Proof. Suppose x and y are positive real numbers.
Then 0≤ (x− y)2, that is, 0≤ x2 −2xy+ y2.
Adding 4xy to both sides gives 4xy≤ x2 +2xy+ y2.
Factoring yields 4xy≤ (x+ y)2.
Previously we proved that such an inequality still holds after taking the
square root of both sides; doing so produces 2

pxy≤ x+ y. ■

Notice that in the last step of the proof we took the square root of both
sides of 4xy ≤ (x+ y)2 and got

√
4xy ≤

√
(x+ y)2, and the fact that this did

not reverse the symbol ≤ followed from our previous proposition. This is an
important point. Often the proof of a proposition or theorem uses another
proposition or theorem (that has already been proved).
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4.4 Using Cases
In proving a statement is true, we sometimes have to examine multiple
cases before showing the statement is true in all possible scenarios. This
section illustrates a few examples.

Our examples will concern the expression 1+ (−1)n(2n−1). Here is a
table showing its value for various integers for n. Notice that 1+(−1)n(2n−1)
is a multiple of 4 in every line.

n 1+ (−1)n(2n−1)

1 0
2 4
3 −4
4 8
5 −8
6 12
7 −12

Is 1+ (−1)n(2n−1) always a multiple of 4? We prove the answer is “yes”
in our next example. Notice, however, that the expression 1+ (−1)n(2n−1)
behaves differently depending on whether n is even or odd, for in the first
case (−1)n = 1, and in the second (−1)n =−1. Thus the proof must examine
these two possibilities separately.

Proposition If n ∈N, then 1+ (−1)n(2n−1) is a multiple of 4.

Proof. Suppose n ∈N.
Then n is either even or odd. Let’s consider these two cases separately.

Case 1. Suppose n is even. Then n = 2k for some k ∈Z, and (−1)n = 1.
Thus 1+ (−1)n(2n−1) = 1+ (1)(2 ·2k−1) = 4k, which is a multiple of 4.

Case 2. Suppose n is odd. Then n = 2k+1 for some k ∈ Z, and (−1)n = −1.
Thus 1+ (−1)n(2n−1) = 1− (2(2k+1)−1) =−4k, which is a multiple of 4.

These cases show that 1+ (−1)n(2n−1) is always a multiple of 4. ■

Now let’s examine the flip side of the question. We just proved that
1+ (−1)n(2n−1) is always a multiple of 4, but can we get every multiple of 4
this way? The following proposition and proof give an affirmative answer.
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Proposition Every multiple of 4 equals 1+ (−1)n(2n−1) for some n ∈N.

Proof. In conditional form, the proposition is as follows:
If k is a multiple of 4, then there is an n ∈N for which 1+ (−1)n(2n−1)= k.
What follows is a proof of this conditional statement.
Suppose k is a multiple of 4.
This means k = 4a for some integer a.
We must produce an n ∈N for which 1+ (−1)n(2n−1)= k.
This is done by cases, depending on whether a is zero, positive or negative.
Case 1. Suppose a = 0. Let n = 1. Then 1+ (−1)n(2n−1)= 1+ (−1)1(2−1)= 0
= 4 ·0 = 4a = k.
Case 2. Suppose a > 0. Let n = 2a, which is in N because a is positive. Also
n is even, so (−1)n = 1. Thus 1+(−1)n(2n−1)= 1+(2n−1)= 2n = 2(2a)= 4a = k.
Case 3. Suppose a < 0. Let n = 1−2a, which is an element of N because
a is negative, making 1−2a positive. Also n is odd, so (−1)n = −1. Thus
1+ (−1)n(2n−1)= 1− (2n−1)= 1− (2(1−2a)−1) = 4a = k.

The above cases show that no matter whether a multiple k = 4a of 4 is
zero, positive or negative, k = 1+ (−1)n(2n−1) for some n ∈N. ■

4.5 Treating Similar Cases
Occasionally two or more cases in a proof will be so similar that writing
them separately seems tedious or unnecessary. Here is an example:

Proposition If two integers have opposite parity, then their sum is odd.

Proof. Suppose m and n are two integers with opposite parity.
We need to show that m+n is odd. This is done in two cases, as follows.
Case 1. Suppose m is even and n is odd. Thus m = 2a and n = 2b+1 for
some integers a and b. Therefore m+n = 2a+2b+1 = 2(a+ b)+1, which is
odd (by Definition 4.2).
Case 2. Suppose m is odd and n is even. Thus m = 2a+1 and n = 2b for
some integers a and b. Therefore m+n = 2a+1+2b = 2(a+ b)+1, which is
odd (by Definition 4.2).

In either case, m+n is odd. ■

The two cases in this proof are entirely alike except for the order in
which the even and odd terms occur. It is entirely appropriate to just do
one case and indicate that the other case is nearly identical. The phrase
“Without loss of generality...” is a common way of signaling that the proof is
treating just one of several nearly identical cases. Here is a second version
of the above example.
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Proposition If two integers have opposite parity, then their sum is odd.

Proof. Suppose m and n are two integers with opposite parity.
We need to show that m+n is odd.
Without loss of generality, suppose m is even and n is odd.
Thus m = 2a and n = 2b+1 for some integers a and b.
Therefore m+n = 2a+2b+1= 2(a+b)+1, which is odd (by Definition 4.2). ■

In reading proofs in other texts, you may sometimes see the phrase
“Without loss of generality” abbreviated as “WLOG.” However, in the interest
of transparency we will avoid writing it this way. In a similar spirit, it is
advisable—at least until you become more experienced in proof writing—
that you write out all cases, no matter how similar they appear to be.

Please check your understanding by doing the following exercises. The
odd numbered problems have complete proofs in the Solutions section in
the back of the text.

Exercises for Chapter 4

Use the method of direct proof to prove the following statements.
1. If x is an even integer, then x2 is even.
2. If x is an odd integer, then x3 is odd.
3. If a is an odd integer, then a2 +3a+5 is odd.
4. Suppose x, y ∈Z. If x and y are odd, then xy is odd.
5. Suppose x, y ∈Z. If x is even, then xy is even.
6. Suppose a,b, c ∈Z. If a | b and a | c, then a | (b+ c).
7. Suppose a,b ∈Z. If a | b, then a2 | b2.
8. Suppose a is an integer. If 5 | 2a, then 5 | a.
9. Suppose a is an integer. If 7 | 4a, then 7 | a.

10. Suppose a and b are integers. If a | b, then a | (3b3 −b2 +5b).
11. Suppose a,b, c,d ∈Z. If a | b and c | d, then ac | bd.
12. If x ∈R and 0< x < 4, then 4

x(4−x) ≥ 1.
13. Suppose x, y ∈R. If x2 +5y= y2 +5x, then x = y or x+ y= 5.
14. If n ∈Z, then 5n2 +3n+7 is odd. (Try cases.)
15. If n ∈Z, then n2 +3n+4 is even. (Try cases.)
16. If two integers have the same parity, then their sum is even. (Try cases.)
17. If two integers have opposite parity, then their product is even.
18. Suppose x and y are positive real numbers. If x < y, then x2 < y2.
19. Suppose a,b and c are integers. If a2 | b and b3 | c, then a6 | c.
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20. If a is an integer and a2 | a, then a ∈ {−1,0,1
}
.

21. If p is prime and k is an integer for which 0< k < p, then p divides
(p

k
)
.

22. If n ∈N, then n2 = 2
(n
2
)+ (n

1
)
. (You may need a separate case for n = 1.)

23. If n ∈N, then (2n
n

)
is even.

24. If n ∈N and n ≥ 2, then the numbers n!+2, n!+3, n!+4, n!+5, . . . , n!+n are all
composite. (Thus for any n ≥ 2, one can find n consecutive composite numbers.
This means there are arbitrarily large “gaps” between prime numbers.)

25. If a,b, c ∈N and c ≤ b ≤ a, then
(a
b
)(b

c
)= ( a

b−c
)(a−b+c

c
)
.

26. Every odd integer is a difference of two squares. (Example 7= 42 −32, etc.)
27. Suppose a,b ∈N. If gcd(a,b)> 1, then b | a or b is not prime.
28. Let a,b, c ∈Z. Suppose a and b are not both zero, and c 6= 0. Prove that c·gcd(a,b)≤

gcd(ca, cb).
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CHAPTER 5

Contrapositive Proof

We now examine an alternative to direct proof called contrapositive
proof. Like direct proof, the technique of contrapositive proof is

used to prove conditional statements of the form “If P, then Q.” Although
it is possible to use direct proof exclusively, there are occasions where
contrapositive proof is much easier.

5.1 Contrapositive Proof
To understand how contrapositive proof works, imagine that you need to
prove a proposition of the following form.

Proposition If P, then Q.

This is a conditional statement of form P ⇒Q. Our goal is to show that
this conditional statement is true. Recall that in Section 2.6 we observed
that P ⇒Q is logically equivalent to∼Q ⇒∼ P. For convenience, we duplicate
the truth table that verifies this fact.

P Q ∼Q ∼ P P ⇒Q ∼Q ⇒∼ P

T T F F T T

T F T F F F

F T F T T T

F F T T T T

According to the table, statements P ⇒ Q and ∼ Q ⇒∼ P are different
ways of expressing exactly the same thing. The expression ∼ Q ⇒∼ P is
called the contrapositive form of P ⇒Q. (Do not confuse the two words
contrapositive and converse. Recall from Section 2.4 that the converse of
P ⇒Q is the statement Q ⇒ P, which is not logically equivalent to P ⇒Q.)
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Since P ⇒Q is logically equivalent to ∼Q ⇒∼ P, it follows that to prove
P ⇒Q is true, it suffices to instead prove that ∼Q ⇒∼ P is true. If we were
to use direct proof to show ∼Q ⇒∼ P is true, we would assume ∼Q is true
use this to deduce that ∼ P is true. This in fact is the basic approach of
contrapositive proof, summarized as follows.

Outline for Contrapositive Proof

Proposition If P, then Q.

Proof. Suppose ∼Q.
...

Therefore ∼ P. ■

So the setup for contrapositive proof is very simple. The first line of the
proof is the sentence “Suppose Q is not true.” (Or something to that effect.)
The last line is the sentence “Therefore P is not true.” Between the first and
last line we use logic and definitions to transform the statement ∼Q to the
statement ∼ P.

To illustrate this new technique, and to contrast it with direct proof, we
now prove a proposition in two ways: first with direct proof and then with
contrapositive proof.

Proposition Suppose x ∈Z. If 7x+9 is even, then x is odd.

Proof. (Direct) Suppose 7x+9 is even.
Thus 7x+9= 2a for some integer a.
Subtracting 6x+9 from both sides, we get x = 2a−6x−9.
Thus x = 2a−6x−9= 2a−6x−10+1= 2(a−3x−5)+1.
Consequently x = 2b+1, where b = a−3x−5 ∈Z.
Therefore x is odd. ■

Here is a contrapositive proof of the same statement:

Proposition Suppose x ∈Z. If 7x+9 is even, then x is odd.

Proof. (Contrapositive) Suppose x is not odd.
Thus x is even, so x = 2a for some integer a.
Then 7x+9= 7(2a)+9= 14a+8+1= 2(7a+4)+1.
Therefore 7x+9= 2b+1, where b is the integer 7a+4.
Consequently 7x+9 is odd.
Therefore 7x+9 is not even. ■
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Though the proofs have equal length, youmay feel that the contrapositive
proof was smoother. This is because it is easier to transform information
about x into information about 7x+9 than the other way around. For our
next example, consider the following proposition concerning an integer x:

Proposition Suppose x ∈Z. If x2 −6x+5 is even, then x is odd.

A direct proof would be problematic. We would begin by assuming that
x2 −6x+5 is even, so x2 −6x+5= 2a. Then we would need to transform this
into x = 2b+1 for b ∈Z. But it is not quite clear how that could be done, for
it would involve isolating an x from the quadratic expression. However the
proof becomes very simple if we use contrapositive proof.

Proposition Suppose x ∈Z. If x2 −6x+5 is even, then x is odd.

Proof. (Contrapositive) Suppose x is not odd.
Thus x is even, so x = 2a for some integer a.
So x2−6x+5= (2a)2−6(2a)+5= 4a2−12a+5= 4a2−12a+4+1= 2(2a2−6a+2)+1.
Therefore x2 −6x+5= 2b+1, where b is the integer 2a2 −6a+2.
Consequently x2 −6x+5 is odd.
Therefore x2 −6x+5 is not even. ■

In summary, since x being not odd (∼Q) resulted in x2 −6x+5 being not
even (∼ P), then x2 −6x+5 being even (P) means that x is odd (Q). Thus we
have proved P ⇒Q by proving ∼Q ⇒∼ P. Here is another example:

Proposition Suppose x, y ∈R. If y3 + yx2 ≤ x3 + xy2, then y≤ x.

Proof. (Contrapositive) Suppose it is not true that y≤ x, so y> x.
Then y− x > 0. Multiply both sides of y− x > 0 by the positive value x2 + y2.

(y− x)(x2 + y2) > 0(x2 + y2)

yx2 + y3 − x3 − xy2 > 0

y3 + yx2 > x3 + xy2

Therefore y3 + yx2 > x3 + xy2, so it is not true that y3 + yx2 ≤ x3 + xy2. ■

Proving “If P, then Q,” with the contrapositive approach necessarily
involves the negated statements ∼ P and ∼ Q. In working with these we
may have to use the techniques for negating statements (e.g., DeMorgan’s
laws) discussed in Section 2.10. We consider such an example next.
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Proposition Suppose x, y ∈Z. If 5 - xy, then 5 - x and 5 - y.

Proof. (Contrapositive) Suppose it is not true that 5 - x and 5 - y.
By DeMorgan’s law, it is not true that 5 - x or it is not true that 5 - y.
Therefore 5 | x or 5 | y. We consider these possibilities separately.
Case 1. Suppose 5 | x. Then x = 5a for some a ∈Z.
From this we get xy= (5a)y= 5(ay), and that means 5 | xy.
Case 2. Suppose 5 | y. Then y= 5a for some a ∈Z.
From this we get xy= x(5a)= 5(xa), and that means 5 | xy.
The above cases show that 5 | xy, so it is not true that 5 - xy. ■

5.2 Congruence of Integers
Now is a good time to introduce a new definition that occurs in many
branches of mathematics and will surely play a role in some of your later
courses. But our main reason for introducing it is that it provides more
opportunities to practice writing proofs, both direct and contrapositive.

Definition 5.1 Given integers a and b and n ∈N, we say that a and b
are congruent modulo n if n | (a−b). We express this as a ≡ b (mod n).
If a and b are not congruent modulo n, we write this as a 6≡ b (mod n).

Example 5.1 Here are some examples:
1. 9≡ 1 (mod 4) because 4 | (9−1).
2. 6≡ 10 (mod 4) because 4 | (6−10).
3. 14 6≡ 8 (mod 4) because 4 - (14−8).
4. 20≡ 4 (mod 8) because 8 | (20−4).
5. 17≡−4 (mod 3) because 3 | (17− (−4)).

In practical terms, a ≡ b (mod n) means that a and b have the same
remainder when divided by n. For example, we saw above that 6 ≡ 10
(mod 4) and indeed 6 and 10 both have remainder 2 when divided by 4. Also
we saw 14 6≡ 8 (mod 4), and sure enough 14 has remainder 2 when divided
by 4, while 8 has remainder 0.

To see that this is true in general, note that if a and b both have the
same remainder r when divided by n, then it follows that a = kn+ r and
b = `n+ r for some k,` ∈ Z. Then a− b = (kn+ r)− (`n+ r) = n(k−`). But
a−b = n(k−`) means n | (a−b), so a ≡ b (mod n). Conversely, this chapter’s
Exercise 32 asks you to show that if a ≡ b (mod n), then a and b have the
same remainder when divided by n.
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We conclude this section with several proofs involving congruence of
integers, but you will also test your skills with other proofs in the exercises.

Proposition Let a,b ∈Z and n ∈N. If a ≡ b (mod n), then a2 ≡ b2 (mod n).

Proof. We will use direct proof. Suppose a ≡ b (mod n).
By definition of congruence of integers, this means n | (a−b).
Then by definition of divisibility, there is an integer c for which a−b = nc.
Now multiply both sides of this equation by a+b.

a−b = nc

(a−b)(a+b) = nc(a+b)

a2 −b2 = nc(a+b)

Since c(a+b) ∈Z, the above equation tells us n | (a2 −b2).
According to Definition 5.1, this gives a2 ≡ b2 (mod n). ■

Let’s pause to consider this proposition’s meaning. It says a ≡ b (mod n)
implies a2 ≡ b2 (mod n). In other words, it says that if integers a and b have
the same remainder when divided by n, then a2 and b2 also have the same
remainder when divided by n. As an example of this, 6 and 10 have the same
remainder (2) when divided by n = 4, and their squares 36 and 100 also have
the same remainder (0) when divided by n = 4. The proposition promises
this will happen for all a, b and n. In our examples we tend to concentrate
more on how to prove propositions than on what the propositions mean.
This is reasonable since our main goal is to learn how to prove statements.
But it is helpful to sometimes also think about the meaning of what we
prove.

Proposition Let a,b, c ∈Z and n ∈N. If a ≡ b (mod n), then ac ≡ bc (mod n).

Proof. We employ direct proof. Suppose a ≡ b (mod n). By Definition 5.1, it
follows that n | (a−b). Therefore, by definition of divisibility, there exists an
integer k for which a−b = nk. Multiply both sides of this equation by c to
get ac−bc = nkc. Thus ac−bc = n(kc) where kc ∈Z, which means n | (ac−bc).
By Definition 5.1, we have ac ≡ bc (mod n). ■

Contrapositive proof seems to be the best approach in the next example,
since it will eliminate the symbols - and 6≡.
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Proposition Suppose a,b ∈Z and n ∈N. If 12a 6≡ 12b (mod n), then n - 12.

Proof. (Contrapositive) Suppose n | 12. Then 12= nc for some c ∈Z. Thus
12(a−b) = nc(a−b)

From this, 12a−12b = n(ca−cb). Because ca−cb ∈Z, we get n | (12a−12b).
This in turn means 12a ≡ 12b (mod n). ■

5.3 Mathematical Writing
Now that we have begun writing proofs, it is a good time to contemplate the
craft of writing. Unlike logic and mathematics, where there is a clear-cut
distinction between what is right or wrong, the difference between good and
bad writing is sometimes a matter of opinion. But there are some standard
guidelines that will make your writing clearer. Some are listed below.
1. Begin each sentence with a word, not a mathematical symbol.

The reason is that sentences begin with capital letters, but mathematical
symbols are case sensitive. Because x and X can have entirely different
meanings, putting such symbols at the beginning of a sentence can lead
to ambiguity. Here are some examples of bad usage (marked with ×)
and good usage (marked with X):

A is a subset of B. ×
The set A is a subset of B. X

x is an integer, so 2x+5 is an integer. ×
Because x is an integer, 2x+5 is an integer. X

x2 − x+2= 0 has two solutions. ×
X2 − x+2= 0 has two solutions. × (and silly too)
The equation x2 − x+2= 0 has two solutions. X

2. End each sentencewith a period, even when the sentence ends with
a mathematical symbol or expression.

Euler proved that
∞∑

k=1

1
ks = ∏

p∈P

1
1− 1

ps

×

Euler proved that
∞∑

k=1

1
ks = ∏

p∈P

1
1− 1

ps

. X

Mathematical statements (equations, etc.) are like English phrases that
happen to contain special symbols, so use normal punctuation.
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3. Separate mathematical symbols and expressions with words.
Not doing this can cause confusion bymaking distinct expressions appear
to merge. Compare the clarity of the following examples.

Because x2 −1= 0, x = 1 or x =−1. ×
Because x2 −1= 0, it follows that x = 1 or x =−1. X

Unlike A∪B, A∩B equals ;. ×
Unlike A∪B, the set A∩B equals ;. X

4. Avoid misuse of symbols. Symbols such as =, ≤, ⊆, ∈, etc., are not
words. While it is appropriate to use them in mathematical expressions,
they are out of place in other contexts.

Since the two sets are =, one is a subset of the other. ×
Since the two sets are equal, one is a subset of the other. X

The empty set is a ⊆ of every set. ×
The empty set is a subset of every set. X

Since a is odd and x odd ⇒ x2 odd, a2 is odd. ×
Since a is odd and any odd number squared is odd, a2 is odd. X

5. Avoid usingunnecessary symbols. Mathematics is confusing enough
without them. Don’t muddy the water even more.

No set X has negative cardinality. ×
No set has negative cardinality. X

6. Use the first person plural. In mathematical writing, it is common
to use the words “we” and “us” rather than “I,” “you” or “me.” It is as if
the reader and writer are having a conversation, with the writer guiding
the reader through the details of the proof.

7. Use the active voice. This is just a suggestion, but the active voice
makes your writing more lively. (And briefer too.)

The value x = 3 is obtained through division of both sides by 5. ×
Dividing both sides by 5, we get x = 3. X

8. Explain each new symbol. In writing a proof, you must explain the
meaning of every new symbol you introduce. Failure to do this can lead
to ambiguity, misunderstanding and mistakes. For example, consider
the following two possibilities for a sentence in a proof, where a and b
have been introduced on a previous line.
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Since a | b, it follows that b = ac. ×
Since a | b, it follows that b = ac for some integer c. X

If you use the first form, then the reader may momentarily scan back-
wards looking for where the c entered into the picture, not realizing at
first that it came from the definition of divides.

9. Watch out for “it.” The pronoun “it” causes confusion when it is
unclear what it refers to. If there is any possibility of confusion, you
should avoid “it.” Here is an example:

Since X ⊆Y , and 0< |X |, we see that it is not empty. ×
Is “it” X or Y ? Either one would make sense, but which do we mean?

Since X ⊆Y , and 0< |X |, we see that Y is not empty. X

10. Since, because, as, for, so. In proofs, it is common to use these
words as conjunctions joining two statements, and meaning that one
statement is true and as a consequence the other true. The following
statements all mean that P is true (or assumed to be true) and as a
consequence Q is true also.

Q since P Q because P Q, as P Q, for P P, so Q
Since P, Q Because P, Q as P, Q

Notice that the meaning of these constructions is different from that of
“If P, then Q,” for they are asserting not only that P implies Q, but also
that P is true. Exercise care in using them. It must be the case that P
and Q are both statements and that Q really does follow from P.

x ∈N, so Z ×
x ∈N, so x ∈Z X

11. Thus, hence, therefore, consequently. These adverbs precede a
statement that follows logically from previous sentences or clauses. Be
sure that a statement follows them.

Therefore 2k+1. ×
Therefore a = 2k+1. X

12. Clarity is the gold standard of mathematical writing. If you
think breaking a rule makes your writing clearer, then break the rule.
Your mathematical writing will evolve with practice. One of the best

ways to develop a good mathematical writing style is to read other people’s
proofs. Adopt what works and avoid what doesn’t.
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Exercises for Chapter 5

A. Prove the following statements with contrapositive proof. (In each case, think
about how a direct proof would work. In most cases contrapositive is easier.)
1. Suppose n ∈Z. If n2 is even, then n is even.
2. Suppose n ∈Z. If n2 is odd, then n is odd.
3. Suppose a,b ∈Z. If a2(b2 −2b) is odd, then a and b are odd.
4. Suppose a,b, c ∈Z. If a does not divide bc, then a does not divide b.
5. Suppose x ∈R. If x2 +5x < 0 then x < 0.
6. Suppose x ∈R. If x3 − x > 0 then x >−1.
7. Suppose a,b ∈Z. If both ab and a+b are even, then both a and b are even.
8. Suppose x ∈R. If x5 −4x4 +3x3 − x2 +3x−4≥ 0, then x ≥ 0.
9. Suppose n ∈Z. If 3 - n2, then 3 - n.
10. Suppose x, y, z ∈Z and x 6= 0. If x - yz, then x - y and x - z.
11. Suppose x, y ∈Z. If x2(y+3) is even, then x is even or y is odd.
12. Suppose a ∈Z. If a2 is not divisible by 4, then a is odd.
13. Suppose x ∈R. If x5 +7x3 +5x ≥ x4 + x2 +8, then x ≥ 0.

B. Prove the following statements using either direct or contrapositive proof.
14. If a,b ∈Z and a and b have the same parity, then 3a+7 and 7b−4 do not.
15. Suppose x ∈Z. If x3 −1 is even, then x is odd.
16. Suppose x, y ∈Z. If x+ y is even, then x and y have the same parity.
17. If n is odd, then 8 | (n2 −1).
18. If a,b ∈Z, then (a+b)3 ≡ a3 +b3 (mod 3).
19. Let a,b, c ∈Z and n ∈N. If a ≡ b (mod n) and a ≡ c (mod n), then c ≡ b (mod n).
20. If a ∈Z and a ≡ 1 (mod 5), then a2 ≡ 1 (mod 5).
21. Let a,b ∈Z and n ∈N. If a ≡ b (mod n), then a3 ≡ b3 (mod n).
22. Let a ∈Z, n ∈N. If a has remainder r when divided by n, then a ≡ r (mod n).
23. Let a,b ∈Z and n ∈N. If a ≡ b (mod n), then a2 ≡ ab (mod n).
24. If a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd (mod n).
25. If n ∈N and 2n −1 is prime, then n is prime.
26. If n = 2k −1 for k ∈N, then every entry in Row n of Pascal’s Triangle is odd.
27. If a ≡ 0 (mod 4) or a ≡ 1 (mod 4), then

(a
2
)
is even.

28. If n ∈Z, then 4 - (n2 −3).
29. If integers a and b are not both zero, then gcd(a,b)= gcd(a−b,b).
30. If a ≡ b (mod n), then gcd(a,n)= gcd(b,n).
31. Suppose the division algorithm applied to a and b yields a = qb+ r. Prove

gcd(a,b)= gcd(r,b).
32. If a ≡ b (mod n), then a and b have the same remainder when divided by n.
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CHAPTER 6

Proof by Contradiction

We now explore a thirdmethod of proof: proof by contradiction. This
method is not limited to proving just conditional statements—it can

be used to prove any kind of statement whatsoever. The basic idea is to
assume that the statement we want to prove is false, and then show that
this assumption leads to nonsense. We are then led to conclude that we
were wrong to assume the statement was false, so the statement must be
true. As an example, consider the following proposition and its proof.

Proposition If a,b ∈Z, then a2 −4b 6= 2.

Proof. Suppose this proposition is false.
This conditional statement being false means there exist numbers a and b
for which a,b ∈Z is true, but a2 −4b 6= 2 is false.
In other words, there exist integers a,b ∈Z for which a2 −4b = 2.
From this equation we get a2 = 4b+2= 2(2b+1), so a2 is even.
Because a2 is even, it follows that a is even, so a = 2c for some integer c.
Now plug a = 2c back into the boxed equation to get (2c)2 −4b = 2,
so 4c2 −4b = 2. Dividing by 2, we get 2c2 −2b = 1.
Therefore 1= 2(c2 −b), and because c2 −b ∈Z, it follows that 1 is even.
We know 1 is not even, so something went wrong.
But all the logic after the first line of the proof is correct, so it must be that
the first line was incorrect. In other words, we were wrong to assume the
proposition was false. Thus the proposition is true. ■

You may be a bit suspicious of this line of reasoning, but in the next
section we will see that it is logically sound. For now, notice that at the end of
the proof we deduced that 1 is even, which conflicts with our knowledge that
1 is odd. In essence, we have obtained the statement (1 is odd)∧∼ (1 is odd),
which has the form C∧∼ C. Notice that no matter what statement C is, and
whether or not it is true, the statement C∧∼ C is false. A statement—like
this one—that cannot be true is called a contradiction. Contradictions
play a key role in our new technique.
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6.1 Proving Statements with Contradiction
Let’s now see why the proof on the previous page is logically valid. In that
proof we needed to show that a statement P : (a,b ∈Z)⇒ (a2−4b 6= 2) was true.
The proof began with the assumption that P was false, that is that ∼ P was
true, and from this we deduced C∧∼ C. In other words we proved that ∼ P
being true forces C∧∼ C to be true, and this means that we proved that the
conditional statement (∼ P)⇒ (C ∧∼ C) is true. To see that this is the same
as proving P is true, look at the following truth table for (∼ P)⇒ (C ∧∼ C).
Notice that the columns for P and (∼ P)⇒ (C ∧∼ C) are exactly the same, so
P is logically equivalent to (∼ P)⇒ (C ∧∼ C).

P C ∼ P C ∧∼ C (∼ P)⇒ (C ∧∼ C)

T T F F T

T F F F T

F T T F F

F F T F F

Therefore to prove a statement P, it suffices to instead prove the conditional
statement (∼ P) ⇒ (C ∧ ∼ C). This can be done with direct proof: Assume
∼ P and deduce C ∧∼ C. Here is the outline:

Outline for Proof by Contradiction

Proposition P.

Proof. Suppose ∼ P.
...

Therefore C ∧∼ C. ■

A slightly unsettling feature of this method is that we may not know at
the beginning of the proof what the statement C is going to be. In doing the
scratch work for the proof, you assume that ∼ P is true, then deduce new
statements until you have deduced some statement C and its negation ∼ C.

If this method seems confusing, look at it this way. In the first line of
the proof we suppose ∼ P is true, that is, we assume P is false. But if P is
really true then this contradicts our assumption that P is false. But we
haven’t yet proved P to be true, so the contradiction is not obvious. We use
logic and reasoning to transform the non-obvious contradiction ∼ P to an
obvious contradiction C∧∼ C.
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The idea of proof by contradiction is ancient, going back at least to the
Pythagoreans, who used it to prove that certain numbers are irrational.
Our next example follows their logic to prove that

p
2 is irrational. Recall

that a number is rational if it is a fraction of integers, and it is irrational if
it cannot be expressed as a fraction of integers. Here is the exact definition:

Definition 6.1 A real number x is rational if x = a
b for some a,b ∈ Z.

Also, x is irrational if it is not rational, that is if x 6= a
b for every a,b ∈Z.

We are now ready to use contradiction to prove that
p

2 is irrational.
According to the outline, the first line of the proof should be “Suppose that
it is not true that

p
2 is irrational.” But it is helpful (though not mandatory)

to tip our reader off to the fact that we are using proof by contradiction.
One standard way of doing this is to make the first line “Suppose for the
sake of contradiction that it is not true that

p
2 is irrational."

Proposition The number
p

2 is irrational.

Proof. Suppose for the sake of contradiction that it is not true that
p

2 is
irrational. Then

p
2 is rational, so there are integers a and b for which

p
2= a

b
. (6.1)

Let this fraction be fully reduced; in particular, this means that a and
b are not both even. (If they were both even, then the fraction could be
further reduced by factoring 2’s from the numerator and denominator and
canceling.) Squaring both sides of Equation 6.1 gives 2= a2

b2 , and therefore

a2 = 2b2. (6.2)

From this it follows that a2 is even. But we proved earlier (Exercise 1 on
page 136) that a2 being even implies a is even. Thus, as we know that a
and b are not both even, it follows that b is odd. Now, since a is even there
is an integer c for which a = 2c. Plugging this value for a into Equation (6.2),
we get (2c)2 = 2b2, so 4c2 = 2b2, and hence b2 = 2c2. This means b2 is even,
so b is even also. But previously we deduced that b is odd. Thus we have
the contradiction b is even and b is odd. ■

To appreciate the power of proof by contradiction, imagine trying to
prove that

p
2 is irrational without it. Where would we begin? What would

be our initial assumption? There are no clear answers to these questions.
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Proof by contradiction gives us a starting point: Assume
p

2 is rational, and
work from there.

In the above proof we got the contradiction (b is even) ∧∼(b is even) which
has the form C∧∼ C. In general, your contradiction need not necessarily be
of this form. Any statement that is clearly false is sufficient. For example
2 6= 2 would be a fine contradiction, as would be 4 | 2, provided that you could
deduce them.

Here is another ancient example, dating back at least as far as Euclid:

Proposition There are infinitely many prime numbers.

Proof. For the sake of contradiction, suppose there are only finitely many
prime numbers. Then we can list all the prime numbers as p1, p2, p3, . . . pn,
where p1 = 2, p2 = 3, p3 = 5, p4 = 7 and so on. Thus pn is the nth and largest
prime number. Now consider the number a = (p1 p2 p3 · · · pn)+1, that is, a is
the product of all prime numbers, plus 1. Now a, like any natural number
greater than 1, has at least one prime divisor, and that means pk | a for at
least one of our n prime numbers pk. Thus there is an integer c for which
a = cpk, which is to say

(p1 p2 p3 · · · pk−1 pk pk+1 · · · pn)+1= cpk.

Dividing both sides of this by pk gives us

(p1 p2 p3 · · · pk−1 pk+1 · · · pn)+ 1
pk

= c,

so
1
pk

= c− (p1 p2 p3 · · · pk−1 pk+1 · · · pn).

The expression on the right is an integer, while the expression on the left is
not an integer. This is a contradiction. ■

Proof by contradiction often works well in proving statements of the form
∀x,P(x). The reason is that the proof set-up involves assuming ∼∀x,P(x),
which as we know from Section 2.10 is equivalent to ∃x,∼ P(x). This gives
us a specific x for which ∼ P(x) is true, and often that is enough to produce
a contradiction. Here is an example:

Proposition For every real number x ∈ [0,π/2], we have sin x+cos x ≥ 1.

Proof. Suppose for the sake of contradiction that this is not true.
Then there exists an x ∈ [0,π/2] for which sin x+cos x < 1.
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Since x ∈ [0,π/2], neither sin x nor cos x is negative, so 0≤ sin x+cos x < 1.
Thus 02 ≤ (sin x+cos x)2 < 12, which gives 02 ≤ sin2 x+2sin xcos x+cos2 x < 12.
As sin2 x+cos2 x = 1, this becomes 0≤ 1+2sin xcos x < 1, so 1+2sin xcos x < 1.
Subtracting 1 from both sides gives 2sin xcos x < 0.
But this contradicts the fact that neither sin x nor cos x is negative. ■

6.2 Proving Conditional Statements by Contradiction
Since the previous two chapters dealt exclusively with proving conditional
statements, we now formalize the procedure in which contradiction is used
to prove a conditional statement. Suppose we want to prove a proposition
of the following form.

Proposition If P, then Q.

Thus we need to prove that P ⇒Q is true. Proof by contradiction begins
with the assumption that ∼ (P ⇒Q) is true, that is, that P ⇒Q is false. But
we know that P ⇒Q being false means that it is possible that P can be true
while Q is false. Thus the first step in the proof is to assume P and ∼ Q.
Here is an outline:

Outline for Proving a Conditional
Statement with Contradiction

Proposition If P, then Q.

Proof. Suppose P and ∼Q.
...

Therefore C ∧∼ C. ■

To illustrate this new technique, we revisit a familiar result: If a2 is
even, then a is even. According to the outline, the first line of the proof
should be “For the sake of contradiction, suppose a2 is even and a is not
even.”

Proposition Suppose a ∈Z. If a2 is even, then a is even.

Proof. For the sake of contradiction, suppose a2 is even and a is not even.
Then a2 is even, and a is odd.
Since a is odd, there is an integer c for which a = 2c+1.
Then a2 = (2c+1)2 = 4c2 +4c+1= 2(2c2 +2c)+1, so a2 is odd.
Thus a2 is even and a2 is not even, a contradiction. ■
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Here is another example.

Proposition If a,b ∈Z and a ≥ 2, then a - b or a - (b+1).

Proof. Suppose for the sake of contradiction there exist a,b ∈Z with a ≥ 2,
and for which it is not true that a - b or a - (b+1).
By DeMorgan’s law, we have a | b and a | (b+1).
The definition of divisibility says there are c,d ∈Z with b = ac and b+1= ad.
Subtracting one equation from the other gives ad−ac = 1, so a(d− c)= 1.
Since a is positive, d−c is also positive (otherwise a(d−c) would be negative).
Then d− c is a positive integer and a(d− c)= 1, so a = 1/(d− c)< 2.
Thus we have a ≥ 2 and a < 2, a contradiction. ■

6.3 Combining Techniques
Often in more complex proofs several proof techniques are combined within
a single proof. For example, in proving a conditional statement P ⇒Q, we
might begin with direct proof and thus assume P to be true with the aim of
ultimately showing Q is true. But the truth of Q might hinge on the truth
of some other statement R which—together with P—would imply Q. We
would then need to prove R, and we would use whichever proof technique
seems most appropriate. This can lead to “proofs inside of proofs.” Consider
the following example. The overall approach is direct, but inside the direct
proof is a separate proof by contradiction.

Proposition Every non-zero rational number can be expressed as a prod-
uct of two irrational numbers.

Proof. This proposition can be reworded as follows: If r is a non-zero rational
number, then r is a product of two irrational numbers. In what follows, we
prove this with direct proof.

Suppose r is a non-zero rational number. Then r = a
b for integers a and b.

Also, r can be written as a product of two numbers as follows:

r =
p

2 · rp
2

.

We know
p

2 is irrational, so to complete the proof we must show rp
2
is also

irrational.
To show this, assume for the sake of contradiction that rp

2
is rational.

This means
rp
2
= c

d
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for integers c and d, so p
2= r

d
c

.

But we know r = a
b , which combines with the above equation to give

p
2= r

d
c
= a

b
d
c
= ad

bc
.

This means
p

2 is rational, which is a contradiction because we know it is
irrational. Therefore rp

2
is irrational.

Hence r =p
2 · rp

2
is a product of two irrational numbers. ■

For another example of a proof-within-a-proof, try Exercise 5 at the end
of this chapter (or see its solution). Exercise 5 asks you to prove that

p
3

is irrational. This turns out to be slightly trickier than proving that
p

2 is
irrational.

6.4 Some Words of Advice
Despite the power of proof by contradiction, it’s best to use it only when the
direct and contrapositive approaches do not seem to work. The reason for
this is that a proof by contradiction can often have hidden in it a simpler
contrapositive proof, and if this is the case it’s better to go with the simpler
approach. Consider the following example.

Proposition Suppose a ∈Z. If a2 −2a+7 is even, then a is odd.

Proof. (Contradiction) Suppose a2 −2a+7 is even and a is not odd.
That is, suppose a2 −2a+7 is even and a is even.
Since a is even, there is an integer c for which a = 2c.
Then a2 −2a+7= (2c)2 −2(2c)+7= 2(2c2 −2c+3)+1, so a2 −2a+7 is odd.
Thus a2 −2a+7 is both even and odd, a contradiction. ■

Though there is nothing really wrong with this proof, notice that part
of it assumes a is not odd and deduces that a2 −2a+7 is not even. That is
the contrapositive approach! Thus it would be more efficient to proceed as
follows, using contrapositive proof.

Proposition Suppose a ∈Z. If a2 −2a+7 is even, then a is odd.

Proof. (Contrapositive) Suppose a is not odd.
Then a is even, so there is an integer c for which a = 2c.
Then a2 −2a+7= (2c)2 −2(2c)+7= 2(2c2 −2c+3)+1, so a2 −2a+7 is odd.
Thus a2 −2a+7 is not even. ■

Free PDF version



144 Proof by Contradiction

Exercises for Chapter 6

A. Use the method of proof by contradiction to prove the following statements. (In
each case, you should also think about how a direct or contrapositive proof would
work. You will find in most cases that proof by contradiction is easier.)

1. Suppose n ∈Z. If n is odd, then n2 is odd.
2. Suppose n ∈Z. If n2 is odd, then n is odd.
3. Prove that 3p2 is irrational.
4. Prove that

p
6 is irrational.

5. Prove that
p

3 is irrational.
6. If a,b ∈Z, then a2 −4b−2 6= 0.
7. If a,b ∈Z, then a2 −4b−3 6= 0.
8. Suppose a,b, c ∈Z. If a2 +b2 = c2, then a or b is even.
9. Suppose a,b ∈R. If a is rational and ab is irrational, then b is irrational.
10. There exist no integers a and b for which 21a+30b = 1.
11. There exist no integers a and b for which 18a+6b = 1.
12. For every positive x ∈Q, there is a positive y ∈Q for which y< x.
13. For every x ∈ [π/2,π], sin x−cos x ≥ 1.
14. If A and B are sets, then A∩ (B− A)=;.
15. If b ∈Z and b - k for every k ∈N, then b = 0.
16. If a and b are positive real numbers, then a+b ≥ 2

p
ab.

17. For every n ∈Z, 4 - (n2 +2).
18. Suppose a,b ∈Z. If 4 | (a2 +b2), then a and b are not both odd.

B. Prove the following statements using any method from Chapters 4, 5 or 6.

19. The product of any five consecutive integers is divisible by 120. (For example,
the product of 3,4,5,6 and 7 is 2520, and 2520= 120 ·21.)

20. We say that a point P = (x, y) in R2 is rational if both x and y are rational.
More precisely, P is rational if P = (x, y) ∈ Q2. An equation F(x, y) = 0 is said
to have a rational point if there exists x0, y0 ∈Q such that F(x0, y0) = 0. For
example, the curve x2 + y2 −1= 0 has rational point (x0, y0)= (1,0). Show that
the curve x2 + y2 −3= 0 has no rational points.

21. Exercise 20 (above) involved showing that there are no rational points on
the curve x2 + y2 −3= 0. Use this fact to show that

p
3 is irrational.

22. Explain why x2 + y2 −3= 0 not having any rational solutions (Exercise 20)
implies x2 + y2 −3k = 0 has no rational solutions for k an odd, positive integer.

23. Use the above result to prove that
√

3k is irrational for all odd, positive k.

24. The number log2 3 is irrational.
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CHAPTER 7

Proving Non-Conditional Statements

The last three chapters introduced three major proof techniques: direct,
contrapositive and contradiction. These three techniques are used to

prove statements of the form “If P, then Q.” As we know, most theorems
and propositions have this conditional form, or they can be reworded to
have this form. Thus the three main techniques are quite important. But
some theorems and propositions cannot be put into conditional form. For
example, some theorems have form “P if and only if Q.” Such theorems
are biconditional statements, not conditional statements. In this chapter
we examine ways to prove them. In addition to learning how to prove
if-and-only-if theorems, we will also look at two other types of theorems.

7.1 If-and-Only-If Proof
Some propositions have the form

P if and only if Q.

We know from Section 2.4 that this statement asserts that both of the
following conditional statements are true:

If P, then Q.
If Q, then P.

So to prove “P if and only if Q,” we must prove two conditional statements.
Recall from Section 2.4 that Q ⇒ P is called the converse of P ⇒ Q. Thus
we need to prove both P ⇒Q and its converse. These are both conditional
statements, so we may prove them with either direct, contrapositive or
contradiction proof. Here is an outline:

Outline for If-and-Only-If Proof
Proposition P if and only if Q.

Proof.
[Prove P ⇒Q using direct, contrapositive or contradiction proof.]
[Prove Q ⇒ P using direct, contrapositive or contradiction proof.]
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Let’s start with a very simple example. You already know that an integer
n is odd if and only if n2 is odd, but let’s prove it anyway, just to illustrate
the outline. In this example we prove (n is odd)⇒(n2 is odd) using direct
proof and (n2 is odd)⇒(n is odd) using contrapositive proof.

Proposition The integer n is odd if and only if n2 is odd.

Proof. First we show that n being odd implies that n2 is odd. Suppose n
is odd. Then, by definition of an odd number, n = 2a+1 for some integer a.
Thus n2 = (2a+1)2 = 4a2 +4a+1= 2(2a2 +2a)+1. This expresses n2 as twice
an integer, plus 1, so n2 is odd.

Conversely, we need to prove that n2 being odd implies that n is odd. We
use contrapositive proof. Suppose n is not odd. Then n is even, so n = 2a for
some integer a (by definition of an even number). Thus n2 = (2a)2 = 2(2a2),
so n2 is even because it’s twice an integer. Thus n2 is not odd. We’ve now
proved that if n is not odd, then n2 is not odd, and this is a contrapositive
proof that if n2 is odd then n is odd. ■

In proving “P if and only if Q,” you should begin a new paragraph when
starting the proof of Q ⇒ P. Since this is the converse of P ⇒Q, it’s a good
idea to begin the paragraph with the word “Conversely” (as we did above) to
remind the reader that you’ve finished the first part of the proof and are
moving on to the second. Likewise, it’s a good idea to remind the reader of
exactly what statement that paragraph is proving.

The next example uses direct proof in both parts of the proof.

Proposition Suppose a and b are integers. Then a ≡ b (mod 6) if and only
if a ≡ b (mod 2) and a ≡ b (mod 3).

Proof. First we prove that if a ≡ b (mod 6), then a ≡ b (mod 2) and a ≡ b
(mod 3). Suppose a ≡ b (mod 6). This means 6 | (a−b), so there is an integer
n for which

a−b = 6n.

From this we get a−b = 2(3n), which implies 2 | (a−b), so a ≡ b (mod 2). But
we also get a−b = 3(2n), which implies 3 | (a−b), so a ≡ b (mod 3). Therefore
a ≡ b (mod 2) and a ≡ b (mod 3).

Conversely, suppose a ≡ b (mod 2) and a ≡ b (mod 3). Since a ≡ b (mod 2)
we get 2 | (a−b), so there is an integer k for which a−b = 2k. Therefore a−b
is even. Also, from a ≡ b (mod 3) we get 3 | (a−b), so there is an integer ` for
which

a−b = 3`.
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But since we know a− b is even, it follows that ` must be even also, for
if it were odd then a− b = 3` would be odd (because a− b would be the
product of two odd integers). Hence ` = 2m for some integer m. Thus
a−b = 3`= 3 ·2m = 6m. This means 6 | (a−b), so a ≡ b (mod 6). ■

Since if-and-only-if proofs simply combine methods with which we are
already familiar, we will not do any further examples in this section. But it
is of utmost importance that you practice your skill on some of this chapter’s
exercises.

7.2 Equivalent Statements
In other courses you will sometimes encounter a certain kind of theorem
that is neither a conditional nor a biconditional statement. Instead, it
asserts that a list of statements is “equivalent.” You saw this (or will see it)
in your linear algebra textbook, which featured the following theorem:

Theorem Suppose A is an n× n matrix. The following statements are
equivalent:
(a) The matrix A is invertible.
(b) The equation Ax=b has a unique solution for every b ∈Rn.
(c) The equation Ax= 0 has only the trivial solution.
(d) The reduced row echelon form of A is In.
(e) det(A) 6= 0.
(f) The matrix A does not have 0 as an eigenvalue.

When a theorem asserts that a list of statements is “equivalent,” it is
asserting that either the statements are all true, or they are all false. Thus
the above theorem tells us that whenever we are dealing with a particular
n×n matrix A, then either the statements (a) through (f) are all true for A,
or statements (a) through (f) are all false for A. For example, if we happen to
know that det(A) 6= 0, the theorem assures us that in addition to statement
(e) being true, all the statements (a) through (f) are true. On the other
hand, if it happens that det(A)= 0, the theorem tells us that all statements
(a) through (f) are false. In this way, the theorem multiplies our knowledge
of A by a factor of six. Obviously that can be very useful.

What method would we use to prove such a theorem? In a certain
sense, the above theorem is like an if-and-only-if theorem. An if-and-only-if
theorem of form P ⇔ Q asserts that P and Q are either both true or both
false, that is, that P and Q are equivalent. To prove P ⇔Q we prove P ⇒Q
followed by Q ⇒ P, essentially making a “cycle” of implications from P to Q
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and back to P. Similarly, one approach to proving the theorem about the
n× n matrix would be to prove the conditional statement (a) ⇒ (b), then
(b) ⇒ (c), then (c) ⇒ (d), then (d) ⇒ (e), then (e) ⇒ ( f ) and finally ( f ) ⇒ (a).
This pattern is illustrated below.

(a) =⇒ (b) =⇒ (c)
⇑ ⇓

( f ) ⇐= (e) ⇐= (d)

Notice that if these six implications have been proved, then it really does
follow that the statements (a) through (f) are either all true or all false.
If one of them is true, then the circular chain of implications forces them
all to be true. On the other hand, if one of them (say (c)) is false, the fact
that (b)⇒ (c) is true forces (b) to be false. This combined with the truth of
(a)⇒ (b) makes (a) false, and so on counterclockwise around the circle.

Thus to prove that n statements are equivalent, it suffices to prove n
conditional statements showing each statement implies another, in circular
pattern. But it is not necessary that the pattern be circular. The following
schemes would also do the job:

(a) =⇒ (b) ⇐⇒ (c)
⇑ ⇓

( f ) ⇐= (e) ⇐⇒ (d)

(a) ⇐⇒ (b) ⇐⇒ (c)
m

( f ) ⇐⇒ (e) ⇐⇒ (d)

But a circular pattern yields the fewest conditional statements that
must be proved. Whatever the pattern, each conditional statement can be
proved with either direct, contrapositive or contradiction proof.

Though we shall not do any of these proofs in this text, you are sure to
encounter them in subsequent courses.

7.3 Existence Proofs; Existence and Uniqueness Proofs
Up until this point, we have dealt with proving conditional statements
or with statements that can be expressed with two or more conditional
statements. Generally, these conditional statements have form P(x)⇒Q(x).
(Possibly with more than one variable.) We saw in Section 2.8 that this can
be interpreted as a universally quantified statement ∀ x,P(x)⇒Q(x).
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Thus, conditional statements are universally quantified statements,
so in proving a conditional statement—whether we use direct, contraposi-
tive or contradiction proof—we are really proving a universally quantified
statement.

But how would we prove an existentially quantified statement? What
technique would we employ to prove a theorem of the following form?

∃x, R(x)

This statement asserts that there exists some specific object x for which
R(x) is true. To prove ∃x, R(x) is true, all we would have to do is find and
display an example of a specific x that makes R(x) true.

Though most theorems and propositions are conditional (or if-and-
only-if) statements, a few have the form ∃x,R(x). Such statements are
called existence statements, and theorems that have this form are called
existence theorems. To prove an existence theorem, all you have to do
is provide a particular example that shows it is true. This is often quite
simple. (But not always!) Here are some examples:

Proposition There exists an even prime number.

Proof. Observe that 2 is an even prime number. ■

Admittedly, this last proposition was a bit of an oversimplification. The
next one is slightly more challenging.

Proposition There exists an integer that can be expressed as the sum of
two perfect cubes in two different ways.

Proof. Consider the number 1729. Note that 13 +123 = 1729 and 93 +103 =
1729. Thus the number 1729 can be expressed as the sum of two perfect
cubes in two different ways. ■

Sometimes in the proof of an existence statement, a little verification is
needed to show that the example really does work. For example, the above
proof would be incomplete if we just asserted that 1729 can be written as a
sum of two cubes in two ways without showing how this is possible.

WARNING: Although an example suffices to prove an existence statement,
a single example does not prove a conditional statement.
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Often an existence statement will be embedded inside of a conditional
statement. Consider the following. (Recall the definition of gcd on page 116.)

If a,b ∈N, then there exist integers k and ` for which gcd(a,b)= ak+b`.

This is a conditional statement that has the form

a,b ∈N =⇒ ∃ k,` ∈Z, gcd(a,b)= ak+b`.

To prove it with direct proof, we would first assume that a,b ∈ N, then
prove the existence statement ∃ k,` ∈ Z, gcd(a,b) = ak + b`. That is, we
would produce two integers k and ` (which depend on a and b) for which
gcd(a,b)= ak+b`. Let’s carry out this plan. (We will use this fundamental
proposition several times later, so it is given a number.)
Proposition 7.1 If a,b ∈ N, then there exist integers k and ` for which
gcd(a,b)= ak+b`.

Proof. (Direct) Suppose a,b ∈ N. Consider the set A = {
ax+ by : x, y ∈ Z}

.
This set contains both positive and negative integers, as well as 0. (Reason:
Let y = 0 and let x range over all integers. Then ax+ by = ax ranges over
all multiples of a, both positive, negative and zero.) Let d be the smallest
positive element of A. Then, because d is in A, it must have the form
d = ak+b` for some specific k,` ∈Z.

To finish, we will show d = gcd(a,b). We will first argue that d is a
common divisor of a and b, and then that it is the greatest common divisor.

To see that d | a, use the division algorithm (page 30) to write a = qd+ r
for integers q and r with 0≤ r < d. The equation a = qd+ r yields

r = a− qd

= a− q(ak+b`)

= a(1− qk)+b(−q`).

Therefore r has form r = ax+by, so it belongs to A. But 0≤ r < d and d is the
smallest positive number in A, so r can’t be positive; hence r = 0. Updating
our equation a = qd+ r, we get a = qd, so d | a. Repeating this argument
with b = qd+ r shows d | b. Thus d is indeed a common divisor of a and b. It
remains to show that it is the greatest common divisor.

As gcd(a,b) divides a and b, we have a = gcd(a,b)·m and b = gcd(a,b)·n for
some m,n ∈Z. So d = ak+b`= gcd(a,b)·mk+gcd(a,b)·n`= gcd(a,b)

(
mk+n`

)
,

and thus d is a multiple of gcd(a,b). Therefore d ≥ gcd(a,b). But d can’t be
a larger common divisor of a and b than gcd(a,b), so d = gcd(a,b). ■
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We conclude this section with a discussion of so-called uniqueness proofs.
Some existence statements have form “There is a unique x for which P(x).”
Such a statement asserts that there is exactly one example x for which P(x) is
true. To prove it, you must produce an example x = d for which P(d) is true,
and you must show that d is the only such example. The next proposition
illustrates this. In essence, it asserts that the set

{
ax+by : x, y ∈Z}

consists
precisely of all the multiples of gcd(a,b).

Proposition Suppose a,b ∈N. Then there exists a unique d ∈N for which:
An integer m is a multiple of d if and only if m = ax+by for some x, y ∈Z.

Proof. Suppose a,b ∈N. Let d = gcd(a,b). We first show that an integer m is
a multiple of d if and only if m = ax+ by for some x, y ∈Z. Let m = dn be a
multiple of d. By Proposition 7.1 (on the previous page), there are integers
k and ` for which d = ak+ b`. Then m = dn = (ak+ b`)n = a(kn)+ b(`n), so
m = ax+by for integers x = kn and y= `n.

Conversely, suppose m = ax+ by for some x, y ∈ Z. Since d = gcd(a,b) is
a divisor of both a and b, we have a = dc and b = de for some c, e ∈Z. Then
m = ax+by= dcx+dey= d(cx+ ey), and this is a multiple of d.

We have now shown that there is a natural number d with the property
that m is a multiple of d if and only if m = ax+by for some x, y ∈Z. It remains
to show that d is the unique such natural number. To do this, suppose d′ is
any natural number with the property that d has:

m is a multiple of d′ ⇐⇒ m = ax+by for some x, y ∈Z. (7.1)

We next argue that d′ = d; that is, d is the unique natural number with
the stated property. Because of (7.1), m = a ·1+ b ·0 = a is a multiple of d′.
Likewise m = a · 0+ b · 1 = b is a multiple of d′. Hence a and b are both
multiples of d′, so d′ is a common divisor of a and b, and therefore

d′ ≤ gcd(a,b)= d.

But also, by (7.1), the multiple m = d′ · 1 = d′ of d′ can be expressed as
d′ = ax+by for some x, y ∈Z. As noted in the second paragraph of the proof,
a = dc and b = de for some c, e ∈Z. Thus d′ = ax+by= dcx+dey= d(cx+ ey),
so d′ is a multiple d. As d′ and d are both positive, it follows that

d ≤ d′.

We’ve now shown that d′ ≤ d and d ≤ d′, so d = d′. The proof is complete. ■
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7.4 Constructive Versus Non-Constructive Proofs
Existence proofs fall into two categories: constructive and non-constructive.
Constructive proofs display an explicit example that proves the theorem;
non-constructive proofs prove an example exists without actually giving it.
We illustrate the difference with two proofs of the same fact: There exist
irrational numbers x and y (possibly equal) for which xy is rational.
Proposition There exist irrational numbers x, y for which xy is rational.

Proof. Let x =p
2
p

2 and y=p
2. We know y is irrational, but it is not clear

whether x is rational or irrational. On one hand, if x is irrational, then we
have an irrational number to an irrational power that is rational:

xy =
(p

2
p

2
)p2

=
p

2
p

2
p

2 =
p

2
2 = 2.

On the other hand, if x is rational, then yy =p
2
p

2 = x is rational. Either way,
we have an irrational number to an irrational power that is rational. ■

The above is a classic example of a non-constructive proof. It shows
that there exist irrational numbers x and y for which xy is rational without
actually producing (or constructing) an example. It convinces us that one
of

(p
2
p

2)p2 or
p

2
p

2 is an irrational number to an irrational power that is
rational, but it does not say which one is the correct example. It thus proves
that an example exists without explicitly stating one.

Next comes a constructive proof of this statement, one that produces
(or constructs) two explicit irrational numbers x, y for which xy is rational.
Proposition There exist irrational numbers x, y for which xy is rational.

Proof. Let x =p
2 and y= log2 9. Then

xy =
p

2
log2 9 =

p
2

log2 32

=
p

2
2log2 3 =

(p
2

2)log2 3
= 2log2 3 = 3.

As 3 is rational, we have shown that xy = 3 is rational.
We know that x =p

2 is irrational. The proof will be complete if we can
show that y= log2 9 is irrational. Suppose for the sake of contradiction that
log2 9 is rational, so there are integers a and b for which a

b = log2 9. This
means 2a/b = 9, so

(
2a/b)b = 9b, which reduces to 2a = 9b. But 2a is even, while

9b is odd (because it is the product of the odd number 9 with itself b times).
This is a contradiction; the proof is complete. ■
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This existence proof has inside of it a separate proof (by contradiction)
that log2 9 is irrational. Such combinations of proof techniques are, of course,
typical.

Be alert to constructive and non-constructive proofs as you read proofs
in other books and articles, as well as to the possibility of crafting such
proofs of your own.

Exercises for Chapter 7
Prove the following statements. These exercises are cumulative, covering all
techniques addressed in Chapters 4–7.

1. Suppose x ∈Z. Then x is even if and only if 3x+5 is odd.
2. Suppose x ∈Z. Then x is odd if and only if 3x+6 is odd.
3. Given an integer a, then a3 +a2 +a is even if and only if a is even.
4. Given an integer a, then a2 +4a+5 is odd if and only if a is even.
5. An integer a is odd if and only if a3 is odd.
6. Suppose x, y ∈R. Then x3 + x2 y= y2 + xy if and only if y= x2 or y=−x.
7. Suppose x, y ∈R. Then (x+ y)2 = x2 + y2 if and only if x = 0 or y= 0.
8. Suppose a,b ∈Z. Prove that a ≡ b (mod 10) if and only if a ≡ b (mod 2) and a ≡ b

(mod 5).
9. Suppose a ∈Z. Prove that 14 | a if and only if 7 | a and 2 | a.

10. If a ∈Z, then a3 ≡ a (mod 3).
11. Suppose a,b ∈Z. Prove that (a−3)b2 is even if and only if a is odd or b is even.
12. There exist a positive real number x for which x2 <p

x.
13. Suppose a,b ∈Z. If a+b is odd, then a2 +b2 is odd.
14. Suppose a ∈Z. Then a2 | a if and only if a ∈ {−1,0,1

}
.

15. Suppose a,b ∈ Z. Prove that a+ b is even if and only if a and b have the same
parity.

16. Suppose a,b ∈Z. If ab is odd, then a2 +b2 is even.
17. There is a prime number between 90 and 100.
18. There is a set X for which N ∈ X and N⊆ X .
19. If n ∈N, then 20 +21 +22 +23 +24 +·· ·+2n = 2n+1 −1.
20. There exists an n ∈N for which 11 | (2n −1).
21. Every real solution of x3 + x+3= 0 is irrational.
22. If n ∈Z, then 4 | n2 or 4 | (n2 −1).
23. Suppose a,b and c are integers. If a | b and a | (b2 − c), then a | c.
24. If a ∈Z, then 4 - (a2 −3).
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25. If p > 1 is an integer and n - p for each integer n for which 2≤ n ≤pp, then p is
prime.

26. The product of any n consecutive positive integers is divisible by n!.
27. Suppose a,b ∈Z. If a2 +b2 is a perfect square, then a and b are not both odd.
28. Prove the division algorithm: If a,b ∈ N, there exist unique integers q, r for

which a = bq+ r, and 0≤ r < b. (A proof of existence is given in Section 1.9, but
uniqueness needs to be established too.)

29. If a | bc and gcd(a,b)= 1, then a | c.
(Suggestion: Use the proposition on page 152.)

30. Suppose a,b, p ∈Z and p is prime. Prove that if p | ab then p | a or p | b. (Sugges-
tion: Use the proposition on page 152.)

31. If n ∈Z, then gcd(n,n+1)= 1.
32. If n ∈Z, then gcd(n,n+2) ∈ {

1,2
}
.

33. If n ∈Z, then gcd(2n+1,4n2 +1)= 1.
34. If gcd(a, c)= gcd(b, c)= 1, then gcd(ab, c)= 1.

(Suggestion: Use the proposition on page 152.)
35. Suppose a,b ∈N. Then a = gcd(a,b) if and only if a | b.
36. Suppose a,b ∈N. Then a = lcm(a,b) if and only if b | a.
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CHAPTER 8

Proofs Involving Sets

Students in their first advanced mathematics classes are often surprised
by the extensive role that sets play and by the fact that most of the

proofs they encounter are proofs about sets. Perhaps you’ve already seen
such proofs in your linear algebra course, where a vector spacewas defined
to be a set of objects (called vectors) that obey certain properties. Your
text proved many things about vector spaces, such as the fact that the
intersection of two vector spaces is also a vector space, and the proofs used
ideas from set theory. As you go deeper intomathematics, you will encounter
more and more ideas, theorems and proofs that involve sets. The purpose
of this chapter is to give you a foundation that will prepare you for this new
outlook.

We will discuss how to show that an object is an element of a set, how to
prove one set is a subset of another and how to prove two sets are equal. As
you read this chapter you may need to occasionally refer back to Chapter 1
to refresh your memory. For your convenience, the main definitions from
Chapter 1 are summarized below. If A and B are sets, then

A×B = {
(x, y) : x ∈ A, y ∈ B

}
,

A∪B = {
x : (x ∈ A)∨ (x ∈ B)

}
,

A∩B = {
x : (x ∈ A)∧ (x ∈ B)

}
,

A−B = {
x : (x ∈ A)∧ (x ∉ B)

}
,

A = U − A.

Recall that A ⊆ B means that every element of A is also an element of B.
Also, the power set of A is the set of all subsets of A:

P(A) = {
X : X ⊆ A

}
.

8.1 How to Prove a ∈A

We will begin with a review of set-builder notation, and then review how to
show that a given object a is an element of some set A.
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Generally, a set A will be expressed in set-builder notation A = {
x : P(x)

}
,

where P(x) is some open sentence about x. The set A is understood to have
as elements all those things x for which P(x) is true. For example,{

x : x is an odd integer
}= {

. . . , −5, −3, −1, 1, 3, 5, . . .
}
.

A common variation of this notation is to express a set as A = {
x ∈ S : P(x)

}
.

Here it is understood that A consists of all elements x of the (predetermined)
set S for which P(x) is true. Keep in mind that, depending on context, x
could be any kind of object (integer, ordered pair, set, function, etc.). There is
also nothing special about the particular variable x; any reasonable symbol
x, y, k, etc., would do. Some examples follow.{

n ∈Z : n is odd
} = {

. . . , −5, −3, −1, 1, 3, 5, . . .
}{

x ∈N : 6 |x} = {
6, 12, 18, 24, 30, . . .

}{
(a,b) ∈Z×Z : b = a+5

} = {
. . . , (−2,3), (−1,4), (0,5), (1,6), . . .

}{
X ∈P(Z) : |X | = 1

} = {
. . . ,

{−1
}
,
{
0
}
,
{
1
}
,
{
2
}
,
{
3
}
,
{
4
}
, . . .

}
Now it should be clear how to prove that an object a belongs to a set

{
x : P(x)

}
.

Since
{
x : P(x)

}
consists of all things x for which P(x) is true, to show that

a ∈ {
x : P(x)

}
we just need to show that P(a) is true. Likewise, to show

a ∈ {
x ∈ S : P(x)

}
, we need to confirm that a ∈ S and that P(a) is true. These

ideas are summarized below. However, you should not memorize these
methods, you should understand them. With contemplation and practice,
using them becomes natural and intuitive.

How to show a ∈ {
x : P(x)

}
How to show a ∈ {

x ∈S : P(x)
}

Show that P(a) is true. 1. Verify that a ∈ S.
2. Show that P(a) is true.

Example 8.1 Let’s investigate elements of A = {
x : x ∈N and 7 |x}

. This set
has form A = {

x : P(x)
}
where P(x) is the open sentence (x ∈N)∧ (7 |x). Thus

21 ∈ A because P(21) is true. Similarly, 7,14,28,35, etc., are all elements of
A. But 8 ∉ A (for example) because P(8) is false. Likewise −14 ∉ A because
P(−14) is false.

Example 8.2 Consider the set A = {
X ∈ P(N) : |X | = 3

}
. We know that{

4,13,45
} ∈ A because

{
4,13,45

} ∈P(N) and
∣∣{4,13,45

}∣∣= 3. Also
{
1,2,3

} ∈ A,{
10,854,3

} ∈ A, etc. However
{
1,2,3,4

} ∉ A because
∣∣{1,2,3,4

}∣∣ 6= 3. Further,{−1,2,3
} ∉ A because

{−1,2,3
} ∉P(N).
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Example 8.3 Consider the set B = {
(x, y) ∈ Z×Z : x ≡ y (mod 5)

}
. Notice

(8,23) ∈ B because (8,23) ∈ Z×Z and 8 ≡ 23 (mod 5). Likewise, (100,75) ∈ B,
(102,77) ∈ B, etc., but (6,10) ∉ B.

Now suppose n ∈Z and consider the ordered pair (4n+3,9n−2). Does this
ordered pair belong to B? To answer this, we first observe that
(4n+3,9n−2) ∈Z×Z. Next, we observe that (4n+3)−(9n−2)=−5n+5= 5(1−n),
so 5 |((4n+3)− (9n−2)

)
, which means (4n+3)≡ (9n−2) (mod 5). Therefore we

have established that (4n+3,9n−2) meets the requirements for belonging
to B, so (4n+3,9n−2) ∈ B for every n ∈Z.
Example 8.4 This illustrates another common way of defining a set.
Consider the set C = {

3x3 +2 : x ∈Z}
. Elements of this set consist of all the

values 3x3 +2 where x is an integer. Thus −22 ∈ C because −22= 3(−2)3 +2.
You can confirm −1 ∈ C and 5 ∈ C, etc. Also 0 ∉ C and 1

2 ∉ C, etc.

8.2 How to Prove A⊆B

In this course (and more importantly, beyond it) you will encounter many
circumstances where it is necessary to prove that one set is a subset of an-
other. This section explains how to do this. The methods we discuss should
improve your skills in both writing your own proofs and in comprehending
the proofs that you read.

Recall (Definition 1.3) that if A and B are sets, then A ⊆ B means that
every element of A is also an element of B. In other words, it means if a ∈ A,
then a ∈ B. Therefore to prove that A ⊆ B, we just need to prove that the
conditional statement

“If a ∈ A, then a ∈ B”

is true. This can be proved directly, by assuming a ∈ A and deducing a ∈ B.
The contrapositive approach is another option: Assume a ∉ B and deduce
a ∉ A. Each of these two approaches is outlined below.

How to Prove A⊆B How to Prove A⊆B
(Direct approach) (Contrapositive approach)

Proof. Suppose a ∈ A.
...

Therefore a ∈ B.
Thus a ∈ A implies a ∈ B,
so it follows that A ⊆ B. ■

Proof. Suppose a ∉ B.
...

Therefore a ∉ A.
Thus a ∉ B implies a ∉ A,
so it follows that A ⊆ B. ■
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In practice, the direct approach usually yields the most straightforward
and easy proof, though occasionally the contrapositive is the most expedient.
(You can even prove A ⊆ B by contradiction: Assume (a ∈ A)∧ (a ∉ B), and
deduce a contradiction.) The remainder of this section consists of examples
with occasional commentary. Unless stated otherwise, we will use the direct
approach in all proofs; pay special attention to how the above outline for
the direct approach is used.

Example 8.5 Prove that
{
x ∈Z : 18 |x}⊆ {

x ∈Z : 6 |x}
.

Proof. Suppose a ∈ {
x ∈Z : 18 |x}

.
This means that a ∈Z and 18 |a.
By definition of divisibility, there is an integer c for which a = 18c.
Consequently a = 6(3c), and from this we deduce that 6 |a.
Therefore a is one of the integers that 6 divides, so a ∈ {

x ∈Z : 6 |x}
.

We’ve shown a ∈ {
x ∈ Z : 18 |x}

implies a ∈ {
n ∈ Z : 6 |x}

, so it follows that{
x ∈Z : 18 |x}⊆ {

x ∈Z : 6 |x}
. ■

Example 8.6 Prove that
{
x ∈Z : 2 |x}∩{

x ∈Z : 9 |x}⊆ {
x ∈Z : 6 |x}

.

Proof. Suppose a ∈ {
x ∈Z : 2 |x}∩{

x ∈Z : 9 |x}
.

By definition of intersection, this means a ∈ {
x ∈Z : 2 |x}

and a ∈ {
x ∈Z : 9 |x}

.
Since a ∈ {

x ∈Z : 2 |x}
we know 2 |a, so a = 2c for some c ∈Z. Thus a is even.

Since a ∈ {
x ∈Z : 9 |x}

we know 9 |a, so a = 9d for some d ∈Z.
As a is even, a = 9d implies d is even. (Otherwise a = 9d would be odd.)
Then d = 2e for some integer e, and we have a = 9d = 9(2e)= 6(3e).
From a = 6(3e), we conclude 6 |a, and this means a ∈ {

x ∈Z : 6 |x}
.

We have shown that a ∈ {
x ∈Z : 2 |x}∩{

x ∈Z : 9 |x}
implies a ∈ {

x ∈Z : 6 |x}
,

so it follows that
{
x ∈Z : 2 |x}∩{

x ∈Z : 9 |x}⊆ {
x ∈Z : 6 |x}

. ■

Example 8.7 Show
{
(x, y) ∈Z×Z : x ≡ y (mod 6)

}⊆ {
(x, y) ∈Z×Z : x ≡ y (mod 3)

}
.

Proof. Suppose (a,b) ∈ {
(x, y) ∈Z×Z : x ≡ y (mod 6)

}
.

This means (a,b) ∈Z×Z and a ≡ b (mod 6).
Consequently 6 |(a−b), so a−b = 6c for some integer c.
It follows that a−b = 3(2c), and this means 3 |(a−b), so a ≡ b (mod 3).
Thus (a,b) ∈ {

(x, y) ∈Z×Z : x ≡ y (mod 3)
}
.

We’ve now seen that (a,b) ∈ {
(x, y) ∈ Z×Z : x ≡ y (mod 6)

}
implies (a,b) ∈{

(x, y) ∈Z×Z : x ≡ y (mod 3)
}
, so it follows that

{
(x, y) ∈Z×Z : x ≡ y (mod 6)

}⊆{
(x, y) ∈Z×Z : x ≡ y (mod 3)

}
. ■
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Some statements involving subsets are transparent enough that we
often accept (and use) them without proof. For example, if A and B are any
sets, then it’s very easy to confirm A∩B ⊆ A. (Reason: Suppose x ∈ A∩B.
Then x ∈ A and x ∈ B by definition of intersection, so in particular x ∈ A.
Thus x ∈ A∩B implies x ∈ A, so A∩B ⊆ A.) Other statements of this nature
include A ⊆ A∪B and A−B ⊆ A, as well as conditional statements such as(
(A ⊆ B)∧ (B ⊆ C)

)⇒ (A ⊆ C) and (X ⊆ A)⇒ (X ⊆ A∪B). Our point of view in
this text is that we do not need to prove such obvious statements unless
we are explicitly asked to do so in an exercise. (Still, you should do some
quick mental proofs to convince yourself that the above statements are true.
If you don’t see that A∩B ⊆ A is true but that A ⊆ A∩B is not necessarily
true, then you need to spend more time on this topic.)

The next example will show that if A and B are sets, then P(A)∪P(B)⊆
P(A∪B). Before beginning our proof, let’s look at an example to see if this
statement really makes sense. Suppose A = {

1,2
}
and B = {

2,3
}
. Then

P(A)∪P(B) = {;,
{
1
}
,
{
2
}
,
{
1,2

}}∪{;,
{
2
}
,
{
3
}
,
{
2,3

}}
= {;,

{
1
}
,
{
2
}
,
{
3
}
,
{
1,2

}
,
{
2,3

}}
.

Also P(A∪B) = P(
{
1,2,3

}
) = {;,

{
1
}
,
{
2
}
,
{
3
}
,
{
1,2

}
,
{
2,3

}
,
{
1,3

}
,
{
1,2,3

}}
. Thus,

even though P(A)∪P(B) 6=P(A∪B), it is true that P(A)∪P(B)⊆P(A∪B)
for this particular A and B. Now let’s prove P(A)∪P(B) ⊆ P(A ∪B) no
matter what sets A and B are.

Example 8.8 Prove that if A and B are sets, then P(A)∪P(B)⊆P(A∪B).

Proof. Suppose X ∈P(A)∪P(B).
By definition of union, this means X ∈P(A) or X ∈P(B).
Therefore X ⊆ A or X ⊆ B (by definition of power sets). We consider cases.
Case 1. Suppose X ⊆ A. Then X ⊆ A∪B, and this means X ∈P(A∪B).
Case 2. Suppose X ⊆ B. Then X ⊆ A∪B, and this means X ∈P(A∪B).
(We do not need to consider the case where X ⊆ A and X ⊆ B because that
is taken care of by either of cases 1 or 2.) The above cases show that
X ∈P(A∪B).

Thus we’ve shown that X ∈P(A)∪P(B) implies X ∈P(A∪B), and this
completes the proof that P(A)∪P(B)⊆ P(A∪B). ■

In our next example, we prove a conditional statement. Direct proof is
used, and in the process we use our new technique for showing A ⊆ B.
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Example 8.9 Suppose A and B are sets. If P(A)⊆P(B), then A ⊆ B.

Proof. We use direct proof. Assume P(A)⊆P(B).
Based on this assumption, we must now show that A ⊆ B.
To show A ⊆ B, suppose that a ∈ A.
Then the one-element set

{
a
}
is a subset of A, so

{
a
} ∈P(A).

But then, since P(A)⊆P(B), it follows that
{
a
} ∈P(B).

This means that
{
a
}⊆ B, hence a ∈ B.

We’ve shown that a ∈ A implies a ∈ B, so therefore A ⊆ B. ■

8.3 How to Prove A=B

In proofs it is often necessary to show that two sets are equal. There is a
standard way of doing this. Suppose we want to show A = B. If we show
A ⊆ B, then every element of A is also in B, but there is still a possibility
that B could have some elements that are not in A, so we can’t conclude
A = B. But if in addition we also show B ⊆ A, then B can’t contain anything
that is not in A, so A = B. This is the standard procedure for proving A = B:
Prove both A ⊆ B and B ⊆ A.

How to Prove A=B

Proof.
[Prove that A ⊆ B.]
[Prove that B ⊆ A.]

Therefore, since A ⊆ B and B ⊆ A,
it follows that A = B. ■

Example 8.10 Prove that
{
n ∈Z : 35 |n}= {

n ∈Z : 5 |n}∩{
n ∈Z : 7 |n}

.

Proof. First we show
{
n ∈ Z : 35 |n} ⊆ {

n ∈ Z : 5 |n}∩ {
n ∈ Z : 7 |n}

. Suppose
a ∈ {

n ∈Z : 35 |n}
. This means 35 |a, so a = 35c for some c ∈Z. Thus a = 5(7c)

and a = 7(5c). From a = 5(7c) it follows that 5 |a, so a ∈ {
n ∈ Z : 5 |n}

. From
a = 7(5c) it follows that 7 |a, which means a ∈ {

n ∈Z : 7 |n}
. As a belongs to

both
{
n ∈Z : 5 |n}

and
{
n ∈Z : 7 |n}

, we get a ∈ {
n ∈Z : 5 |n}∩{

n ∈Z : 7 |n}
. Thus

we’ve shown that
{
n ∈Z : 35 |n}⊆ {

n ∈Z : 5 |n}∩{
n ∈Z : 7 |n}

.
Next we show

{
n ∈ Z : 5 |n}∩ {

n ∈ Z : 7 |n} ⊆ {
n ∈ Z : 35 |n}

. Suppose that
a ∈ {

n ∈Z : 5 |n}∩{
n ∈Z : 7 |n}

. By definition of intersection, this means that
a ∈ {

n ∈ Z : 5 |n}
and a ∈ {

n ∈ Z : 7 |n}
. Therefore it follows that 5 |a and 7 |a.

By definition of divisibility, there are integers c and d with a = 5c and a = 7d.
Then a has both 5 and 7 as prime factors, so the prime factorization of a
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must include factors of 5 and 7. Hence 5·7= 35 divides a, so a ∈ {
n ∈Z : 35 |n}

.
We’ve now shown that

{
n ∈Z : 5 |n}∩{

n ∈Z : 7 |n}⊆ {
n ∈Z : 35 |n}

.
At this point we’ve shown that

{
n ∈Z : 35 |n}⊆ {

n ∈Z : 5 |n}∩{
n ∈Z : 7 |n}

and
{
n ∈Z : 5 |n}∩{

n ∈Z : 7 |n}⊆ {
n ∈Z : 35 |n}

, so we’ve proved
{
n ∈Z : 35 |n}={

n ∈Z : 5 |n}∩{
n ∈Z : 7 |n}

. ■

You know from algebra that if c 6= 0 and ac = bc, then a = b. The next
example shows that an analogous statement holds for sets A,B and C. The
example asks us to prove a conditional statement. We will prove it with
direct proof. In carrying out the process of direct proof, we will have to use
the new techniques from this section.

Example 8.11 Suppose A, B, and C are sets, and C 6= ;. Prove that if
A×C = B×C, then A = B.

Proof. Suppose A×C = B×C. We must now show A = B.
First we will show A ⊆ B. Suppose a ∈ A. Since C 6= ;, there exists

an element c ∈ C. Thus, since a ∈ A and c ∈ C, we have (a, c) ∈ A ×C, by
definition of the Cartesian product. But then, since A×C = B×C, it follows
that (a, c) ∈ B×C. But (a, c) ∈ B×C means a ∈ B, by definition of the Cartesian
product. We have shown a ∈ A implies a ∈ B, so A ⊆ B.

Next we show B ⊆ A. We use the same argument as above, with the roles
of A and B reversed. Suppose a ∈ B. Since C 6= ;, there exists an element
c ∈ C. Thus, since a ∈ B and c ∈ C, we have (a, c) ∈ B×C. But then, since
B×C = A×C, we have (a, c) ∈ A×C. It follows that a ∈ A. We have shown
a ∈ B implies a ∈ A, so B ⊆ A.

The previous two paragraphs have shown A ⊆ B and B ⊆ A, so A = B. In
summary, we have shown that if A×C = B×C, then A = B. This completes
the proof. ■

Now we’ll look at another way that set operations are similar to oper-
ations on numbers. From algebra you are familiar with the distributive
property a · (b+ c)= a ·b+a · c. Replace the numbers a,b, c with sets A,B,C,
and replace · with × and + with ∩. We get A× (B∩C)= (A×B)∩ (A×C). This
statement turns out to be true, as we now prove.

Example 8.12 Given sets A, B and C, prove A× (B∩C)= (A×B)∩ (A×C).

Proof. First we will show that A× (B∩C)⊆ (A×B)∩ (A×C).
Suppose (a,b) ∈ A× (B∩C).
By definition of the Cartesian product, this means a ∈ A and b ∈ B∩C.
By definition of intersection, it follows that b ∈ B and b ∈ C.
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Thus, since a ∈ A and b ∈ B, it follows that (a,b) ∈ A×B (by definition of ×).
Also, since a ∈ A and b ∈ C, it follows that (a,b) ∈ A×C (by definition of ×).
Now we have (a,b) ∈ A×B and (a,b) ∈ A×C, so (a,b) ∈ (A×B)∩ (A×C).
We’ve shown that (a,b) ∈ A×(B∩C) implies (a,b) ∈ (A×B)∩(A×C) so we have
A× (B∩C)⊆ (A×B)∩ (A×C).

Next we will show that (A×B)∩ (A×C)⊆ A× (B∩C).
Suppose (a,b) ∈ (A×B)∩ (A×C).
By definition of intersection, this means (a,b) ∈ A×B and (a,b) ∈ A×C.
By definition of the Cartesian product, (a,b) ∈ A×B means a ∈ A and b ∈ B.
By definition of the Cartesian product, (a,b) ∈ A×C means a ∈ A and b ∈ C.
We now have b ∈ B and b ∈ C, so b ∈ B∩C, by definition of intersection.
Thus we’ve deduced that a ∈ A and b ∈ B∩C, so (a,b) ∈ A× (B∩C).
In summary, we’ve shown that (a,b) ∈ (A×B)∩(A×C) implies (a,b) ∈ A×(B∩C)
so we have (A×B)∩ (A×C)⊆ A× (B∩C).

The previous two paragraphs show that A× (B∩C)⊆ (A×B)∩ (A×C) and
(A×B)∩(A×C)⊆ A×(B∩C), so it follows that (A×B)∩(A×C)= A×(B∩C). ■

Occasionally you can prove two sets are equal by working out a series of
equalities leading from one set to the other. This like showing two algebraic
expressions are equal by manipulating one until you obtain the other. We
illustrate this in the following example, which gives an alternate solution
to the previous example. This approach is sometimes not applicable (or
awkward), but when it works it can shorten a proof dramatically.

A quick note before beginning the example. Notice that any statement P
is logically equivalent to P ∧P. (Write out a truth table if you are in doubt.)
At one point in the following example we will replace the expression x ∈ A
with the logically equivalent statement (x ∈ A)∧ (x ∈ A).

Example 8.13 Given sets A, B, and C, prove A× (B∩C)= (A×B)∩ (A×C).

Proof. Just observe the following sequence of equalities.

A× (B∩C) = {
(x, y) : (x ∈ A)∧ (y ∈ B∩C)

}
(def. of ×)

= {
(x, y) : (x ∈ A)∧ (y ∈ B)∧ (y ∈ C)

}
(def. of ∩)

= {
(x, y) : (x ∈ A)∧ (x ∈ A)∧ (y ∈ B)∧ (y ∈ C)

}
(P = P ∧P)

= {
(x, y) : ((x ∈ A)∧ (y ∈ B))∧ ((x ∈ A)∧ (y ∈ C))

}
(rearrange)

= {
(x, y) : (x ∈ A)∧ (y ∈ B)

}∩{
(x, y) : (x ∈ A)∧ (y ∈ C)

}
(def. of ∩)

= (A×B)∩ (A×C) (def. of ×)

This completes the proof. ■
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The equation A×(B∩C)= (A×B)∩(A×C) just obtained is a fundamental
law that you may actually use fairly often as you continue with mathematics.
Some similar equations are listed below. Each of these can be proved with
this section’s techniques, and the exercises will ask that you do so.

A∩B = A∪B
A∪B = A∩B

}
DeMorgan’s laws for sets

A∩ (B∪C)= (A∩B)∪ (A∩C)
A∪ (B∩C)= (A∪B)∩ (A∪C)
A× (B∪C)= (A×B)∪ (A×C)
A× (B∩C)= (A×B)∩ (A×C)

 Distributive laws for sets

It is very good practice to prove these equations. Depending on your
learning style, it is probably not necessary to commit them to memory. But
don’t forget them entirely. They may be useful later in your mathematical
work. If so, you can look them up or re-derive them on the spot. If you go
on to study mathematics deeply, you will at some point realize that you’ve
internalized them without even being cognizant of it.

8.4 Examples: Perfect Numbers
Sometimes it takes a good bit of work and creativity to show that one set
is a subset of another or that they are equal. We illustrate this now with
examples from number theory involving what are called perfect numbers.
Even though this topic is quite old, dating back more than 2000 years, it
leads to some questions that are unanswered even today.

The problem involves adding up the positive divisors of a natural number.
To begin the discussion, consider the number 12. If we add up the positive
divisors of 12 that are less than 12, we obtain 1+2+3+4+6= 16, which is
greater than 12. Doing the same thing for 15, we get 1+3+5= 9, which is
less than 15. For the most part, given a natural number p, the sum of its
positive divisors less than itself will either be greater than p or less than p.
But occasionally the divisors add up to exactly p. If this happens, then p is
said to be a perfect number.

Definition 8.1 A number p ∈ N is perfect if it equals the sum of its
positive divisors less than itself. Some examples follow.

• The number 6 is perfect since 6= 1+2+3.

• The number 28 is perfect since 28= 1+2+4+7+14.

• The number 496 is perfect since 496= 1+2+4+8+16+31+62+124+248.
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Though it would take a while to find it by trial-and-error, the next perfect
number after 496 is 8128. You can check that 8128 is perfect. Its divisors
are 1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064 and indeed

8128= 1+2+4+8+16+32+64+127+254+508+1016+2032+4064.

Are there other perfect numbers? How can they be found? Do they obey any
patterns? These questions fascinated the ancient Greek mathematicians.
In what follows we will develop an idea—recorded by Euclid—that partially
answers these questions. Euclid lived millennia before set theory was even
invented, so he certainly did not use sets. Nonetheless we will phrase his
idea in the language of sets.

Since our goal is to understand what numbers are perfect, let’s define
the following set:

P = {
p ∈N : p is perfect

}
.

Therefore P = {
6,28,496,8128, . . .

}
, but it is unclear what numbers are in P

other than the ones listed. Our goal is to gain a better understanding of
just which numbers the set P includes. To do this, we will examine the
following set A. It looks more complicated than P, but it will be very helpful
for understanding P, as we will soon see.

A = {
2n−1(2n −1) : n ∈N, and 2n −1 is prime

}
In words, A consists of every natural number of form 2n−1(2n −1), where
2n −1 is prime. To get a feel for what numbers belong to A, look at the
following table. For each natural number n, it tallies the corresponding
numbers 2n−1 and 2n −1. If 2n −1 happens to be prime, then the product
2n−1(2n −1) is given; otherwise that entry is labeled with an ∗.

n 2n−1 2n −1 2n−1(2n −1)

1 1 1 ∗
2 2 3 6
3 4 7 28
4 8 15 ∗
5 16 31 496
6 32 63 ∗
7 64 127 8128
8 128 255 ∗
9 256 511 ∗

10 512 1023 ∗
11 1024 2047 ∗
12 2048 4095 ∗
13 4096 8191 33,550,336
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Notice that the first four entries of A are the perfect numbers 6, 28, 496
and 8128. At this point you may want to jump to the conclusion that A = P.
But it is a shocking fact that in over 2000 years no one has ever been able
to determine whether or not A = P. But it is known that A ⊆ P, and we will
now prove it. In other words, we are going to show that every element of A
is perfect. (But by itself, that leaves open the possibility that there may be
some perfect numbers in P that are not in A.)

The main ingredient for the proof will be the formula for the sum of a
geometric series with common ratio r. You probably saw this most recently
in Calculus II. The formula is

n∑
k=0

rk = rn+1 −1
r−1

.

We will need this for the case r = 2, which is
n∑

k=0
2k = 2n+1 −1. (8.1)

(See the solution for Exercise 19 in Section 7.4 for a proof of this formula.)
Now we are ready to prove our result. Let’s draw attention to its significance
by calling it a theorem rather than a proposition.

Theorem 8.1 If A = {
2n−1(2n −1) : n ∈N, and 2n −1 is prime

}
and P ={

p ∈N : p is perfect
}
, then A ⊆ P.

Proof. Assume A and P are as stated. To show A ⊆ P, we must show that
p ∈ A implies p ∈ P. Thus suppose p ∈ A. By definition of A, this means

p = 2n−1(2n −1) (8.2)

for some n ∈N for which 2n −1 is prime. We want to show that p ∈ P, that is,
we want to show p is perfect. Thus, we need to show that the sum of the
positive divisors of p that are less than p add up to p. Notice that since 2n−1
is prime, any divisor of p = 2n−1(2n −1) must have the form 2k or 2k(2n −1)
for 0≤ k ≤ n−1. Thus the positive divisors of p are as follows:

20, 21, 22, . . . 2n−2, 2n−1,

20(2n −1), 21(2n −1), 22(2n −1), . . . 2n−2(2n −1), 2n−1(2n −1).

Notice that this list starts with 20 = 1 and ends with 2n−1(2n −1)= p.
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If we add up all these divisors except for the last one (which equals p)
we get the following:

n−1∑
k=0

2k +
n−2∑
k=0

2k(2n −1) =
n−1∑
k=0

2k + (2n −1)
n−2∑
k=0

2k

= (2n −1)+ (2n −1)(2n−1 −1) (by Equation (8.1))

= [
1+ (2n−1 −1)

]
(2n −1)

= 2n−1(2n −1)

= p (by Equation (8.2)).

This shows that the positive divisors of p that are less than p add up to
p. Therefore p is perfect, by definition of a perfect number. Thus p ∈ P, by
definition of P.

We have shown that p ∈ A implies p ∈ P, which means A ⊆ P. ■

Combined with the chart on the previous page, this theorem gives us
a new perfect number! The element p = 213−1(213 −1) = 33,550,336 in A is
perfect.

Observe also that every element of A is a multiple of a power of 2, and
therefore even. But this does not necessarily mean every perfect number
is even, because we’ve only shown A ⊆ P, not A = P. For all we know there
may be odd perfect numbers in P − A that are not in A.

Are there any odd perfect numbers? No one knows.
In over 2000 years, no one has ever found an odd perfect number, nor

has anyone been able to prove that there are none. But it is known that the
set A does contain every even perfect number. This fact was first proved by
Euler, and we duplicate his reasoning in the next theorem, which proves
that A = E, where E is the set of all even perfect numbers. It is a good
example of how to prove two sets are equal.

For convenience, we are going to use a slightly different definition of a
perfect number. A number p ∈N is perfect if its positive divisors add up
to 2p. For example, the number 6 is perfect since the sum of its divisors is
1+2+3+6= 2 ·6. This definition is simpler than the first one because we do
not have to stipulate that we are adding up the divisors that are less than
p. Instead we add in the last divisor p, and that has the effect of adding an
additional p, thereby doubling the answer.
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Theorem 8.2 If A = {
2n−1(2n −1) : n ∈N, and 2n −1 is prime

}
and E ={

p ∈N : p is perfect and even
}
, then A = E.

Proof. To show that A = E, we need to show A ⊆ E and E ⊆ A.
First we will show that A ⊆ E. Suppose p ∈ A. This means p is even,

because the definition of A shows that every element of A is a multiple of
a power of 2. Also, p is a perfect number because Theorem 8.1 states that
every element of A is also an element of P, hence perfect. Thus p is an even
perfect number, so p ∈ E. Therefore A ⊆ E.

Next we show that E ⊆ A. Suppose p ∈ E. This means p is an even
perfect number. Write the prime factorization of p as p = 2k3n15n27n2 . . .,
where some of the powers n1, n2, n3 . . . may be zero. But, as p is even, the
power k must be greater than zero. It follows p = 2kq for some positive
integer k and an odd integer q. Now, our aim is to show that p ∈ A, which
means we must show p has form p = 2n−1(2n −1). To get our current p = 2kq
closer to this form, let n = k+1, so we now have

p = 2n−1q. (8.3)

List the positive divisors of q as d1,d2,d3, . . . ,dm. (Where d1 = 1 and dm = q.)
Then the divisors of p are:

20d1 20d2 20d3 . . . 20dm

21d1 21d2 21d3 . . . 21dm

22d1 22d2 22d3 . . . 22dm

23d1 23d2 23d3 . . . 23dm
...

...
...

...
2n−1d1 2n−1d2 2n−1d3 . . . 2n−1dm.

Since p is perfect, these divisors add up to 2p. By Equation (8.3), their sum
is 2p = 2(2n−1q)= 2nq. Adding the divisors column-by-column, we get

n−1∑
k=0

2kd1 +
n−1∑
k=0

2kd2 +
n−1∑
k=0

2kd3 +·· ·+
n−1∑
k=0

2kdm = 2nq.

Applying Equation (8.1), this becomes

(2n −1)d1 + (2n −1)d2 + (2n −1)d3 +·· ·+ (2n −1)dm = 2nq

(2n −1)(d1 +d2 +d3 +·· ·+dm)= 2nq

d1 +d2 +d3 +·· ·+dm = 2nq
2n −1

,
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so that

d1 +d2 +d3 +·· ·+dm = (2n −1+1)q
2n −1

= (2n −1)q+ q
2n −1

= q+ q
2n −1

.

From this we see that q
2n−1 is an integer. It follows that both q and q

2n−1 are
positive divisors of q. Since their sum equals the sum of all positive divisors
of q, it follows that q has only two positive divisors, q and q

2n−1 . Since one
of its divisors must be 1, it must be that q

2n−1 = 1, which means q = 2n −1.
Now a number with just two positive divisors is prime, so q = 2n−1 is prime.
Plugging this into Equation (8.3) gives p = 2n−1(2n−1), where 2n−1 is prime.
This means p ∈ A, by definition of A. We have now shown that p ∈ E implies
p ∈ A, so E ⊆ A.

Since A ⊆ E and E ⊆ A, it follows that A = E. ■

Do not be alarmed if you feel that you wouldn’t have thought of this
proof. It took the genius of Euler to discover this approach.

We’ll conclude this chapter with some facts about perfect numbers.
• The sixth perfect number is p = 217−1(217 −1)= 8589869056.
• The seventh perfect number is p = 219−1(219 −1)= 137438691328.
• The eighth perfect number is p = 231−1(231 −1)= 2305843008139952128.
• The twentieth perfect number is p = 24423−1(24423 −1). It has 2663 digits.
• The twenty-third perfect number p = 211,213−1(211,213 −1) has 6957 digits.
• The fiftieth perfect number is p = 277,232,917−1(277,232,917 −1).

As mentioned earlier, no one knows whether or not there are any odd
perfect numbers. It is not even known whether there are finitely many or
infinitely many perfect numbers. It is known that the last digit of every
even perfect number is either a 6 or an 8. Perhaps this is something you’d
enjoy proving.

We’ve seen that perfect numbers are closely related to prime numbers
having the form 2n−1. Such prime numbers are called Mersenne primes,
after the French scholar Marin Mersenne (1588–1648), who popularized
them. The first several Mersenne primes are 22−1= 3, 23−1= 7, 25−1= 31,
27−1= 127 and 213−1= 8191. To date, only 50 Mersenne primes are known,
the largest of which is 277,232,917 −1. There is a substantial cash prize for
anyone who finds a 51st. (See http://www.mersenne.org/.) You may have
better luck with the exercises.
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Exercises for Chapter 8
Use the methods introduced in this chapter to prove the following statements.

1. Prove that
{
12n : n ∈Z}⊆ {

2n : n ∈Z}∩{
3n : n ∈Z}

.
2. Prove that

{
6n : n ∈Z}= {

2n : n ∈Z}∩{
3n : n ∈Z}

.
3. If k ∈Z, then {

n ∈Z : n |k}⊆ {
n ∈Z : n |k2}

.
4. If m,n ∈Z, then {

x ∈Z : mn |x}⊆ {
x ∈Z : m |x}∩{

x ∈Z : n |x}
.

5. If p and q are positive integers, then
{
pn : n ∈N}∩{

qn : n ∈N} 6= ;.
6. Suppose A,B and C are sets. Prove that if A ⊆ B, then A−C ⊆ B−C.
7. Suppose A,B and C are sets. If B ⊆ C, then A×B ⊆ A×C.
8. If A,B and C are sets, then A∪ (B∩C)= (A∪B)∩ (A∪C).
9. If A,B and C are sets, then A∩ (B∪C)= (A∩B)∪ (A∩C).

10. If A and B are sets in a universal set U, then A∩B = A∪B.
11. If A and B are sets in a universal set U, then A∪B = A∩B.
12. If A,B and C are sets, then A− (B∩C)= (A−B)∪ (A−C).
13. If A,B and C are sets, then A− (B∪C)= (A−B)∩ (A−C).
14. If A,B and C are sets, then (A∪B)−C = (A−C)∪ (B−C).
15. If A,B and C are sets, then (A∩B)−C = (A−C)∩ (B−C).
16. If A,B and C are sets, then A× (B∪C)= (A×B)∪ (A×C).
17. If A,B and C are sets, then A× (B∩C)= (A×B)∩ (A×C).
18. If A,B and C are sets, then A× (B−C)= (A×B)− (A×C).
19. Prove that

{
9n : n ∈Z}⊆ {

3n : n ∈Z}
, but

{
9n : n ∈Z} 6= {

3n : n ∈Z}
20. Prove that

{
9n : n ∈Q}= {

3n : n ∈Q}
.

21. Suppose A and B are sets. Prove A ⊆ B if and only if A−B =;.
22. Let A and B be sets. Prove that A ⊆ B if and only if A∩B = A.
23. For each a ∈R, let Aa = {

(x,a(x2 −1)) ∈R2 : x ∈R}
. Prove that

⋂
a∈R

Aa = {
(−1,0), (1,0)

}
.

24. Prove that
⋂
x∈R

[3− x2,5+ x2]= [3,5].

25. Suppose A,B,C and D are sets. Prove that (A×B)∪ (C×D)⊆ (A∪C)× (B∪D).
26. Prove

{
4k+5 : k ∈Z}= {

4k+1 : k ∈Z}
.

27. Prove
{
12a+4b : a,b ∈Z}= {

4c : c ∈Z}
.

28. Prove
{
12a+25b : a,b ∈Z}=Z.

29. Suppose A 6= ;. Prove that A×B ⊆ A×C, if and only if B ⊆ C.
30. Prove that (Z×N)∩ (N×Z)=N×N.
31. Suppose B 6= ; and A×B ⊆ B×C. Prove A ⊆ C.
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CHAPTER 9

Disproof

Ever since Chapter 4 we have dealt with one major theme: Given a
statement, prove that is it true. In every example and exercise we

were handed a true statement and charged with the task of proving it. Have
you ever wondered what would happen if you were given a false statement
to prove? The answer is that no (correct) proof would be possible, for if it
were, the statement would be true, not false.

But how would you convince someone that a statement is false? The
mere fact that you could not produce a proof does not automatically mean
the statement is false, for you know (perhaps all too well) that proofs can
be difficult to construct. It turns out that there is a very simple and utterly
convincing procedure that proves a statement is false. The process of carry-
ing out this procedure is called disproof. Thus, this chapter is concerned
with disproving statements.

Before describing the new method, we will set the stage with some
relevant background information. First, we point out that mathematical
statements can be divided into three categories, described below.

One category consists of all those statements that have been proved to be
true. For the most part we regard these statements as significant enough to
be designated with special names such as “theorem,” “proposition,” “lemma”
and “corollary.” Some examples of statements in this category are listed
in the left-hand box in the diagram on the following page. There are also
some wholly uninteresting statements (such as 2= 2) in this category, and
although we acknowledge their existence we certainly do not dignify them
with terms such as “theorem” or “proposition.”

At the other extreme is a category consisting of statements that are
known to be false. Examples are listed in the box on the right. Since
mathematicians are not very interested in them, these types of statements
do not get any special names, other than the blanket term “false statement.”

But there is a third (and quite interesting) category between these
two extremes. It consists of statements whose truth or falsity has not
been determined. Examples include things like “Every perfect number
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is even,” or “Every even integer greater than 2 is the sum of two primes.”
(The latter statement is called the Goldbach conjecture. See Section 2.1.)
Mathematicians have a special name for the statements in this category
that they suspect (but haven’t yet proved) are true. Such statements are
called conjectures.

Three Types of Statements:
Known to be true Truth unknown Known to be false

(Theorems & propositions) (Conjectures)

Examples:

• Pythagorean theorem
• Fermat’s last theorem

(Section 2.1)
• The square of an odd

number is odd.

• The series
∞∑

k=1

1
k
diverges.

Examples:

• All perfect numbers are
even.

• Any even number greater
than 2 is the sum of two
primes. (Goldbach’s
conjecture, Section 2.1)

• There are infinitely many
prime numbers of form
2n −1, with n ∈N.

Examples:
• All prime numbers are

odd.
• Some quadratic equations

have three solutions.
• 0= 1

• There exist natural
numbers a,b and c
for which a3 +b3 = c3.

Mathematicians spend much of their time and energy attempting to
prove or disprove conjectures. (They also expend considerable mental energy
in creating new conjectures based on collected evidence or intuition.) When
a conjecture is proved (or disproved) the proof or disproof will typically
appear in a published paper, provided the conjecture is of sufficient interest.
If it is proved, the conjecture attains the status of a theorem or proposition.
If it is disproved, then no one is really very interested in it anymore—
mathematicians do not care much for false statements. (Though some
disproved conjectures are viewed as instructive examples or curiosities,
especially if the conjecture had been considered significant.)

Most conjectures that mathematicians are interested in are quite
difficult to prove or disprove. We are not at that level yet. In this text,
the “conjectures” that you will encounter are the kinds of statements that
an experienced mathematician would immediately spot as true or false, but
you may have to do some work before figuring out a proof or disproof. But
in keeping with the cloud of uncertainty that surrounds conjectures at the
advanced levels of mathematics, most exercises in this chapter (and many
beyond it) will ask you to prove or disprove statements without giving any
hint as to whether they are true or false. Your job will be to decide whether
or not they are true and to either prove or disprove them. The examples
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in this chapter will illustrate the processes one typically goes through in
deciding whether a statement is true or false, and then verifying that it’s
true or false.

You know the three major methods of proving a statement: direct proof,
contrapositive proof and proof by contradiction. Now we are ready to under-
stand the method of disproving a statement. Suppose you want to disprove
a statement P. In other words you want to prove that P is false. The way to
do this is to prove that ∼ P is true, for if ∼ P is true, it follows immediately
that P has to be false.

How to disprove P: Prove ∼ P.

Our approach is incredibly simple. To disprove P, prove ∼ P. In theory,
this proof can be carried out by the direct, contrapositive or contradiction
approaches. However, in practice things can be even easier than that if we
are disproving a universally quantified statement or a conditional statement.
That is our next topic.

9.1 Disproving Universal Statements: Counterexamples
A conjecture may be described as a statement that we hope is a theorem.
As we know, many theorems (hence many conjectures) are universally quan-
tified statements. Thus it seems reasonable to begin our discussion by
investigating how to disprove a universally quantified statement such as

∀x ∈ S,P(x).

To disprove this statement, we must prove its negation. Its negation is

∼ (∀x ∈ S,P(x)) = ∃x ∈ S,∼ P(x).

The negation is an existence statement. To prove the negation is true, we
just need to produce an example of an x ∈ S that makes ∼ P(x) true, that is,
an x that makes P(x) false. This leads to the following outline for disproving
a universally quantified statement.

How to disprove ∀x ∈ S, P(x).

Produce an example of an x ∈ S
that makes P(x) false.
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Things are just as simple if we want to disprove a conditional statement
P(x)⇒Q(x). This statement asserts that for every x that makes P(x) true,
Q(x) will also be true. The statement can only be false if there is an x that
makes P(x) true and Q(x) false. This leads to our next outline for disproof.

How to disprove P(x)⇒Q(x).
Produce an example of an x that
makes P(x) true and Q(x) false.

In both of the above outlines, the statement is disproved simply by
exhibiting an example that shows the statement is not always true. (Think
of it as an example that exposes the statement as a promise that can be
broken.) There is a special name for an example that disproves a statement:
It is called a counterexample.

Example 9.1 As our first example, we will work through the process of
deciding whether or not the following conjecture is true.

Conjecture For every n ∈Z, the integer f (n)= n2 −n+11 is prime.

In resolving the truth or falsity of a conjecture, it’s a good idea to gather
as much information about the conjecture as possible. In this case let’s
start by making a table that tallies the values of f (n) for some integers n.

n −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

f (n) 23 17 13 11 11 13 17 23 31 41 53 67 83 101

In every case, f (n) is prime, so you may begin to suspect that the conjecture
is true. Before attempting a proof, let’s try one more n. Unfortunately,
f (11)= 112−11+11= 112 is not prime. The conjecture is false because n = 11
is a counterexample. We summarize our disproof as follows:

Disproof. The statement “For every n ∈ Z, the integer f (n) = n2 − n+11 is
prime,” is false. For a counterexample, note that for n = 11, the integer
f (11)= 121= 11 ·11 is not prime. ■

In disproving a statement with a counterexample, it is important to explain
exactly how the counterexample makes the statement false. Our work would
not have been complete if we had just said “for a counterexample, consider
n = 11,” and left it at that. We need to show that the answer f (11) is not
prime. Showing the factorization f (11)= 11 ·11 suffices for this.
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Example 9.2 Either prove or disprove the following conjecture.

Conjecture If A, B and C are sets, then A− (B∩C)= (A−B)∩ (A−C).

Disproof. This conjecture is false because of the following counterexample.
Let A = {

1,2,3
}
, B = {

1,2
}
and C = {

2,3
}
. Notice that A− (B∩C) = {

1,3
}
and

(A−B)∩ (A−C)=;, so A− (B∩C) 6= (A−B)∩ (A−C). ■

(To see where this counterexample came from, draw Venn diagrams for
A− (B∩C) and (A−B)∩ (A−C). You will see that the diagrams are different.
The numbers 1, 2 and 3 can then be inserted into the regions of the diagrams
in such a way as to create the above counterexample.)

9.2 Disproving Existence Statements
We have seen that we can disprove a universally quantified statement or a
conditional statement simply by finding a counterexample. Now let’s turn
to the problem of disproving an existence statement such as

∃x ∈ S, P(x).

Proving this would involve simply finding an example of an x that makes
P(x) true. To disprove it, we have to prove its negation ∼ (∃x ∈ S,P(x)) =
∀x ∈ S,∼ P(x). But this negation is universally quantified. Proving it involves
showing that ∼ P(x) is true for all x ∈ S, and for this an example does not
suffice. Instead we must use direct, contrapositive or contradiction proof to
prove the conditional statement “If x ∈ S, then ∼ P(x).” As an example, here
is a conjecture to either prove or disprove.

Example 9.3 Either prove or disprove the following conjecture.

Conjecture There is a real number x for which x4 < x < x2.

This may not seem like an unreasonable statement at first glance. After all,
if the statement were asserting the existence of a real number for which
x3 < x < x2, then it would be true: just take x = −2. But it asserts there
is an x for which x4 < x < x2. When we apply some intelligent guessing to
locate such an x we run into trouble. If x = 1

2 , then x4 < x, but we don’t have
x < x2; similarly if x = 2, we have x < x2 but not x4 < x. Since finding an x
with x4 < x < x2 seems problematic, we may begin to suspect that the given
statement is false.

Let’s see if we can disprove it. According to our strategy for disproof,
to disprove it we must prove its negation. Symbolically, the statement is

Richard Hammack Book of Proof



Disproving Existence Statements 177

∃x ∈R, x4 < x < x2, so its negation is

∼ (∃x ∈R, x4 < x < x2) = ∀x ∈R,∼ (x4 < x < x2).

Thus, in words the negation is

For every real number x, it is not the case that x4 < x < x2.

This can be proved with contradiction, as follows. Suppose for the sake of
contradiction that there is an x for which x4 < x < x2. Then x must be positive
since it’s greater than the non-negative number x4. Dividing all parts of
x4 < x < x2 by the positive number x produces x3 < 1< x. Now subtract 1 from
all parts of x3 < 1< x to obtain x3 −1< 0< x−1 and reason as follows:

x3 −1 < 0 < x−1

(x−1)(x2 + x+1) < 0 < (x−1)

x2 + x+1 < 0 < 1

(Division by x−1 did not reverse the inequality < because the second line
above shows 0 < x−1, that is, x−1 is positive.) Now we have x2 + x+1 < 0,
which is a contradiction because x being positive forces x2 + x+1> 0.

We summarize our work as follows.
The statement “There is a real number x for which x4 < x < x2” is false

because we have proved its negation “For every real number x, it is not the
case that x4 < x < x2.”

As you work the exercises, keep in mind that not every conjecture will be
false. If one is true, then a disproof is impossible and you must produce a
proof. Here is an example:

Example 9.4 Either prove or disprove the following conjecture.

Conjecture There exist three integers x, y, z, all greater than 1 and no
two equal, for which xy = yz.

This conjecture is true. It is an existence statement, so to prove it we
just need to give an example of three integers x, y, z, all greater than 1 and
no two equal, so that xy = yz. A proof follows.

Proposition There exist three integers x, y, z, all greater than 1 and no
two equal, for which xy = yz.

Proof. Note that if x = 2, y= 16 and z = 4, then xy = 216 = (24)4 = 164 = yz. ■
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9.3 Disproof by Contradiction
Contradiction can be a very useful way to disprove a statement. To see how
this works, suppose we wish to disprove a statement P. We know that to
disprove P, we must prove ∼ P. To prove ∼ P with contradiction, we assume
∼∼ P is true and deduce a contradiction. But since ∼∼ P = P, this boils down
to assuming P is true and deducing a contradiction. Here is an outline:

How to disprove P with contradiction:

Assume P is true, and deduce a contradiction.

To illustrate this, let’s revisit Example 9.3 but do the disproof with
contradiction. You will notice that the work duplicates much of what we
did in Example 9.3, but is it much more streamlined because here we do
not have to negate the conjecture.

Example 9.5 Disprove the following conjecture.

Conjecture There is a real number x for which x4 < x < x2.

Disproof. Suppose for the sake of contradiction that this conjecture is true.
Let x be a real number for which x4 < x < x2. Then x is positive, since it is
greater than the non-negative number x4. Dividing all parts of x4 < x < x2

by the positive number x produces x3 < 1< x. Now subtract 1 from all parts
of x3 < 1< x to obtain x3 −1< 0< x−1 and reason as follows:

x3 −1 < 0 < x−1

(x−1)(x2 + x+1) < 0 < (x−1)

x2 + x+1 < 0 < 1

Now we have x2 + x+1 < 0, which is a contradiction because x is positive.
Thus the conjecture must be false. ■

Exercises for Chapter 9
Each of the following statements is either true or false. If a statement is true, prove
it. If a statement is false, disprove it. These exercises are cumulative, covering all
topics addressed in Chapters 1–9.
1. If x, y ∈R, then |x+ y| = |x|+ |y|.
2. For every natural number n, the integer 2n2 −4n+31 is prime.
3. If n ∈Z and n5 −n is even, then n is even.
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4. For every natural number n, the integer n2 +17n+17 is prime.
5. If A, B,C and D are sets, then (A×B)∪ (C×D)= (A∪C)× (B∪D).
6. If A, B,C and D are sets, then (A×B)∩ (C×D)= (A∩C)× (B∩D).
7. If A, B and C are sets, and A×C = B×C, then A = B.
8. If A, B and C are sets, then A− (B∪C)= (A−B)∪ (A−C).
9. If A and B are sets, then P(A)−P(B)⊆P(A−B).

10. If A and B are sets and A∩B =;, then P(A)−P(B)⊆P(A−B).
11. If a,b ∈N, then a+b < ab.
12. If a,b, c ∈N and ab, bc and ac all have the same parity, then a,b and c all have

the same parity.
13. There exists a set X for which R⊆ X and ;∈ X .
14. If A and B are sets, then P(A)∩P(B)=P(A∩B).
15. Every odd integer is the sum of three odd integers.
16. If A and B are finite sets, then |A∪B| = |A|+ |B|.
17. For all sets A and B, if A−B =;, then B 6= ;.
18. If a,b, c ∈N, then at least one of a−b, a+ c and b− c is even.
19. For every r, s ∈Q with r < s, there is an irrational number u for which r < u < s.
20. There exist prime numbers p and q for which p− q = 1000.
21. There exist prime numbers p and q for which p− q = 97.
22. If p and q are prime numbers for which p < q, then 2p+ q2 is odd.
23. If x, y ∈R and x3 < y3, then x < y.
24. The inequality 2x ≥ x+1 is true for all positive real numbers x.
25. For all a,b, c ∈Z, if a |bc, then a |b or a | c.
26. Suppose A, B and C are sets. If A = B−C, then B = A∪C.
27. The equation x2 = 2x has three real solutions.
28. Suppose a,b ∈Z. If a |b and b |a, then a = b.
29. If x, y ∈R and |x+ y| = |x− y|, then y= 0.
30. There exist integers a and b for which 42a+7b = 1.
31. No number (other than 1) appears in Pascal’s triangle more than four times.
32. If n,k ∈N and

(n
k
)
is a prime number, then k = 1 or k = n−1.

33. Suppose f (x)= a0 +a1x+a2x2 +·· ·+anxn is a polynomial of degree 1 or greater,
and for which each coefficient ai is in N. Then there is an n ∈N for which the
integer f (n) is not prime.

34. If X ⊆ A∪B, then X ⊆ A or X ⊆ B.
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CHAPTER 10

Mathematical Induction

This chapter explains a powerful proof technique called mathematical
induction (or just induction for short). To motivate the discussion,

let’s first examine the kinds of statements that induction is used to prove.
Consider this statement:

Conjecture The sum of the first n odd natural numbers equals n2.

The following table illustrates what this conjecture says. Each row is
headed by a natural number n, followed by the sum of the first n odd natural
numbers, followed by n2.

n sum of the first n odd natural numbers n2

1 1= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 1+3= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 1+3+5= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 1+3+5+7= . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 1+3+5+7+9= . . . . . . . . . . . . . . . . . . . . . . . . 25
...

...
...

n 1+3+5+7+9+11+·· ·+ (2n−1)= . . . . . . n2

...
...

...

Note that in the first five lines of the table, the sum of the first n odd
numbers really does add up to n2. Notice also that these first five lines
indicate that the nth odd natural number (the last number in each sum)
is 2n− 1. (For instance, when n = 2, the second odd natural number is
2 ·2−1= 3; when n = 3, the third odd natural number is 2 ·3−1= 5, etc.)

The table raises a question. Does the sum 1+3+5+7+·· ·+ (2n−1) really
always equal n2? In other words, is the conjecture true?

Let’s rephrase this. For each natural number n (i.e., for each line of the
table), we have a statement Sn, as follows:
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S1 : 1= 12

S2 : 1+3= 22

S3 : 1+3+5= 32

...
Sn : 1+3+5+7+·· ·+ (2n−1)= n2

...

Our question is: Are all of these statements true?
Mathematical induction answers just this kind of question, where we

have an infinite list of statements S1, S2, S3, . . . that we want to prove true.
The method is really quite simple. To visualize it, think of the statements
as dominoes, lined up in a row. Suppose you can prove the first statement
S1, and symbolize this as domino S1 being knocked down. Also, say you can
prove that any statement Sk being true (falling) forces the next statement
Sk+1 to be true (to fall). Then S1 falls, knocking down S2. Next S2 falls,
knocking down S3, then S3 knocks down S4, and so on. The inescapable
conclusion is that all the statements are knocked down (proved true).

The Simple Idea Behind Mathematical Induction

Statements are lined up like dominoes.

(1) Suppose the first statement falls (is proved true);

(2) Suppose the kth falling always causes the (k+1)th to fall;

Then all must fall (all are proved true).

S
1

S
2

S
3

S
4

S
5

S
6

S
1

S
2

S
3

S
4

S
5

S
6

S
k

S
k+1

S
k+2

S
k+3

Sk

Sk

Sk+1

Sk+1

Sk+2

Sk+2

Sk+2

Sk+3

Sk+3

Sk+3

Sk+4

Sk+4

Sk+4

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

S1

Sk Sk+1

S1 S2 S3 S4 S5 S6

S2 S3 S4 S5 S6
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10.1 Proof by Induction
This domino analogymotivates an outline for our next major proof technique:
proof by mathematical induction.

Outline for Proof by Induction
Proposition The statements S1, S2, S3, S4, . . . are all true.

Proof. (Induction)
(1) Prove that the first statement S1 is true.
(2) Given any integer k ≥ 1, prove that the statement Sk ⇒ Sk+1 is true.
It follows by mathematical induction that every Sn is true. ■

In this setup, the first step (1) is called the basis step. Because S1 is
usually a very simple statement, the basis step is often quite easy to do. The
second step (2) is called the inductive step. In the inductive step direct
proof is most often used to prove Sk ⇒ Sk+1, so this step is usually carried
out by assuming Sk is true and showing this forces Sk+1 to be true. The
assumption that Sk is true is called the inductive hypothesis.

Now let’s apply this technique to our original conjecture that the sum of
the first n odd natural numbers equals n2. Our goal is to show that for each
n ∈N, the statement Sn : 1+3+5+7+·· ·+ (2n−1)= n2 is true. Before getting
started, observe that Sk is obtained from Sn by plugging k in for n. Thus
Sk is the statement Sk : 1+3+5+7+·· ·+ (2k−1) = k2. Also, we get Sk+1 by
plugging in k+1 for n, so that Sk+1 : 1+3+5+7+·· ·+ (2(k+1)−1)= (k+1)2.

Proposition If n ∈N, then 1+3+5+7+·· ·+ (2n−1)= n2.
Proof. We will prove this with mathematical induction.
(1) Observe that if n = 1, this statement is 1= 12, which is obviously true.
(2) We must now prove Sk ⇒ Sk+1 for any k ≥ 1. That is, we must show that

if 1+3+5+7+·· ·+(2k−1)= k2, then 1+3+5+7+·· ·+(2(k+1)−1)= (k+1)2.
We use direct proof. Suppose 1+3+5+7+·· ·+ (2k−1)= k2. Then

1+3+5+7+·· · · · · · · · · · · · · ·+ (2(k+1)−1) =
1+3+5+7+·· ·+ (2k−1) + (2(k+1)−1) =(
1+3+5+7+·· ·+ (2k−1)

)+ (2(k+1)−1) =
k2 + (2(k+1)−1) = k2 +2k+1

= (k+1)2.

Thus 1+3+5+7+·· ·+ (2(k+1)−1)= (k+1)2. This proves that Sk ⇒ Sk+1.
It follows by induction that 1+3+5+7+·· ·+ (2n−1)= n2 for every n ∈N. ■
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In induction proofs it is usually the case that the first statement S1 is
indexed by the natural number 1, but this need not always be so. Depending
on the problem, the first statement could be S0, or Sm for any other integer
m. In the next example the statements are S0,S1,S2,S3, . . . The same outline
is used, except that the basis step verifies S0, not S1.

Proposition If n is a non-negative integer, then 5 | (n5 −n).

Proof. We will prove this with mathematical induction. Observe that the
first non-negative integer is 0, so the basis step involves n = 0.
(1) If n = 0, this statement is 5 | (05 −0) or 5 | 0, which is obviously true.
(2) Let k ≥ 0. We need to prove that if 5 | (k5 − k), then 5 | ((k+1)5 − (k+1)).

We use direct proof. Suppose 5 | (k5 −k). Thus k5 −k = 5a for some a ∈Z.
Observe that

(k+1)5 − (k+1) = k5 +5k4 +10k3 +10k2 +5k+1−k−1

= (k5 −k)+5k4 +10k3 +10k2 +5k

= 5a+5k4 +10k3 +10k2 +5k

= 5
(
a+k4 +2k3 +2k2 +k

)
.

This shows (k+1)5−(k+1) is an integermultiple of 5, so 5 | ((k+1)5−(k+1)).
We have now shown that 5 | (k5 −k) implies 5 | ((k+1)5 − (k+1)).

It follows by induction that 5 | (n5 −n) for all non-negative integers n. ■

As noted, induction is used to prove statements of the form ∀n ∈N,Sn.
But notice the outline does notwork for statements of form ∀n ∈Z,Sn (where
n is in Z, not N). The reason is that if you are trying to prove ∀n ∈Z,Sn by
induction, and you’ve shown S1 is true and Sk ⇒ Sk+1, then it only follows
from this that Sn is true for n ≥ 1. You haven’t proved that any of the
statements S0,S−1,S−2, . . . are true. If you ever want to prove ∀n ∈ Z,Sn

by induction, you have to show that some Sa is true and Sk ⇒ Sk+1 and
Sk ⇒ Sk−1.

Unfortunately, the term mathematical induction is sometimes confused
with inductive reasoning, which is the process of reaching the conclusion
that something is likely to be true based on prior observations of similar
circumstances. Please note that mathematical induction—as introduced in
this chapter—is a rigorous technique that proves statements with absolute
certainty.

To round out this section, we present four additional induction proofs.
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Proposition If n ∈Z and n ≥ 0, then
n∑

i=0
i · i!= (n+1)!−1.

Proof. We will prove this with mathematical induction.

(1) If n = 0, this statement is
0∑

i=0
i · i! = (0+1)!−1. The left-hand side is

0 ·0!= 0, and the right-hand side is 1!−1= 0. Thus the equation holds,
as both sides are zero.

(2) Consider any integer k ≥ 0. We must show that Sk implies Sk+1. That
is, we must show that

k∑
i=0

i · i!= (k+1)!−1 implies
k+1∑
i=0

i · i!= ((k+1)+1)!−1.

We use direct proof. Suppose
k∑

i=0
i · i!= (k+1)!−1. Observe that

k+1∑
i=0

i · i! =
(

k∑
i=0

i · i!
)
+ (k+1)(k+1)!

=
(
(k+1)!−1

)
+ (k+1)(k+1)!

= (k+1)!+ (k+1)(k+1)!−1

= (
1+ (k+1)

)
(k+1)!−1

= (k+2)(k+1)!−1

= (k+2)!−1

= ((k+1)+1)!−1.

Therefore
k+1∑
i=0

i · i! = ((k+1)+1)!−1.

We have now proved by induction that
n∑

i=0
i · i!= (n+1)!−1 for every integer

n ≥ 0. ■

In our outline for proof by induction, the inductive step (2) involved
proving Sk ⇒ Sk+1. Obviously, you can prove Sn ⇒ Sn+1 instead. (That
is, assume the statement is true for n, and show that it is true for n+1.)
Sometimes proving Sn−1 ⇒ Sn is more convenient, and this too is valid.
The proofs in the following examples will use the scheme Sk ⇒ Sk+1, but
some solutions to odd-numbered exercises will be phrased as Sn ⇒ Sn+1 or
Sn−1 ⇒ Sn. Fluency comes with reading and practice.
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The next example illustrates a trick that is occasionally useful. You
know that you can add equal quantities to both sides of an equation without
violating equality. But don’t forget that you can add unequal quantities to
both sides of an inequality, as long as the quantity added to the bigger side
is bigger than the quantity added to the smaller side. For example, if x ≤ y
and a ≤ b, then x+a ≤ y+b. Similarly, if x ≤ y and b is positive, then x ≤ y+b.
This oft-neglected fact is used in the next proof.

Proposition The inequality 2n ≤ 2n+1 −2n−1 −1 holds for each n ∈N.

Proof. We will prove this with mathematical induction.
(1) If n = 1, this statement is 21 ≤ 21+1 − 21−1 − 1, and this simplifies to

2≤ 4−1−1, which is obviously true.
(2) Say k ≥ 1. We use direct proof to show that 2k ≤ 2k+1 −2k−1 −1 implies

2k+1 ≤ 2(k+1)+1 −2(k+1)−1 −1. Suppose 2k ≤ 2k+1 −2k−1 −1. Then

2k ≤ 2k+1 −2k−1 −1

2
(
2k) ≤ 2

(
2k+1 −2k−1 −1

)
(multiply both sides by 2)

2k+1 ≤ 2k+2 −2k −2

2k+1 ≤ 2k+2 −2k −2+1 (add 1 to the bigger side)
2k+1 ≤ 2k+2 −2k −1

2k+1 ≤ 2(k+1)+1 −2(k+1)−1 −1.

It follows by induction that 2n ≤ 2n+1 −2n−1 −1 for each n ∈N. ■

We next prove that if n ∈N, then the inequality (1+ x)n ≥ 1+nx holds for
all x ∈R with x >−1. Thus we will need to prove that the statement

Sn : (1+ x)n ≥ 1+nx for every x ∈R with x >−1

is true for every natural number n. This is (only) slightly different from our
other examples, which proved statements of the form ∀n ∈N, P(n), where
P(n) is a statement about the number n. This time we are proving something
of form

∀n ∈N,
(
∀x ∈ (−1,∞), P(n, x)

)
,

where the open sentence P(n, x) : (1+ x)n ≥ 1+nx involves not only n, but also
a second variable x. (For the record, the inequality (1+ x)n ≥ 1+nx is known
as Bernoulli’s inequality.)
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Proposition If n ∈N, then (1+ x)n ≥ 1+nx for all x ∈R with x >−1.

Proof. We will prove this with mathematical induction.
(1) For the basis step, notice that when n = 1 the statement is (1+ x)1 ≥

1+1 · x , and this is true because both sides equal 1+ x.
(2) Assume that for some k ≥ 1, the statement (1+ x)k ≥ 1+kx is true for

all x ∈R with x >−1. From this we need to prove (1+ x)k+1 ≥ 1+ (k+1)x.
Now, 1+ x is positive because x >−1, so we can multiply both sides of
(1+ x)k ≥ 1+kx by (1+ x) without changing the direction of the ≥.

(1+ x)k(1+ x) ≥ (1+kx)(1+ x)

(1+ x)k+1 ≥ 1+ x+kx+kx2

(1+ x)k+1 ≥ 1+ (k+1)x+kx2

The above term kx2 is positive, so removing it from the right-hand side
will only make that side smaller. Thus we get (1+x)k+1 ≥ 1+(k+1)x. ■

Next, an example where the basis step involves more than routine check-
ing. (It will be used later, so it is numbered for reference.)

Proposition 10.1 Suppose a1,a2, . . . ,an are n integers, where n ≥ 2. If p
is prime and p | (a1 ·a2 ·a3 · · ·an), then p | ai for at least one of the ai.

Proof. The proof is induction on n.
(1) The basis step involves n = 2. Let p be prime and suppose p | (a1a2). We

need to show that p | a1 or p | a2, or equivalently, if p - a1, then p | a2.
Thus suppose p - a1. Since p is prime, it follows that gcd(p,a1)= 1. By
Proposition 7.1 (on page 152), there are integers k and ` for which
1= pk+a1`. Multiplying this by a2 gives

a2 = pka2 +a1a2`.

As we are assuming that p divides a1a2, it is clear that p divides the
expression pka2 +a1a2` on the right; hence p | a2. We’ve now proved
that if p | (a1a2), then p | a1 or p | a2. This completes the basis step.

(2) Suppose that k ≥ 2, and p | (a1 ·a2 · · ·ak) implies then p | ai for some ai.
Now let p | (a1 ·a2 · · ·ak ·ak+1). Then p | ((a1 ·a2 · · ·ak) ·ak+1

)
. By what we

proved in the basis step, it follows that p | (a1 ·a2 · · ·ak) or p | ak+1. This
and the inductive hypothesis imply that p divides one of the ai. ■

Please test your understanding now by working a few exercises.
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10.2 Proof by Strong Induction
Sometimes in an induction proof it is hard to show that Sk implies Sk+1.
It may be easier to show some “lower” Sm (with m < k) implies Sk+1.
For such situations there is a slight variant of induction called strong
induction. Strong induction works just like regular induction, except that
in Step (2) instead of assuming Sk is true and showing this forces Sk+1 to
be true, we assume that all the statements S1, S2, . . . , Sk are true and show
this forces Sk+1 to be true. The idea is that if the first k dominoes falling
always forces the (k+1)th domino to fall, then all the dominoes must fall.

Outline for Proof by Strong Induction
Proposition The statements S1, S2, S3, S4, . . . are all true.
Proof. (Strong induction)
(1) Prove the first statement S1. (Or the first several Sn, if needed.)
(2) Given any integer k ≥ 1, prove (S1 ∧S2 ∧S3 ∧·· ·∧Sk)⇒ Sk+1. ■

This is useful when Sk does not easily imply Sk+1. You may be better served
by showing some earlier statement (Sk−1 or Sk−2, for instance.) implies Sk.
In strong induction you can use any (or all) of S1, S2, . . . , Sk to prove Sk+1.

Here is a classic first example of a strong induction proof: The problem
is to prove that you can achieve any postage of 8 cents or more, exactly,
using only 3¢ and 5¢ stamps. For example, for a postage of 47 cents, you
could use nine 3¢ stamps and four 5¢ stamps. Let Sn be the statement
Sn: You can get a postage of exactly n¢ using only 3¢ and 5¢ stamps. Thus
we need to prove all the statements S8, S9, S10, S11 . . . are true. In the proof,
to show Sk+1 is true we will need to “go back” three steps from Sk+1, so the
basis step involves verifying the first three statements S8, S9 and S10.
Proposition Any postage of 8¢ or more is possible using 3¢ and 5¢ stamps.

Proof. We will use strong induction.
(1) This holds for postages of 8, 9 and 10 cents: For 8¢, use one 3¢ stamp

and one 5¢ stamp. For 9¢, three 3¢ stamps. For 10¢, two 5¢ stamps.
(2) Let k ≥ 10, and for each 8≤ m ≤ k, assume a postage of m cents can be

obtained exactly with 3¢ and 5¢ stamps. (That is, assume statements
S8,S9, . . . ,Sk are all true.) Wemust show that Sk+1 is true, that is, (k+1)-
cents postage can be achieved with 3¢ and 5¢ stamps. By assumption,
Sk−2 is true. Thus we can get (k−2)-cents postage with 3¢ and 5¢ stamps.
Now just add one more 3¢ stamp, and we have (k−2)+3 = k+1 cents
postage with 3¢ and 5¢ stamps. ■
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Our next example proves that 12 | (n4−n2) for any n ∈N. But first, let’s see
how regular induction is problematic. Regular induction starts by checking
12 | (n4 −n2) for n = 1. This reduces to 12 | 0, which is true. Next we assume
12 | (k4 − k2) and try to show that this implies 12 | ((k+1)4 − (k+1)2)

. Now,
12 | (k4 − k2) means k4 − k2 = 12a for some a ∈Z. We want to use this to get
(k+1)4 − (k+1)2 = 12b for some integer b. Working it out,

(k+1)4 − (k+1)2 = (k4 +4k3 +6k2 +4k+1)− (k2 +2k+1)
= (k4 −k2)+4k3 +6k2 +6k
= 12a+4k3 +6k2 +6k.

At this point we’re stuck because we can’t factor out a 12.
Let’s try strong induction. Say Sn is the statement Sn : 12 | (n4 − n2).

In strong induction, we assume each of S1, S2 , . . . , Sk is true, and show that
this makes Sk+1 true. In particular, if S1 through Sk are true, then Sk−5 is
true, provided k−5 ≥ 1. We will show Sk−5 ⇒ Sk+1 instead of Sk ⇒ Sk+1.
But as k − 5 ≥ 1, we have k ≥ 6. Thus our basis step must check that
S1, S2, S3, S4, S5, S6 are all true. Once this is done, Sk−5 ⇒ Sk+1 will imply
that any other Sk is true. For example, if k = 6, then Sk−5 ⇒ Sk+1 is S1 ⇒ S7,
so S7 is true. If k = 7, then Sk−5 ⇒ Sk+1 is S2 ⇒ S8, so S8 is true, etc.

Proposition If n ∈N, then 12 | (n4 −n2).

Proof. We will prove this with strong induction.
(1) First note that the statement is true for the first six positive integers:

For n = 1, 12 divides 14 −12 = 0. For n = 4, 12 divides 44 −42 = 240.
For n = 2, 12 divides 24 −22 = 12. For n = 5, 12 divides 54 −52 = 600.
For n = 3, 12 divides 34 −32 = 72. For n = 6, 12 divides 64 −62 = 1260.

(2) For k ≥ 6, assume 12 | (m4−m2) for 1≤ m ≤ k (i.e., S1,S2, . . . ,Sk are true).
We must show Sk+1 is true, that is, 12 | ((k+1)4 − (k+1)2)

. Now, Sk−5

being true means 12 | ((k−5)4 − (k−5)2)
. To simplify, put k−5= ` so

12 | (`4 −`2), meaning `4 −`2 = 12a for a ∈Z, and k+1= `+6 . Then:

(k+1)4 − (k+1)2 = (`+6)4 − (`+6)2

= `4 +24`3 +216`2 +864`+1296− (`2 +12`+36)

= (`4 −`2)+24`3 +216`2 +852`+1260

= 12a+24`3 +216`2 +852`+1260

= 12
(
a+2`3 +18`2 +71`+105

)
.

Because
(
a+2`3 +18`2 +71`+105

) ∈Z, we get 12 | ((k+1)4−(k+1)2)
. ■
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Our next example involves mathematical objects called graphs. The
word graph has two meanings in mathematics. First, there are the graphs
of equations and functions from algebra and calculus. But here we will be
interested in the second meaning: A graph is a configuration consisting of
points (called vertices) and edges, which are lines connecting the vertices.
Following are pictures of four graphs. Let’s agree that all of our graphs will
be in “one piece,” that is, you can travel from any vertex of a graph to any
other vertex by traversing a route of edges from one vertex to the other.

v0

v1

v2 v3

v4

Figure 10.1. Examples of Graphs
A cycle in a graph is a sequence of distinct edges in the graph that form

a route that ends where it began. For example, the graph on the far left
of Figure 10.1 has a cycle that starts at vertex v1, then goes to v2, then to
v3, then v4 and finally back to its starting point v1. You can find cycles in
both of the graphs on the left, but the two graphs on the right do not have
cycles. There is a special name for a graph that has no cycles; it is called a
tree. Thus the two graphs on the right of Figure 10.1 are trees, but the two
graphs on the left are not trees. Note that a single vertex • has no cycle, so
it is a tree (with one vertex and zero edges).

The two trees in Figure 10.1 both have one fewer edge than vertex. The
tree on the far right has 5 vertices and 4 edges. The one next to it has 6
vertices and 5 edges. Draw any tree (like the one in Figure 10.2). If it has n
vertices, then it will have n−1 edges. We now prove that this is always true.

Figure 10.2. A tree

Our proof will use the following observation: If we remove an edge from
a tree (but leave its two endpoints), then the tree is cut into two separate
graphs, each a tree, and each smaller than the tree we began with.
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Proposition If a tree has n vertices, then it has n−1 edges.

Proof. Notice that this theorem asserts that for any n ∈ N, the following
statement is true: Sn : A tree with n vertices has n−1 edges. We use strong
induction to prove this.
(1) Observe that if a tree has n = 1 vertex then it has no edges. Thus it has

n−1= 0 edges, so the theorem is true when n = 1.
(2) Now take an integer k ≥ 1. We must show (S1 ∧S2 ∧·· ·∧Sk)⇒ Sk+1. In

words, we must show that if it is true that any tree with m vertices
has m−1 edges, where 1≤ m ≤ k, then any tree with k+1 vertices has
(k+1)−1= k edges. We will use direct proof.

Suppose that for each integer m with 1≤ m ≤ k, any tree with m vertices
has m−1 edges. Now let T be a tree with k+1 vertices. Single out an
edge of T and label it e, as illustrated below.

· · ·
· · · · · ·· · ·

T1 T2

T
e

· · ·
· · · · · ·· · ·

Now remove the edge e from T, but leave the two endpoints of e. This
leaves two smaller trees that we call T1 and T2. Let’s say T1 has x
vertices and T2 has y vertices. As each of these two smaller trees has
fewer than k+1 vertices, our inductive hypothesis guarantees that T1

has x−1 edges, and T2 has y−1 edges. Think about our original tree T.
It has x+ y vertices. It has x−1 edges that belong to T1 and y−1 edges
that belong to T2, plus it has the additional edge e that belongs to
neither T1 nor T2. Thus, all together, the number of edges that T has
is (x−1)+ (y−1)+1= (x+ y)−1. In other words, T has one fewer edges
than it has vertices. Thus it has (k+1)−1= k edges.

It follows by strong induction that a tree with n vertices has n−1 edges. ■

Notice that it was absolutely essential that we used strong induction
in the above proof because the two trees T1 and T2 will not both have k
vertices. At least one will have fewer than k vertices. Thus the statement
Sk is not enough to imply Sk+1. We need to use the assumption that Sm will
be true whenever m ≤ k, and strong induction allows us to do this.
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10.3 Proof by Smallest Counterexample
This section introduces yet another proof technique, called proof by small-
est counterexample. It is a hybrid of induction and proof by contradiction.
It has the nice feature that it leads you straight to a contradiction. It is there-
fore more “automatic” than the proof by contradiction that was introduced
in Chapter 6. Here is the outline:

Outline for Proof by Smallest Counterexample
Proposition The statements S1, S2, S3, S4, . . . are all true.

Proof. (Smallest counterexample)
(1) Check that the first statement S1 is true.
(2) For the sake of contradiction, suppose not every Sn is true.
(3) Let k > 1 be the smallest integer for which Sk is false.
(4) Then Sk−1 is true and Sk is false. Use this to get a contradiction. ■

This setup leads you to a point where Sk−1 is true and Sk is false. It is
here, where true and false collide, that you will find a contradiction. Let’s
do an example.

Proposition If n ∈N, then 4 | (5n −1).

Proof. We use proof by smallest counterexample. (We will number the steps
to match the outline, but that is not usually done in practice.)
(1) If n = 1, then the statement is 4 | (51 −1), or 4 | 4, which is true.
(2) For sake of contradiction, suppose it’s not true that 4 | (5n −1) for all n.
(3) Let k > 1 be the smallest integer for which 4 - (5k −1).
(4) Then 4 | (5k−1 −1), so there is an integer a for which 5k−1 −1= 4a. Then

5k−1 −1 = 4a

5(5k−1 −1) = 5 ·4a

5k −5 = 20a

5k −1 = 20a+4

5k −1 = 4(5a+1).

This means 4 | (5k−1), a contradiction, because 4 - (5k−1) in Step 3. Thus,
we were wrong in Step 2 to assume that it is untrue that 4 | (5n −1) for
every n. Therefore 4 | (5n −1) is true for every n. ■
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10.4 The Fundamental Theorem of Arithmetic
The fundamental theoremof arithmetic, states that any integer greater
than 1 has a unique prime factorization. For example, 12 factors into primes
as 12= 2 ·2 ·3, and moreover any factorization of 12 into primes uses exactly
the primes 2, 2 and 3. Our proof combines the techniques of induction,
cases, minimum counterexample and the idea of uniqueness of existence
outlined at the end of Section 7.3.

Theorem 10.1 (Fundamental Theorem of Arithmetic) Any integer n > 1
has a unique prime factorization. “Unique” means that if n = p1 · p2 · p3 · · · pk
and n = a1 ·a2 ·a3 · · ·a` are two prime factorizations of n, then k = `, and the
primes pi and ai are the same, except that they may be in different orders.

Proof. Suppose n > 1. We first use strong induction to show that n has a
prime factorization. For the basis step, if n = 2, it is prime, so it is already
its own prime factorization. Let n ≥ 2 and assume every integer between 2
and n (inclusive) has a prime factorization. Consider n+1. If it is prime,
then it is its own prime factorization. If it is not prime, then it factors as
n+1= ab with a,b > 1. Because a and b are both less than n+1 they have
prime factorizations a = p1 · p2 · p3 · · · pk and b = p′

1 · p′
2 · p′

3 · · · p′
`
. Then

n+1= ab = (p1 · p2 · p3 · · · pk)(p′
1 · p′

2 · p′
3 · · · p′

`)

is a prime factorization of n+1. This competes the proof by strong induction
that every integer greater than 1 has a prime factorization.

Next we use proof by smallest counterexample to prove that the prime
factorization of any n ≥ 2 is unique. If n = 2, then n clearly has only one
prime factorization, namely itself. Assume for the sake of contradiction that
there is an n > 2 that has different prime factorizations n = p1 · p2 · p3 · · · pk
and n = a1 ·a2 ·a3 · · ·a`. Assume n is the smallest number with this property.
From n = p1 · p2 · p3 · · · pk, we see that p1 | n, so p1 | (a1 · a2 · a3 · · ·a`). By
Proposition 10.1 (page 186), p1 divides one of the primes ai. As ai is prime,
we have p1 = ai. Dividing n = p1 · p2 · p3 · · · pk = a1 · a2 · a3 · · ·a` by p1 = ai

yields
p2 · p3 · · · pk = a1 ·a2 ·a3 · · ·ai−1 ·ai+1 · · ·a`.

These two factorizations are different, because the two prime factorizations
of n were different. (Remember: the primes p1 and ai are equal, so the
difference appears in the remaining factors, displayed above.) But also the
above number p2 · p3 · · · pk is smaller than n, and this contradicts the fact
that n was the smallest number with two different prime factorizations. ■
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A word of caution about induction and proof by smallest counterexample:
In proofs in other textbooks or in mathematical papers, it often happens
that the writer doesn’t tell you up front that these techniques are being
used. Instead, you will have to read through the proof to glean from context
what technique is being used. In fact, the same warning applies to all of our
proof techniques. If you continue with mathematics, you will gradually gain
through experience the ability to analyze a proof and understand exactly
what approach is being used when it is not stated explicitly. Frustrations
await you, but do not be discouraged by them. Frustration is a natural part
of anything that’s worth doing.

10.5 Fibonacci Numbers
Leonardo Pisano, now known as Fibonacci, was a mathematician born
around 1175 in what is now Italy. His most significant work was a book
Liber Abaci, which is recognized as a catalyst in medieval Europe’s slow
transition from Roman numbers to the Hindu-Arabic number system. But
he is best known today for a number sequence that he described in his book
and that bears his name. The Fibonacci sequence is

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

The numbers that appear in this sequence are called Fibonacci numbers.
The first two numbers are 1 and 1, and thereafter any entry is the sum
of the previous two entries. For example 3+5 = 8, and 5+8 = 13, etc. We
denote the nth term of this sequence as Fn. Thus F1 = 1, F2 = 1, F3 = 2,
F4 = 3, F7 = 13 and so on. Notice that the Fibonacci Sequence is entirely
determined by the rules F1 = 1, F2 = 1, and Fn = Fn−1 +Fn−2.

We introduce Fibonacci’s sequence here partly because it is something
everyone should know about, but also because it is a great source of induction
problems. This sequence, which appears with surprising frequency in
nature, is filled with mysterious patterns and hidden structures. Some of
these structures will be revealed in the examples and exercises.

We emphasize that the condition Fn = Fn−1+Fn−2 (or equivalently Fn+1 =
Fn +Fn−1) is the perfect setup for induction. It suggests that we can de-
termine something about Fn by looking at earlier terms of the sequence.
In using induction to prove something about the Fibonacci sequence, you
should expect to use the equation Fn = Fn−1 +Fn−2 somewhere.

For our first example we will prove that F2
n+1−Fn+1Fn−F2

n = (−1)n for any
natural number n. For example, if n = 5 we have F2

6−F6F5−F2
5 = 82−8·5−52 =

64−40−25= −1= (−1)5.
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Proposition The Fibonacci sequence obeys F2
n+1 −Fn+1Fn −F2

n = (−1)n.

Proof. We will prove this with mathematical induction.
(1) If n = 1 we have F2

n+1−Fn+1Fn−F2
n = F2

2 −F2F1−F2
1 = 12−1 ·1−12 =−1=

(−1)1 = (−1)n, so indeed F2
n+1 −Fn+1Fn −F2

n = (−1)n is true when n = 1.

(2) Let k ∈N. Using direct proof, we will show F2
k+1 −Fk+1Fk −F2

k = (−1)k

implies F2
k+2 −Fk+2Fk+1 −F2

k+1 = (−1)k+1. Say F2
k+1 −Fk+1Fk −F2

k = (−1)k.
Next we work out F2

k+2−Fk+2Fk+1−F2
k+1 and show that it equals (−1)k+1.

In doing this we will use the fact Fk+2 = Fk+1 +Fk. Observe that

F2
k+2 −Fk+2Fk+1 −F2

k+1 = (Fk+1 +Fk)2 − (Fk+1 +Fk)Fk+1 −F2
k+1

= F2
k+1 +2Fk+1Fk +F2

k −F2
k+1 −FkFk+1 −F2

k+1

= −F2
k+1 +Fk+1Fk +F2

k

= −(F2
k+1 −Fk+1Fk −F2

k)

= −(−1)k (inductive hypothesis)
= (−1)1(−1)k

= (−1)k+1.

Therefore F2
k+2 −Fk+2Fk+1 −F2

k+1 = (−1)k+1.
It follows by induction that F2

n+1 −Fn+1Fn −F2
n = (−1)n for every n ∈N. ■

Let’s pause for a moment and think about what the result we just proved
means. Dividing both sides of F2

n+1 −Fn+1Fn −F2
n = (−1)n by F2

n gives
(

Fn+1

Fn

)2
− Fn+1

Fn
−1= (−1)n

F2
n

.

For large values of n, the right-hand side is very close to zero, and the
left-hand side is Fn+1/Fn plugged into the polynomial x2 − x−1. Thus, as
n increases, the ratio Fn+1/Fn approaches a root of x2 − x−1 = 0. By the
quadratic formula, the roots of x2 − x−1 are 1±p5

2 . As Fn+1/Fn > 1, this ratio
must be approaching the positive root 1+p5

2 . Therefore

lim
n→∞

Fn+1

Fn
= 1+p

5
2

. (10.1)

For a quick spot check, note that F13/F12 ≈ 1.618025, while 1+p5
2 ≈ 1.618033.

Even for the small value n = 12, the numbers match to four decimal places.
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The number Φ= 1+p5
2 is sometimes called the golden ratio, and there

has been much speculation about its occurrence in nature as well as in
classical art and architecture. One theory holds that the Parthenon and the
Great Pyramids of Egypt were designed in accordance with this number.

But we are here concerned with things that can be proved. We close by
observing how the Fibonacci sequence in many ways resembles a geometric
sequence. Recall that a geometric sequencewith first term a and common
ratio r has the form

a, ar, ar2, ar3, ar4, ar5, ar6, ar7, ar8, . . .

where any term is obtained by multiplying the previous term by r. In
general its nth term is Gn = arn, and Gn+1/Gn = r. Equation (10.1) tells
us that Fn+1/Fn ≈Φ. Thus even though it is not a geometric sequence, the
Fibonacci sequence tends to behave like a geometric sequence with common
ratio Φ, and the further “out” you go, the higher the resemblance.

Exercises for Chapter 10
Prove the following statements with either induction, strong induction or proof by
smallest counterexample.

1. Prove that 1+2+3+4+·· ·+n = n2 +n
2

for every positive integer n.

2. Prove that 12 +22 +32 +42 +·· ·+n2 = n(n+1)(2n+1)
6

for every positive integer n.

3. Prove that 13 +23 +33 +43 +·· ·+n3 = n2(n+1)2

4
for every positive integer n.

4. If n ∈N, then 1 ·2+2 ·3+3 ·4+4 ·5+·· ·+n(n+1)= n(n+1)(n+2)
3

.

5. If n ∈N, then 21 +22 +23 +·· ·+2n = 2n+1 −2.

6. Prove that
n∑

i=1
(8i−5)= 4n2 −n for every positive integer n.

7. If n ∈N, then 1 ·3+2 ·4+3 ·5+4 ·6+·· ·+n(n+2)= n(n+1)(2n+7)
6

.

8. If n ∈N, then 1
2!

+ 2
3!

+ 3
4!

+·· ·+ n
(n+1)!

= 1− 1
(n+1)!

.

9. Prove that 24 | (52n −1) for every integer n ≥ 0.
10. Prove that 3 | (52n −1) for every integer n ≥ 0.
11. Prove that 3 | (n3 +5n+6) for every integer n ≥ 0.
12. Prove that 9 | (43n +8) for every integer n ≥ 0.
13. Prove that 6 | (n3 −n) for every integer n ≥ 0.
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14. Suppose a ∈Z. Prove that 5 | 2na implies 5 | a for any n ∈N.
15. If n ∈N, then 1

1 ·2 + 1
2 ·3 + 1

3 ·4 + 1
4 ·5 +·· ·+ 1

n(n+1)
= 1− 1

n+1
.

16. Prove that that 2n +1≤ 3n for every positive integer n.
17. Suppose A1, A2, . . . An are sets in some universal set U, and n ≥ 2. Prove that

A1 ∩ A2 ∩·· ·∩ An = A1 ∪ A2 ∪·· ·∪ An.
18. Suppose A1, A2, . . . An are sets in some universal set U, and n ≥ 2. Prove that

A1 ∪ A2 ∪·· ·∪ An = A1 ∩ A2 ∩·· ·∩ An.

19. Prove that 1
1
+ 1

4
+ 1

9
+·· ·+ 1

n2 ≤ 2− 1
n
for every n ∈N.

20. Prove that (1+2+3+·· ·+n)2 = 13 +23 +33 +·· ·+n3 for every n ∈N.
21. If n ∈N, then 1

1
+ 1

2
+ 1

3
+ 1

4
+ 1

5
+·· ·+ 1

2n −1
+ 1

2n ≥ 1+ n
2
.

(Note: This problem asserts that the sum of the first 2n terms of the harmonic
series is at least 1+n/2. It thus implies that the harmonic series diverges.)

22. If n ∈N, then
(
1− 1

2

)(
1− 1

4

)(
1− 1

8

)(
1− 1

16

)
· · ·

(
1− 1

2n

)
≥ 1

4
+ 1

2n+1 .

23. Use mathematical induction to prove the binomial theorem (Theorem 3.1 on
page 92). You may find that you need Equation (3.3) on page 90.

24. Prove that
n∑

k=1
k

(n
k
)= n2n−1 for each natural number n.

25. Concerning the Fibonacci sequence, prove that F1+F2+F3+F4+. . .+Fn = Fn+2−1.

26. Concerning the Fibonacci sequence, prove that
n∑

k=1
F2

k = FnFn+1.

27. Concerning the Fibonacci sequence, prove that F1+F3+F5+F7+ . . .+F2n−1 = F2n.
28. Concerning the Fibonacci sequence, prove that F2+F4+F6+F8+. . .+F2n = F2n+1−1.
29. The indicated diagonals of Pascal’s triangle sum to Fibonacci numbers. Prove

that this pattern continues forever.
1

1
2

3
5

8
13

21
34

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

3 3

4 6 4

5 10 10 5

6 15 20 15 5

7 21 35 35 21 7

8 28 56 70 56 28 8
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30. Here Fn is the nth Fibonacci number. Prove that

Fn =
(

1+p5
2

)n −
(

1−p5
2

)n

p
5

.

31. Prove that
n∑

k=0

(
k
r
)= (n+1

r+1
)
, where 1≤ r ≤ n.

32. Prove that the number of n-digit binary numbers that have no consecutive 1’s is
the Fibonacci number Fn+2. For example, for n = 2 there are three such numbers
(00, 01, and 10), and 3 = F2+2 = F4. Also, for n = 3 there are five such numbers
(000, 001, 010, 100, 101), and 5= F3+2 = F5.

33. Suppose n (infinitely long) straight lines lie on a plane in such a way that no
two of the lines are parallel, and no three of the lines intersect at a single point.
Show that this arrangement divides the plane into n2+n+2

2 regions.

34. Prove that 31 +32 +33 +34 +·· ·+3n = 3n+1 −3
2

for every n ∈N.
35. Prove that if n,k ∈N, and n is even and k is odd, then

(n
k
)
is even.

36. Prove that if n = 2k −1 for some k ∈N, then every entry in the nth row of Pascal’s
triangle is odd.

37. Prove that if m,n ∈N, then
n∑

k=0
k
(m+k

m
)= n

(m+n+1
m+1

)− (m+n+1
m+2

)
.

38. Prove that
p∑

k=0

(m
k
)( n

p−k
)= (m+n

p
)
for non-negative integers m,n and p.

(This equation is from Exercise 7 in Section 3.10. There we were asked to prove
it by combinatorial proof. Here we are asked to prove it with induction.)

39. Prove that
m∑

k=0

(m
k
)( n

p+k
)= (m+n

m+p
)
for non-negative integers m,n and p.

(This equation is from Exercise 8 in Section 3.10. There we were asked to prove
it by combinatorial proof. Here we are asked to prove it with induction.)

40. Use Exercise 38 above to prove that if n,k ∈N, then (n
0
)2+(n

1
)2+(n

2
)2+·· ·+(n

n
)2 = (2n

n
)
.

(Note that this equality was also proved by combinatorial proof in Section 3.10.)
41. If n and k are non-negative integers, then

(n+0
0

)+ (n+1
1

)+ (n+2
2

)+·· ·+ (n+k
k

)= (n+k+1
k

)
.
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CHAPTER 11

Relations

In mathematics there are endless ways that two entities can be related
to each other. Consider the following mathematical statements.

5< 10 5≤ 5 6= 30
5 5 | 80 7> 4 x 6= y 8 - 3

a ≡ b ( mod n) 6 ∈Z X ⊆Y π≈ 3.14 0≥−1
p

2 ∉Z Z 6⊆N
In each case two entities appear on either side of a symbol, and we

interpret the symbol as expressing some relationship between the two
entities. Symbols such as <,≤,=, |, -,≥,>, ∈ and ⊆, etc., are called relations
because they convey relationships among things.

Relations are significant. In fact, you would have to admit that there
would be precious little left of mathematics if we took away all the relations.
Therefore it is important to have a firm understanding of them, and this
chapter is intended to develop that understanding.

Rather than focusing on each relation individually (an impossible task
anyway since there are infinitely many different relations), we will develop
a general theory that encompasses all relations. Understanding this
general theory will give us the conceptual framework and language needed
to understand and discuss any specific relation.

11.1 Relations
Before stating the theoretical definition of a relation, let’s look at a
motivational example. This example will lead naturally to our definition.

Consider the set A = {
1,2,3,4,5

}
. (There’s nothing special about this

particular set; any set of numbers would do for this example.) Elements
of A can be compared to each other by the symbol “<.” For example, 1< 4,
2< 3, 2< 4, and so on. You have no trouble understanding this because the
notion of numeric order is so ingrained. But imagine you had to explain
it to an idiot savant, one with an obsession for detail but absolutely no
understanding of the meaning of (or relationships between) integers. You
might consider writing down for your student the following set:

R = {
(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)

}
.
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The set R encodes the meaning of the < relation for elements in A. An
ordered pair (a,b) appears in the set if and only if a < b. If asked whether or
not it is true that 3< 4, your student could look through R until he found
the ordered pair (3,4); then he would know 3< 4 is true. If asked about 5< 2,
he would see that (5,2) does not appear in R, so 5 6< 2. The set R, which is a
subset of A× A, completely describes the relation < for A.

It seem simple-minded at first, but this is exactly the idea we will use
for our main definition. This definition is general enough to describe not
just the relation < for the set A = {

1,2,3,4,5
}
, but any relation for any set A.

Definition 11.1 A relation on a set A is a subset R ⊆ A× A. We often
abbreviate the statement (x, y) ∈ R as xR y. The statement (x, y) ∉ R is
abbreviated as x 6R y.

Notice that a relation is a set, so we can use what we know about sets to
understand and explore relations. But before getting deeper into the theory
of relations, let’s look at some examples of Definition 11.1.

Example 11.1 Let A = {
1,2,3,4

}
, and consider the following set:

R = {
(1,1), (2,1), (2,2), (3,3), (3,2), (3,1), (4,4), (4,3), (4,2), (4,1)

}⊆ A× A.

The set R is a relation on A, by Definition 11.1. Since (1,1) ∈ R, we have
1R1. Similarly 2R1 and 2R2, and so on. However, notice that (for example)
(3,4) ∉ R, so 3 6R 4. Observe that R is the familiar relation ≥ for the set A.

Chapter 1 proclaimed that all of mathematics can be described with sets.
Just look at how successful this program has been! The greater-than-or-
equal-to relation is now a set R. (We might even express this in the rather
cryptic form ≥= R.)

Example 11.2 Let A = {
1,2,3,4

}
, and consider the following set:

S = {
(1,1), (1,3), (3,1), (3,3), (2,2), (2,4), (4,2), (4,4)

}⊆ A× A.

Here we have 1S1, 1S3, 4S2, etc., but 3 6S 4 and 2 6S 1. What does S mean?
Think of it as meaning “has the same parity as.” Thus 1S1 reads “1 has the
same parity as 1,” and 4S2 reads “4 has the same parity as 2.”

Example 11.3 Consider relations R and S of the previous two examples.
Note that R∩S = {

(1,1), (2,2), (3,3), (3,1), (4,4), (4,2)
}⊆ A×A is a relation on A.

The expression x(R∩S)y means “x ≥ y, and x has the same parity as y.”
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Example 11.4 Let B = {
0,1,2,3,4,5

}
, and consider the following set:

U = {
(1,3), (3,3), (5,2), (2,5), (4,2)

}⊆ B×B.

Then U is a relation on B because U ⊆ B×B. You may be hard-pressed to
invent any “meaning” for this particular relation. A relation does not have
to have any meaning. Any random subset of B×B is a relation on B, whether
or not it describes anything familiar.

Some relations can be described with pictures. For example, we can
depict the above relation U on B by drawing points labeled by elements of B.
The statement (x, y) ∈U is then represented by an arrow pointing from x to y,
a graphic symbol meaning “x relates to y.” Here is a picture of U:

0 1 2

3 4 5

The next picture illustrates the relation R on the set A = {
a,b, c,d

}
, where

xR y means x comes before y in the alphabet. According to Definition 11.1,
as a set this relation is R = {

(a,b), (a, c), (a,d), (b, c), (b,d), (c,d)
}
. You may feel

that the picture conveys the relation better than the set does. They are two
different ways of expressing the same thing. In some instances pictures are
more convenient than sets for discussing relations.

d

cb

a

Although such diagrams can help us visualize relations, they do have
their limitations. If A and R were infinite, then the diagram would be
impossible to draw, but the set R might be easily expressed in set-builder
notation. Here are some examples.

Example 11.5 Consider the set R = {
(x, y) ∈Z×Z : x− y ∈N} ⊆Z×Z. This

is the > relation on the set A =Z. It is infinite because there are infinitely
many ways to have x > y where x and y are integers.

Example 11.6 The set R = {
(x, x) : x ∈ R} ⊆ R×R is the relation = on the

set R, because xR y means the same thing as x = y. Thus R is a set that
expresses the notion of equality of real numbers.
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Exercises for Section 11.1
1. Let A = {

0,1,2,3,4,5
}
. Write out the relation R that expresses > on A. Then

illustrate it with a diagram.
2. Let A = {

1,2,3,4,5,6
}
. Write out the relation R that expresses | (divides) on A.

Then illustrate it with a diagram.
3. Let A = {

0,1,2,3,4,5
}
. Write out the relation R that expresses ≥ on A. Then

illustrate it with a diagram.
4. Here is a diagram for a relation R on a set A. Write the sets A and R.

0 1 2

3 4 5

5. Here is a diagram for a relation R on a set A. Write the sets A and R.

0 1 2

3 4 5

6. Congruence modulo 5 is a relation on the set A =Z. In this relation xR y means
x ≡ y (mod 5). Write out the set R in set-builder notation.

7. Write the relation < on the set A =Z as a subset R of Z×Z. This is an infinite
set, so you will have to use set-builder notation.

8. Let A = {
1,2,3,4,5,6

}
. Observe that ;⊆ A× A, so R =; is a relation on A. Draw

a diagram for this relation.
9. Let A = {

1,2,3,4,5,6
}
. How many different relations are there on the set A?

10. Consider the subset R = (R×R)−{
(x, x) : x ∈R}⊆R×R. What familiar relation on R

is this? Explain.
11. Given a finite set A, how many different relations are there on A?

In the following exercises, subsets R of R2 =R×R or Z2 =Z×Z are indicated by gray
shading. In each case, R is a familiar relation on R or Z. State it.

12.
R

13.
R

14. 15.
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11.2 Properties of Relations
A relational expression xR y is an open sentence; it is either true or false.
For example, 5 < 10 is true, and 10 < 5 is false. (Thus an operation like +
is not a relation, because, for instance, 5+10 has a numeric value, not a
T/F value.) Since relational expressions have T/F values, we can combine
them with logical operators; for example, xR y⇒ yRx is a statement or open
sentence whose truth or falsity may depend on x and y.

With this in mind, note that some relations have properties that others
don’t have. For example, the relation ≤ on Z satisfies x ≤ x for every x ∈Z.
But this is not so for < because x < x is never true. The next definition lays
out three particularly significant properties that relations may have.

Definition 11.2 Suppose R is a relation on a set A.
1. Relation R is reflexive if xRx for every x ∈ A.

That is, R is reflexive if ∀x ∈ A, xRx.
2. Relation R is symmetric if xR y implies yRx for all x, y ∈ A

That is, R is symmetric if ∀x, y ∈ A, xR y ⇒ yRx.
3. Relation R is transitive if whenever xR y and yRz, then also xRz.

That is, R is transitive if ∀x, y, z ∈ A,
(
(xR y)∧ (yRz)

)⇒ xRz.

To illustrate this, let’s consider the set A = Z. Examples of reflexive
relations on Z include ≤, =, and |, because x ≤ x, x = x and x |x are all true
for any x ∈Z. On the other hand, >, <, 6= and - are not reflexive for none of
the statements x < x, x > x, x 6= x and x - x is ever true.

The relation 6= is symmetric, for if x 6= y, then surely y 6= x also. Also,
the relation = is symmetric because x = y always implies y= x.

The relation ≤ is not symmetric, as x ≤ y does not necessarily imply
y≤ x. For instance 5≤ 6 is true, but 6≤ 5 is false. Notice (x ≤ y) ⇒ (y≤ x) is
true for some x and y (for example, it is true when x = 2 and y= 2), but still
≤ is not symmetric because it is not the case that (x ≤ y) ⇒ (y ≤ x) is true
for all integers x and y.

The relation ≤ is transitive because whenever x ≤ y and y ≤ z, it also
is true that x ≤ z. Likewise <,≥,> and = are all transitive. Examine the
following table and be sure you understand why it is labeled as it is.

Relations on Z: < ≤ = | - 6=
Reflexive no yes yes yes no no
Symmetric no no yes no no yes
Transitive yes yes yes yes no no
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Example 11.7 Here A = {
b, c,d, e

}
, and R is the following relation on A:

R = {
(b,b), (b, c), (c,b), (c, c), (d,d), (b,d), (d,b), (c,d), (d, c)

}
.

This relation is not reflexive, for although bRb, cRc and dRd, it is not true
that eRe. For a relation to be reflexive, xRx must be true for all x ∈ A.

The relation R is symmetric, because whenever we have xR y, it follows
that yRx too. Observe that bRc and cRb; bRd and dRb; dRc and cRd. Take
away the ordered pair (c,b) from R, and R is no longer symmetric.

The relation R is transitive, but it takes some work to check it. We
must check that the statement (xR y∧ yRz) ⇒ xRz is true for all x, y, z ∈ A.
For example, taking x = b, y = c and z = d, we have (bRc ∧ cRd) ⇒ bRd,
which is the true statement (T ∧T) ⇒ T. Likewise, (bRd ∧ dRc) ⇒ bRc is
the true statement (T ∧T) ⇒ T. Take note that if x = b, y = e and z = c,
then (bRe∧ eRc) ⇒ bRc becomes (F ∧F) ⇒ T, which is still true. It’s not
much fun, but going through all the combinations, you can verify that
(xR y∧ yRz) ⇒ xRz is true for all choices x, y, z ∈ A. (Try at least a few of
them.)

The relation R from Example 11.7 has a meaning. You can think of
xR y as meaning that x and y are both consonants. Thus bRc because b
and c are both consonants; but b 6Re because it’s not true that b and e are
both consonants. Once we look at it this way, it’s immediately clear that R
has to be transitive. If x and y are both consonants and y and z are both
consonants, then surely x and z are both consonants. This illustrates a
point that we will see again later in this section: Knowing the meaning of a
relation can help us understand it and prove things about it.

Here is a picture of R. Notice that we can immediately spot several
properties of R that may not have been so clear from its set description. For
instance, we see that R is not reflexive because it lacks a loop at e, hence
e 6Re.

b

c

d

e

Figure 11.1. The relation R from Example 11.7
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In what follows, we summarize how to spot the various properties of a
relation from its diagram. Compare these with Figure 11.1.

1.
A relation is
reflexive if
for each point x ...

x ...there is a
loop at x: x

2.

A relation is
symmetric if
whenever there is an
arrow from x to y ...

x y

...there is also
an arrow from
y back to x:

x y

3.

A relation is
transitive if
whenever there are
arrows from x to y
and y to z ...

x

y

z

...there is also
an arrow from
x to z:

x

y

z

(If x = z, this means
that if there are
arrows from x to y
and from y to x ... x

y ...there is also
a loop from
x back to x.)

x

y

Consider the bottom diagram in Box 3, above. The transitive property
demands (xR y∧ yRx)⇒ xRx. Thus, if xR y and yRx in a transitive relation,
then also xRx, so there is a loop at x. In this case (yRx∧ xR y) ⇒ yR y, so
there will be a loop at y too.

Although these visual aids can be illuminating, their use is limited
because many relations are too large and complex to be adequately described
as diagrams. For example, it would be impossible to draw a diagram for the
relation ≡ (mod n), where n ∈N. Such a relation would best be explained in
a more theoretical (and less visual) way.

We next prove that ≡ (mod n) is reflexive, symmetric and transitive.
Obviously we will not glean this from a drawing. Instead we will prove it
from the properties of ≡ (mod n) and Definition 11.2. Pay attention to this
example. It illustrates how to prove things about relations.
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Example 11.8 Prove the following proposition.

Proposition Let n ∈N. The relation ≡ (mod n) on the set Z is reflexive,
symmetric and transitive.

Proof. First we will show that ≡ (mod n) is reflexive. Take any integer x ∈Z,
and observe that n |0, so n | (x−x). By definition of congruence modulo n, we
have x ≡ x (mod n). This shows x ≡ x (mod n) for every x ∈Z, so ≡ (mod n) is
reflexive.

Next, we will show that ≡ (mod n) is symmetric. For this, we must show
that for all x, y ∈ Z, the condition x ≡ y (mod n) implies that y ≡ x (mod n).
We use direct proof. Suppose x ≡ y (mod n). Thus n | (x− y) by definition
of congruence modulo n. Then x− y = na for some a ∈ Z by definition of
divisibility. Multiplying both sides by −1 gives y− x = n(−a). Therefore
n | (y− x), and this means y ≡ x (mod n). We’ve shown that x ≡ y (mod n)
implies that y≡ x (mod n), and this means ≡ (mod n) is symmetric.

Finally we will show that ≡ (mod n) is transitive. For this we must
show that if x ≡ y (mod n) and y ≡ z (mod n), then x ≡ z (mod n). Again
we use direct proof. Suppose x ≡ y (mod n) and y≡ z (mod n). This means
n | (x− y) and n | (y− z). Therefore there are integers a and b for which
x−y= na and y−z = nb. Adding these two equations, we obtain x−z = na+nb.
Consequently, x−z = n(a+b), so n | (x−z), hence x ≡ z (mod n). This completes
the proof that ≡ (mod n) is transitive.

The past three paragraphs have shown that the relation ≡ (mod n) is
reflexive, symmetric and transitive, so the proof is complete. ■

As you continue with mathematics the reflexive, symmetric and tran-
sitive properties will take on special significance in a variety of settings.
In preparation for this, the next section explores further consequences of
these properties. But first work some of the following exercises.

Exercises for Section 11.2

1. Consider the relation R = {
(a,a), (b,b), (c, c), (d,d), (a,b), (b,a)

}
on set A = {

a,b, c,d
}
.

Is R reflexive? Symmetric? Transitive? If a property does not hold, say why.
2. Consider the relation R = {

(a,b), (a, c), (c, c), (b,b), (c,b), (b, c)
}
on the set A = {

a,b, c
}
.

Is R reflexive? Symmetric? Transitive? If a property does not hold, say why.
3. Consider the relation R = {

(a,b), (a, c), (c,b), (b, c)
}
on the set A = {

a,b, c
}
. Is R

reflexive? Symmetric? Transitive? If a property does not hold, say why.
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4. Let A = {
a,b, c,d

}
. Suppose R is the relation

R = {
(a,a), (b,b), (c, c), (d,d), (a,b), (b,a), (a, c), (c,a),

(a,d), (d,a), (b, c), (c,b), (b,d), (d,b), (c,d), (d, c)
}
.

Is R reflexive? Symmetric? Transitive? If a property does not hold, say why.
5. Consider the relation R = {

(0,0), (
p

2,0), (0,
p

2), (
p

2,
p

2)
}
on R. Is R reflexive?

Symmetric? Transitive? If a property does not hold, say why.
6. Consider the relation R = {

(x, x) : x ∈ Z}
on Z. Is this R reflexive? Symmetric?

Transitive? If a property does not hold, say why. What familiar relation is this?
7. There are 16 possible different relations R on the set A = {

a,b
}
. Describe all of

them. (A picture for each one will suffice, but don’t forget to label the nodes.)
Which ones are reflexive? Symmetric? Transitive?

8. Define a relation on Z as xR y if |x− y| < 1. Is R reflexive? Symmetric? Transitive?
If a property does not hold, say why. What familiar relation is this?

9. Define a relation on Z by declaring xR y if and only if x and y have the same
parity. Is R reflexive? Symmetric? Transitive? If a property does not hold, say
why. What familiar relation is this?

10. Suppose A 6= ;. Since ;⊆ A× A, the set R =; is a relation on A. Is R reflexive?
Symmetric? Transitive? If a property does not hold, say why.

11. Let A = {
a,b, c,d

}
and R = {

(a,a), (b,b), (c, c), (d,d)
}
. Is R reflexive? Symmetric?

Transitive? If a property does not hold, say why.
12. Prove that the relation | (divides) on the set Z is reflexive and transitive. (Use

Example 11.8 as a guide if you are unsure of how to proceed.)
13. Consider the relation R = {

(x, y) ∈R×R : x− y ∈Z}
on R. Prove that this relation is

reflexive, symmetric and transitive.
14. Suppose R is a symmetric and transitive relation on a set A, and there is an

element a ∈ A for which aRx for every x ∈ A. Prove that R is reflexive.
15. Prove or disprove: If a relation is symmetric and transitive, then it is also

reflexive.
16. Define a relation R on Z by declaring that xR y if and only if x2 ≡ y2 (mod 4).

Prove that R is reflexive, symmetric and transitive.
17. Modifying the above Exercise 8 (above) slightly, define a relation ∼ on Z as x ∼ y

if and only if |x− y| ≤ 1. Say whether ∼ is reflexive. Is it symmetric? Transitive?
18. The table on page 205 shows that relations on Zmay obey various combinations of

the reflexive, symmetric and transitive properties. In all, there are 23 = 8 possible
combinations, and the table shows 5 of them. (There is some redundancy, as ≤
and | have the same type.) Complete the table by finding examples of relations
on Z for the three missing combinations.
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11.3 Equivalence Relations
The relation = on the set Z (or on any set A) is reflexive, symmetric and
transitive. There are many other relations that are also reflexive, symmetric
and transitive. Relations that have all three of these properties occur very
frequently in mathematics and often play quite significant roles. (For
instance, this is certainly true of the relation = .) Such relations are given
a special name. They are called equivalence relations.

Definition 11.3 A relation R on a set A is an equivalence relation if
it is reflexive, symmetric and transitive.

As an example, Figure 11.3 shows four different equivalence relations R1,
R2, R3 and R4 on the set A = {−1, 1, 2, 3, 4

}
. Each one has its own meaning,

as labeled. For example, in the second row the relation R2 literally means
“has the same parity as.” So 1R2 3 means “1 has the same parity as 3,” etc.

Relation R Diagram Equivalence classes
(see next page)

“is equal to” (=)

R1 =
{
(−1,−1), (1,1), (2,2), (3,3), (4,4)

}
−1

3

1

4

2 {−1
}
,

{
1
}
,

{
2
}
,

{
3
}
,

{
4
}

“has same parity as”
R2 =

{
(−1,−1), (1,1), (2,2), (3,3), (4,4),

(−1,1), (1,−1), (−1,3), (3,−1),
(1,3), (3,1), (2,4), (4,2)

}
−1

3

1

4

2 {−1,1,3
}
,

{
2,4

}

“has same sign as”
R3 =

{
(−1,−1), (1,1), (2,2), (3,3), (4,4),

(1,2), (2,1), (1,3), (3,1), (1,4), (4,1), (3,4),
(4,3), (2,3), (3,2), (2,4), (4,2), (1,3), (3,1)

}
−1

3

1

4

2 {−1
}
,

{
1,2,3,4

}

“has same parity and sign as”

R4 =
{
(−1,−1), (1,1), (2,2), (3,3), (4,4),

(1,3), (3,1), (2,4), (4,2)
}

−1

3

1

4

2 {−1
}
,

{
1,3

}
,

{
2,4

}

Figure 11.2. Examples of equivalence relations on the set A = {−1, 1, 2, 3, 4
}
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The above diagrams make it easy to check that each relation is reflexive,
symmetric and transitive, i.e., that each is an equivalence relation. For
example, R1 is symmetric because xR1 y⇒ yR1x is always true: When x = y
it becomes T ⇒ T (true), and when x 6= y it becomes F ⇒ F (also true). In
a similar fashion, R1 is transitive because (xR1 y∧ yR1z) ⇒ xR1z is always
true: It always works out to one of T ⇒ T, F ⇒ T or F ⇒ F. (Check this.)

As you can see from the examples in Figure 11.3, equivalence relations
on a set tend to express some measure of “sameness” among the elements
of the set, whether it is true equality or something weaker (like having the
same parity).

It’s time to introduce an important definition. Whenever you have an
equivalence relation R on a set A, it divides A into subsets called equivalence
classes. Here is the definition:

Definition 11.4 Suppose R is an equivalence relation on a set A. Given
any element a ∈ A, the equivalence class containing a is the subset{
x ∈ A : xRa

}
of A consisting of all the elements of A that relate to a. This

set is denoted as [a]. Thus the equivalence class containing a is the set
[a]= {

x ∈ A : xRa
}
.

Example 11.9 Consider the relation R1 in Figure 11.3. The equivalence
class containing 2 is the set [2]= {

x ∈ A : xR12
}
. Because in this relation the

only element that relates to 2 is 2 itself, we have [2]= {
2
}
. Other equivalence

classes for R1 are [−1] = {−1
}
, [1] = {

1
}
, [3] = {

3
}
and [4] = {

4
}
. Thus this

relation has five separate equivalence classes.
Example 11.10 Consider the relation R2 in Figure 11.3. The equivalence
class containing 2 is the set [2]= {

x ∈ A : xR22
}
. Because only 2 and 4 relate

to 2, we have [2]= {
2,4

}
. Observe that we also have [4]= {

x ∈ A : xR24
}= {

2,4
}
,

so [2]= [4]. Another equivalence class for R2 is [1]= {
x ∈ A : xR21

} = {−1,1,3
}
.

In addition, note that [1]= [−1]= [3]= {−1,1,3
}
. Thus this relation has just

two equivalence classes, namely
{
2,4

}
and

{−1,1,3
}
.

Example 11.11 The relation R4 in Figure 11.3 has three equivalence
classes. They are [−1]= {−1

}
and [1]= [3]= {

1,3
}
and [2]= [4]= {

2,4
}
.

Don’t be misled by Figure 11.3. It’s important to realize that not every
equivalence relation can be drawn as a diagram involving nodes and arrows.
Even the simple relation R = {

(x, x) : x ∈R}
, which expresses equality in the

set R, is too big to be drawn. Its picture would involve a point for every real
number and a loop at each point. Clearly that’s too many points and loops
to draw.
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We close this section with several other examples of equivalence relations
on infinite sets.
Example 11.12 Let P be the set of all polynomials with real coefficients.
Define a relation R on P as follows. Given f (x), g(x) ∈ P, let f (x)R g(x) mean
that f (x) and g(x) have the same degree. Thus (x2 +3x−4)R (3x2 −2) and
(x3 +3x2 −4) 6R (3x2 −2), for example. It takes just a quick mental check to
see that R is an equivalence relation. (Do it.) It’s easy to describe the
equivalence classes of R. For example, [3x2 +2] is the set of all polynomials
that have the same degree as 3x2 +2, that is, the set of all polynomials of
degree 2. We can write this as [3x2 +2]= {

ax2 +bx+ c : a,b, c ∈R,a 6= 0
}
.

Example 11.13 In Example 11.8 we proved that for a given n ∈ N the
relation ≡ (mod n) is reflexive, symmetric and transitive. Thus, in our new
parlance, ≡ (mod n) is an equivalence relation on Z. Consider the case n = 3.
Let’s find the equivalence classes of the equivalence relation ≡ (mod 3).
The equivalence class containing 0 seems like a reasonable place to start.
Observe that

[0]= {
x ∈Z : x ≡ 0(mod 3)

}={
x ∈Z : 3 | (x−0)

}= {
x ∈Z : 3 | x

}= {
. . . ,−3,0,3,6,9, . . .

}
.

Thus the class [0] consists of all the multiples of 3. (Or, said differently, [0]
consists of all integers that have a remainder of 0 when divided by 3.) Note
that [0]= [3]= [6]= [9], etc. The number 1 does not show up in the set [0] so
let’s next look at the equivalence class [1]:

[1]= {
x ∈Z : x ≡ 1(mod 3)

}= {
x ∈Z : 3 | (x−1)

}= {
. . . ,−5,−2,1,4,7,10, . . .

}
.

The equivalence class [1] consists of all integers that give a remainder of 1
when divided by 3. The number 2 is in neither of the sets [0] or [1], so we
next look at the equivalence class [2]:

[2]= {
x ∈Z : x ≡ 2(mod 3)

}= {
x ∈Z : 3 | (x−2)

}= {
. . . ,−4,−1,2,5,8,11, . . .

}
.

The equivalence class [2] consists of all integers that give a remainder of
2 when divided by 3. Observe that any integer is in one of the sets [0], [1]
or [2], so we have listed all of the equivalence classes. Thus ≡ (mod 3) has
exactly three equivalence classes, as described above.

Similarly, you can show that the equivalence relation ≡ (mod n) has n
equivalence classes [0], [1], [2], . . . , [n−1].
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The idea of an equivalence relation is fundamental. In a very real sense
you have dealt with equivalence relations for much of your life, without
being aware of it. In fact your conception of fractions is entwined with an
intuitive notion of an equivalence relation. To see how this is so, consider
the set of all fractions, not necessarily reduced:

F =
{m

n
: m,n ∈Z,n 6= 0

}
.

Interpret this set not as Q, but rather as the set of all possible fractions.
For example, we consider the fractions 1

2 and 2
4 as being distinct (unequal)

elements of F because their numerators and denominators don’t match.
Of course 1

2 and 2
4 are equal numbers, but they are different fractions, so

1
2 , 2

4 ∈ F, but 1
2 6= 2

4 (meaning they are distinct, unequal elements of F).
Define a relation .= on F by saying a

b
.= c

d provided that ad = bc. Thus
1
2

.= 2
4 because 1·4= 2·2. Similarly, notice that −15

−3
.= 10

2 because −15·2=−3·10.
We have defined .= so that a

b
.= c

d if and only if a
b and c

d are equal numbers,
so .= models your intuitive, ingrained understanding of when two different
fractions are equal.

Observe that .= is an equivalence relation on the set F of all fractions: It is
reflexive because for any a

b ∈ F the equation ab = ba guarantees a
b

.= a
b . To see

that .= is symmetric, suppose a
b

.= c
d . This means ad = bc, so cb = da, which

implies c
d

.= a
b . Exercise 16 below asks you to confirm that .= is transitive.

This discussion shows that your everyday understanding of equality of
fractions is an equivalence relation. The equivalence class containing, say,
2
3 is the set

{2n
3n : n ∈Z,n 6= 0

}
of all fractions that are numerically equal to 2

3 .
The takeaway is that you have for years lumped together equal fractions
into equivalence classes under this equivalence relation.

Later, when you learned calculus, equivalence relations once again were
just under the surface. The antiderivative

∫
f (x)dx of a function f (x) was

defined to be the set of functions F(x)+C whose derivatives are f (x). This
set is an equivalence class in the set of integrable functions, where two
functions are related if their difference is a constant. (We are glossing over
some fine points that will be cleared up in an advanced calculus course.)

Such examples underscore an important point: Equivalence relations
arise in many areas of mathematics. This is especially true in the advanced
realms of mathematics, where equivalence relations are the right tool
for important constructions, constructions as natural and far-reaching as
fractions, or antiderivatives. Learning about equivalence relations now
paves the way to a deeper understanding of later courses, and work.
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Exercises for Section 11.3
1. Let A = {

1,2,3,4,5,6
}
, and consider the following equivalence relation on A:

R = {
(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (2,3), (3,2), (4,5), (5,4), (4,6), (6,4), (5,6), (6,5)

}
List the equivalence classes of R.

2. Let A = {
a,b, c,d, e

}
. Suppose R is an equivalence relation on A. Suppose R has

two equivalence classes. Also aRd, bRc and eRd. Write out R as a set.
3. Let A = {

a,b, c,d, e
}
. Suppose R is an equivalence relation on A. Suppose R has

three equivalence classes. Also aRd and bRc. Write out R as a set.
4. Let A = {

a,b, c,d, e
}
. Suppose R is an equivalence relation on A. Suppose also

that aRd and bRc, eRa and cRe. How many equivalence classes does R have?
5. There are two different equivalence relations on the set A = {

a,b
}
. Describe them.

Diagrams will suffice.
6. There are five different equivalence relations on the set A = {

a,b, c
}
. Describe

them all. Diagrams will suffice.
7. Define a relation R on Z as xR y if and only if 3x−5y is even. Prove R is an

equivalence relation. Describe its equivalence classes.
8. Define a relation R on Z as xR y if and only if x2 + y2 is even. Prove R is an

equivalence relation. Describe its equivalence classes.
9. Define a relation R on Z as xR y if and only if 4 |(x+3y). Prove R is an equivalence

relation. Describe its equivalence classes.
10. Suppose R and S are two equivalence relations on a set A. Prove that R ∩S

is also an equivalence relation. (For an example of this, look at Figure 11.3.
Observe that for the equivalence relations R2,R3 and R4, we have R2 ∩R3 = R4.)

11. Prove or disprove: If R is an equivalence relation on an infinite set A, then R
has infinitely many equivalence classes.

12. Prove or disprove: If R and S are two equivalence relations on a set A, then R∪S
is also an equivalence relation on A.

13. Suppose R is an equivalence relation on a finite set A, and every equivalence
class has the same cardinality m. Express |R| in terms of m and |A|.

14. Suppose R is a reflexive and symmetric relation on a finite set A. Define a
relation S on A by declaring xS y if and only if for some n ∈ N there are el-
ements x1, x2, . . . , xn ∈ A satisfying xRx1, x1Rx2, x2Rx3, x3Rx4, . . . , xn−1Rxn, and
xnR y. Show that S is an equivalence relation and R ⊆ S. Prove that S is the
unique smallest equivalence relation on A containing R.

15. Suppose R is an equivalence relation on a set A, with four equivalence classes.
How many different equivalence relations S on A are there for which R ⊆ S?

16. Show that the relation .= defined on page 213 is transitive.
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11.4 Equivalence Classes and Partitions
This section collects several properties of equivalence classes.

Our first result proves that [a] = [b] if and only if aRb. This is useful
because it assures us that whenever we are in a situation where [a]= [b], we
also have aRb, and vice versa. Being able to switch back and forth between
these two pieces of information can be helpful in a variety of situations,
and you may find yourself using this result a lot. Be sure to notice that
the proof uses all three properties (reflexive, symmetric and transitive) of
equivalence relations. Notice also that we have to use some techniques from
Chapter 8 (Proofs Involving Sets) in dealing with the sets [a] and [b].

Theorem 11.1 Suppose R is an equivalence relation on a set A. Suppose
also that a,b ∈ A. Then [a]= [b] if and only if aRb.

Proof. Suppose [a] = [b]. Note that aRa by the reflexive property of R, so
a ∈ {

x ∈ A : xRa
} = [a] = [b] = {

x ∈ A : xRb
}
. But a belonging to

{
x ∈ A : xRb

}
means aRb. This completes the first part of the if-and-only-if proof.

Conversely, suppose aRb. We need to show [a]= [b]. We will do this by
showing [a]⊆ [b] and [b]⊆ [a].

First we show [a]⊆ [b]. Suppose c ∈ [a]. As c ∈ [a]= {
x ∈ A : xRa

}
, we get

cRa. Now we have cRa and aRb, so cRb because R is transitive. But cRb
implies c ∈ {

x ∈ A : xRb
}= [b]. This demonstrates that c ∈ [a] implies c ∈ [b],

so [a]⊆ [b].
Next we show [b] ⊆ [a]. Suppose c ∈ [b]. As c ∈ [b] = {

x ∈ A : xRb
}
, we get

cRb. Remember that we are assuming aRb, so bRa because R is symmetric.
Now we have cRb and bRa, so cRa because R is transitive. But cRa implies
c ∈ {

x ∈ A : xRa
} = [a]. This demonstrates that c ∈ [b] implies c ∈ [a]; hence

[b]⊆ [a].
The previous two paragraphs imply that [a]= [b]. ■

To illustrate Theorem 11.1, recall that in Example 11.13 we worked out
the equivalence classes of ≡ (mod 3). We observed that

[−3]= [9]= {
. . . , −3, 0, 3, 6, 9, . . .

}
.

Note that [−3]= [9] and −3≡ 9 (mod 3), just as Theorem 11.1 predicts. The
theorem assures us that this will work for any equivalence relation. In
the future you may find yourself using the result of Theorem 11.1 often.
Over time it may become natural and familiar; you will use it automatically,
without even thinking of it as a theorem.
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Our next topic addresses the fact that an equivalence relation on a set
A divides A into various equivalence classes. There is a special word for
this kind of situation. We address it now, as you are likely to encounter it
in subsequent mathematics classes.

Definition 11.5 A partition of a set A is a set of non-empty subsets
of A, such that the union of all the subsets equals A, and the intersection
of any two different subsets is ;.

Example 11.14 Let A = {
a,b, c,d

}
. One partition of A is

{{
a,b

}
,
{
c
}
,
{
d
}}
.

This is a set of three subsets
{
a,b

}
,
{
c
}
and

{
d
}
of A. The union of the three

subsets equals A; the intersection of any two subsets is ;.
Other partitions of A are{{

a,b
}
,
{
c,d

}}
,

{{
a, c

}
,
{
b
}
,
{
d
}}

,
{{

a
}
,
{
b
}
,
{
c
}{

d
}}

,
{{

a,b, c,d
}}

,

to name a few. Intuitively, a partition is just a dividing up of A into pieces.
Example 11.15 Consider the equivalence relations in Figure 11.3. Each
of these is a relation on the set A = {−1,1,2,3,4

}
. The equivalence classes of

each relation are listed on the right side of the figure. Observe that, in each
case, the set of equivalence classes forms a partition of A. For example, the
relation R1 yields the partition

{{−1
}
,
{
1
}
,
{
2
}
,
{
3
}
,
{
4
}}

of A. Likewise the
equivalence classes of R2 form the partition

{{−1,1,3
}
,
{
2,4

}}
.

Example 11.16 Recall that Example 11.13 worked out the equivalence
classes of the equivalence relation ≡ (mod 3) on the set Z. These equivalence
classes give the following partition of Z:{{

. . . ,−3,0,3,6,9, . . .
}
,
{
. . . ,−2,1,4,7,10, . . .

}
,
{
. . . ,−1,2,5,8,11, . . .

}}
.

We can write it more compactly as
{
[0], [1], [2]

}
.

Our examples and experience suggest that the equivalence classes of an
equivalence relation on a set form a partition of that set. This is indeed the
case, and we now prove it.

Theorem 11.2 Suppose R is an equivalence relation on a set A. Then the
set

{
[a] : a ∈ A

}
of equivalence classes of R forms a partition of A.

Proof. To show that
{
[a] : a ∈ A

}
is a partition of A we need to show two

things: We need to show that the union of all the sets [a] equals A, and we
need to show that if [a] 6= [b], then [a]∩ [b]=;.
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Notationally, the union of all the sets [a] is ⋃
a∈A[a], so we need to prove⋃

a∈A[a] = A. Suppose x ∈⋃
a∈A[a]. This means x ∈ [a] for some a ∈ A. Since

[a] ⊆ A, it then follows that x ∈ A. Thus ⋃
a∈A[a] ⊆ A. On the other hand,

suppose x ∈ A. As x ∈ [x], we know x ∈ [a] for some a ∈ A (namely a = x).
Therefore x ∈ ⋃

a∈A[a], and this shows A ⊆ ⋃
a∈A[a]. Since ⋃

a∈A[a] ⊆ A and
A ⊆⋃

a∈A[a], it follows that ⋃
a∈A[a]= A.

Next we need to show that if [a] 6= [b] then [a]∩ [b] = ;. Let’s use con-
trapositive proof. Suppose it’s not the case that [a]∩ [b] = ;, so there is
some element c with c ∈ [a]∩ [b]. Thus c ∈ [a] and c ∈ [b]. Now, c ∈ [a] means
cRa, and then aRc since R is symmetric. Also c ∈ [b] means cRb. Now we
have aRc and cRb, so aRb (because R is transitive). By Theorem 11.1, aRb
implies [a]= [b]. Thus [a] 6= [b] is not true.

We’ve now shown that the union of all the equivalence classes is A, and
the intersection of two different equivalence classes is ;. Therefore the set
of equivalence classes is a partition of A. ■

Theorem 11.2 says the equivalence classes of any equivalence relation
on a set A form a partition of A. Conversely, any partition of A describes
an equivalence relation R where xR y if and only if x and y belong to the
same set in the partition. (See Exercise 4 for this section, below.) Thus
equivalence relations and partitions are really just two different ways of
looking at the same thing. In your future mathematical studies you may
find yourself easily switching between these two points of view.

Exercises for Section 11.4

1. List all the partitions of the set A = {
a,b

}
. Compare your answer to the answer

to Exercise 5 of Section 11.3.
2. List all the partitions of the set A = {

a,b, c
}
. Compare your answer to the answer

to Exercise 6 of Section 11.3.
3. Describe the partition of Z resulting from the equivalence relation ≡ (mod 4).
4. Suppose P is a partition of a set A. Define a relation R on A by declaring xR y

if and only if x, y ∈ X for some X ∈ P. Prove R is an equivalence relation on A.
Then prove that P is the set of equivalence classes of R.

5. Consider the partition P =
{{

. . . ,−4,−2,0,2,4, . . .
}
,
{
. . . ,−5,−3,−1,1,3,5, . . .

}}
of Z.

Let R be the equivalence relation whose equivalence classes are the two elements
of P. What familiar equivalence relation is R?

6. Consider the partition P =
{{

0
}
,
{−1,1

}
,
{−2,2

}
,
{−3,3

}
,
{−4,4

}
, . . .

}
of Z. Describe

the equivalence relation whose equivalence classes are the elements of P.
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11.5 The Integers Modulo n

Example 11.8 proved that for any given n ∈ N, the relation ≡ (mod n) is
reflexive, symmetric and transitive, so it is an equivalence relation. This is
a particularly significant equivalence relation in mathematics, and in the
present section we deduce some of its properties.

To make matters simpler, let’s pick a concrete n, say n = 5. Let’s begin
by looking at the equivalence classes of the relation ≡ (mod 5). There are
five equivalence classes, as follows:

[0] = {
x ∈Z : x ≡ 0 (mod 5))

} = {
x ∈Z : 5 | (x−0)

} = {
. . . , −10, −5, 0, 5, 10, 15, . . .

}
,

[1] = {
x ∈Z : x ≡ 1 (mod 5))

} = {
x ∈Z : 5 | (x−1)

} = {
. . . , −9, −4, 1, 6, 11, 16, . . .

}
,

[2] = {
x ∈Z : x ≡ 2 (mod 5))

} = {
x ∈Z : 5 | (x−2)

} = {
. . . , −8, −3, 2, 7, 12, 17, . . .

}
,

[3] = {
x ∈Z : x ≡ 3 (mod 5))

} = {
x ∈Z : 5 | (x−3)

} = {
. . . , −7, −2, 3, 8, 13, 18, . . .

}
,

[4] = {
x ∈Z : x ≡ 4 (mod 5))

} = {
x ∈Z : 5 | (x−4)

} = {
. . . , −6, −1, 4, 9, 14, 19, . . .

}
.

Notice how these equivalence classes form a partition of the set Z. We
label the five equivalence classes as [0], [1], [2], [3] and [4], but you know of
course that there are other ways to label them. For example, [0]= [5]= [10]=
[15], and so on; and [1]= [6]= [−4], etc. Still, for this discussion we denote
the five classes as [0], [1], [2], [3] and [4].

These five classes form a set, which we shall denote as Z5. Thus

Z5 =
{

[0], [1], [2], [3], [4]
}

is a set of five sets. The interesting thing about Z5 is that even though its
elements are sets (and not numbers), it is possible to add and multiply them.
In fact, we can define the following rules that tell how elements of Z5 can
be added and multiplied.

[a]+ [b] = [a+b]

[a] · [b] = [a ·b ]

For example, [2]+ [1]= [2+1]= [3], and [2] · [2]= [2 ·2]= [4]. We stress that
in doing this we are adding and multiplying sets (more precisely equivalence
classes), not numbers. We added (or multiplied) two elements of Z5 and
obtained another element of Z5.

Here is a trickier example. Observe that [2]+ [3] = [5]. This time we
added elements [2], [3] ∈ Z5, and got the element [5] ∈ Z5. That was easy,
except where is our answer [5] in the set Z5 = {

[0], [1], [2], [3], [4]
}
? Since

[5]= [0], it is more appropriate to write [2]+ [3]= [0].
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In a similar vein, [2] · [3] = [6] would be written as [2] · [3] = [1] because
[6] = [1]. Test your skill with this by verifying the following addition and
multiplication tables for Z5.

+ [0] [1] [2] [3] [4]

[0] [0] [1] [2] [3] [4]

[1] [1] [2] [3] [4] [0]

[2] [2] [3] [4] [0] [1]

[3] [3] [4] [0] [1] [2]

[4] [4] [0] [1] [2] [3]

· [0] [1] [2] [3] [4]

[0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [4]

[2] [0] [2] [4] [1] [3]

[3] [0] [3] [1] [4] [2]

[4] [0] [4] [3] [2] [1]

We call the set Z5 =
{
[0], [1], [2], [3], [4]

}
the integers modulo 5. As our

tables suggest, Z5 is more than just a set: It is a little number system with
its own addition and multiplication. In this way it is like the familiar set Z
which also comes equipped with an addition and a multiplication.

Of course, there is nothing special about the number 5. We can also
define Zn for any natural number n. Here is the definition:

Definition 11.6 Let n ∈N. The equivalence classes of the equivalence
relation ≡ (mod n) are [0], [1], [2], . . . , [n−1]. The integers modulo n is
the set Zn = {

[0], [1], [2], . . . , [n−1]
}
. Elements of Zn can be added by the

rule [a]+ [b]= [a+b] and multiplied by the rule [a] · [b]= [ab].

Given a natural number n, the set Zn is a number system containing n
elements. It has many of the algebraic properties that Z,R and Q possess.
For example, it is probably obvious to you already that elements of Zn obey
the commutative laws [a]+ [b] = [b]+ [a] and [a] · [b] = [b] · [a]. You can also
verify the distributive law [a] · ([b]+ [c])= [a] · [b]+ [a] · [c], as follows:

[a] · ([b]+ [c]
) = [a] · [b+ c]

= [a(b+ c)]

= [ab+ac]

= [ab]+ [ac]

= [a] · [b]+ [a] · [c].

The integers modulo n are significant because they more closely fit certain
applications than do other number systems such as Z or R. If you go on to
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take a course in abstract algebra, then you will work extensively with Zn as
well as other, more exotic, number systems. (In such a course you will also
use all of the proof techniques that we have discussed, as well as the ideas
of equivalence relations.)

To close this section we take up an issue that may have bothered you
earlier. It has to do with our definitions of addition [a]+ [b] = [a+ b] and
multiplication [a] · [b] = [ab]. These definitions define addition and multi-
plication of equivalence classes in terms of representatives a and b in the
equivalence classes. Since there are many different ways to choose such
representatives, we may well wonder if addition and multiplication are
consistently defined. For example, suppose two people, Alice and Bob, want
to multiply the elements [2] and [3] in Z5. Alice does the calculation as
[2] · [3] = [6] = [1], so her final answer is [1]. Bob does it differently. Since
[2]= [7] and [3]= [8], he works out [2]·[3] as [7]·[8]= [56]. Since 56≡ 1 (mod 5),
Bob’s answer is [56] = [1], and that agrees with Alice’s answer. Will their
answers always agree or did they just get lucky (with the arithmetic)?

The fact is that no matter how they do the multiplication in Zn, their
answers will agree. To see why, suppose Alice and Bob want to multiply
the elements [a], [b] ∈Zn, and suppose [a]= [a′] and [b]= [b′]. Alice and Bob
do the multiplication as follows:

Alice: [a] · [b]= [ab],
Bob: [a′] · [b′]= [a′b′].

We need to show that their answers agree, that is, we need to show [ab]=
[a′b′]. Since [a]= [a′], we know by Theorem 11.1 that a ≡ a′ (mod n). Thus
n | (a−a′), so a−a′ = nk for some integer k. Likewise, as [b]= [b′], we know
b ≡ b′ (mod n), or n | (b− b′), so b− b′ = n` for some integer `. Thus we get
a = a′+nk and b = b′+n`. Therefore:

ab = (a′+nk)(b′+n`)

= a′b′+a′n`+nkb′+n2k`.

Hence ab− a′b′ = n(a′`+ kb′+ nk`). This means n | (ab− a′b′), so ab ≡ a′b′

(mod n), and from that we conclude [ab] = [a′b′]. Consequently Alice and
Bob really do get the same answer, so we can be assured that the definition
of multiplication in Zn is consistent.

Exercise 8 (below) asks you to prove that addition in Zn is similarly
consistent.
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Exercises for Section 11.5
1. Write the addition and multiplication tables for Z2.
2. Write the addition and multiplication tables for Z3.
3. Write the addition and multiplication tables for Z4.
4. Write the addition and multiplication tables for Z6.
5. Suppose [a], [b] ∈Z5 and [a] · [b]= [0]. Is it necessarily true that either [a]= [0] or

[b]= [0]?
6. Suppose [a], [b] ∈Z6 and [a] · [b]= [0]. Is it necessarily true that either [a]= [0] or

[b]= [0]? What if [a], [b] ∈Z7?
7. Do the following calculations in Z9, in each case expressing your answer as [a]

with 0≤ a ≤ 8.
(a) [8]+ [8] (b) [24]+ [11] (c) [21] · [15] (d) [8] · [8]

8. Suppose [a], [b] ∈Zn, and [a]= [a′] and [b]= [b′]. Alice adds [a] and [b] as [a]+[b]=
[a+b]. Bob adds them as [a′]+ [b′]= [a′+b′]. Show that their answers [a+b] and
[a′+b′] are the same.

11.6 Relations Between Sets
In the beginning of this chapter, we defined a relation on a set A to be a
subset R ⊆ A× A. This created a framework that could model any situation
in which elements of A are compared to themselves. In this setting, the
statement xR y has elements x and y from A on either side of the R because R
compares elements from A. But there are other relational symbols that don’t
work this way. Consider ∈. The statement 5 ∈ Z expresses a relationship
between 5 and Z (namely that the element 5 is in the set Z) but 5 and
Z are not in any way naturally regarded as both elements of some set A.
To overcome this difficulty, we generalize the idea of a relation on A to a
relation from A to B.

Definition 11.7 A relation from a set A to a set B is a subset R ⊆ A×B.
We often abbreviate the statement (x, y) ∈ R as xR y. The statement (x, y) ∉
R is abbreviated as x 6R y.

Example 11.17 Suppose A = {
1,2

}
and B =P(A)= {;,

{
1
}
,
{
2
}
,
{
1,2

}}
. Then

R =
{(

1,
{
1
})

,
(
2,

{
2
})

,
(
1,

{
1,2

})
,
(
2,

{
1,2

})}⊆ A×B is a relation from A to B. Note
that 1R

{
1
}
, 2R

{
2
}
, 1R

{
1,2

}
and 2R

{
1,2

}
. The relation R is the familiar

relation ∈ for the set A, that is, xR X means exactly the same thing as x ∈ X .
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Diagrams for relations from A to B differ from diagrams for relations
on A. Since there are two sets A and B in a relation from A to B, we have
to draw labeled nodes for each of the two sets. Then we draw arrows from x
to y whenever xR y. The following figure illustrates this for Example 11.17.

;{
1
}{

2
}{

1,2
}

1
2

A B

Figure 11.3. A relation from A to B

The ideas from this chapter show that any relation (whether it is a
familiar one like ≥, ≤, =, |, ∈ or ⊆, or a more exotic one) is really just a
set. Therefore the theory of relations is a part of the theory of sets. In
the next chapter, we will see that this idea touches on another important
mathematical construction, namely functions. We will define a function to
be a special kind of relation from one set to another, and in this context we
will see that any function is really just a set.
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CHAPTER 12

Functions

You know from algebra and calculus that functions play a fundamental
role in mathematics. You may view a function as a kind of formula that

describes a relationship between two (or more) quantities. You certainly
understand and appreciate the fact that relationships between quantities
are central to all scientific disciplines, so you do not need to be convinced
that functions are important. Still, you may not be fully aware of the
significance of functions. Functions are more than merely descriptions of
numeric relationships. In a more general sense, functions can compare and
relate different kinds of mathematical structures. You will see this as your
understanding of mathematics deepens. In preparation of this, we will now
explore a more general and versatile view of functions.

The concept of a relation between sets (Definition 11.7) plays a big role
here, so you may want to quickly review it.

12.1 Functions
Let’s start on familiar ground. Consider the function f (x)= x2 from R to R.
Its graph is the set of points R = {

(x, x2) : x ∈R} ⊆ R×R.

R

R

(x, x2)

x

Figure 12.1. A familiar function

Having read Chapter 11, you may see f in a new light. Its graph R ⊆R×R
is a relation on the set R. In fact, as we shall see, functions are just special
kinds of relations. Before stating the exact definition, we look at another
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example. Consider the function f (n)= |n|+2 that converts integers n into
natural numbers |n|+2. Its graph is R = {

(n, |n|+2) : n ∈Z} ⊆ Z×N.

N

Z−4 −3 −2 −1 0 1 2 3 4

1

2

3

4

5

6

Figure 12.2. The function f :Z→N, where f (n)= |n|+2

Figure 12.2 shows the graph R as darkened dots in the grid of points Z×N.
Notice that in this example R is not a relation on a single set. The set of
input values Z is different from the set N of output values, so the graph
R ⊆Z×N is a relation from Z to N.

This example illustrates three things. First, a function can be viewed as
sending elements from one set A to another set B. (In the case of f , A =Z
and B =N.) Second, such a function can be regarded as a relation from A to
B. Third, for every input value n, there is exactly one output value f (n). In
your high school algebra course, this was expressed by the vertical line test:
Any vertical line intersects a function’s graph at most once. It means that
for any input value x, the graph contains exactly one point of form (x, f (x)).
Our main definition, given below, incorporates all of these ideas.

Definition 12.1 Suppose A and B are sets. A function f from A to B
(denoted as f : A → B) is a relation f ⊆ A×B from A to B, satisfying the
property that for each a ∈ A the relation f contains exactly one ordered
pair of form (a,b). The statement (a,b) ∈ f is abbreviated f (a)= b.

Example 12.1 Consider the function f : Z→ N graphed in Figure 12.2.
According to Definition 12.1, we regard f as the set of points in its graph,
that is, f = {

(n, |n| +2) : n ∈ Z} ⊆ Z×N. This is a relation from Z to N, and
indeed given any a ∈Z the set f contains exactly one ordered pair (a, |a|+2)
whose first coordinate is a. Since (1,3) ∈ f , we write f (1) = 3; and since
(−3,5) ∈ f we write f (−3) = 5, etc. In general, (a,b) ∈ f means that f sends
the input value a to the output value b, and we express this as f (a)= b. This
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function can be expressed by a formula: For each input value n, the output
value is |n|+2, so we may write f (n)= |n|+2. All this agrees with the way
we thought of functions in algebra and calculus; the only difference is that
now we also think of a function as a relation.

Definition 12.2 For a function f : A → B, the set A is called the domain
of f . (Think of the domain as the set of possible “input values” for f .) The
set B is called the codomain of f . The range of f is the set

{
f (a) : a ∈ A

}
= {

b : (a,b) ∈ f
}
. (Think of the range as the set of all possible “output

values” for f . Think of the codomain as a sort of “target” for the outputs.)

Consider the function f :Z→N, where f (n)= |n|+2, from Example 12.1.
The domain is Z and the codomain is N. The range of this function is the
set

{
f (a) : a ∈ Z} = {|a| +2 : a ∈ Z} = {

2,3,4,5, . . .
}
. Notice that the range is a

subset of the codomain N, but it does not (in this case) equal the codomain.
In general, the range of a function is a subset of the codomain. In this sense
the codomain could have been any set that contains the range. We might
just as well have said that this f is a function f :Z→Z, or even f :Z→R.

This illustrates an important point: the codomain of a function is not
an intrinsic feature of the function; it is more a matter of choice or context.
In Example 12.1 we chose N as the codomain because all the output values
of f are natural numbers. But in general, the codomain of a function can
be any set that contains the function’s range as a subset.

In our examples so far, the domains and codomains are sets of numbers,
but this needn’t be the case in general, as the next example indicates.

Example 12.2 Let A = {
p, q, r, s

}
and B = {

0,1,2
}
, and

f = {
(p,0), (q,1), (r,2), (s,2)

}⊆ A×B.

This is a function f : A → B because each element of A occurs exactly once
as a first coordinate of an ordered pair in f . Observe that we have f (p)= 0,
f (q) = 1, f (r) = 2 and f (s) = 2. The domain of this function is A = {

p, q, r, s
}
.

The codomain and range are both B = {
0,1,2

}
.

If A and B are not both sets of numbers (as in this example), it can be
difficult to draw a graph of f : A → B in the traditional sense. Figure 12.3(a)
is an attempt at a graph of f . The sets A and B are aligned as x- and y-axes,
and the Cartesian product A×B is filled in accordingly. The subset f ⊆ A×B
is indicated with dashed lines, and we can regard it as a “graph” of f .
Figure 12.3(b) shows a more natural visual description of f . The sets A and
B are drawn side-by-side, and arrows point from a to b whenever f (a)= b.

Free PDF version



226 Functions

(p,0)

(p,1)

(p,2)

(q,0)

(q,1)

(q,2)

(r,0)

(r,1)

(r,2)

(s,0)

(s,1)

(s,2)

0

1

2

p q r s A

B

(a)

0

1

2p

q

r

s

(b)

A B

Figure 12.3. Two ways of drawing the function f = {
(p,0), (q,1), (r,2), (s,2)

}

In general, if f : A → B is the kind of function you may have encountered
in algebra or calculus, then conventional graphing techniques offer the best
visual description of it. On the other hand, if A and B are finite or if we are
thinking of them as generic sets, then describing f with arrows is often a
more appropriate way of visualizing it.

We emphasize that, according to Definition 12.1, a function is really
just a special kind of set. Any function f : A → B is a subset of A×B. By
contrast, your calculus text probably defined a function as a certain kind of
“rule.” While that intuitive outlook is adequate for the first few semesters
of calculus, it does not hold up well to the rigorous mathematical standards
necessary for further progress. The problem is that words like “rule” are
too vague. Defining a function as a set removes the ambiguity. It makes a
function into a concrete mathematical object.

Still, in practice we tend to think of functions as rules. Given f :Z→N

where f (n)= |n|+2, we think of this as a rule that associates any number
n ∈Z to the number |n|+2 in N, rather than a set containing ordered pairs
(n, |n|+2). It is only when we have to understand or interpret the theoretical
nature of functions (as we do in this text) that Definition 12.1 comes to bear.
The definition is a foundation that gives us license to think about functions
in a more informal way. For instance, suppose we are discussing a set of
functions, such as the set S of all functions R→R. Without Definition 12.1,
it would be unclear just what kinds of objects the elements of S are. But
with Definition 12.1, we know exactly what the elements are: each element
of S is a subset f ⊆R×R. So we are free to think of S as a collection of “rules,”
and can fall back on Definition 12.1 when greater scrutiny is required.

Richard Hammack Book of Proof



Functions 227

The next example brings up a point about notation. Consider a function
such as f :Z2 →Z, whose domain is a Cartesian product. This function takes
as input an ordered pair (m,n) ∈Z2 and sends it to a number f ((m,n)) ∈Z.
To simplify the notation, it is common to write f (m,n) instead of f ((m,n)),
even though this is like writing f x instead of f (x). We also remark that
although we’ve been using the letters f, g and h to denote functions, any
other reasonable symbol could be used. Greek letters such as ϕ and θ are
common.
Example 12.3 Say a function ϕ : Z2 → Z is defined as ϕ(m,n) = 6m−9n.
Note that as a set, this function is ϕ= {(

(m,n),6m−9n
)

: (m,n) ∈Z2}⊆Z2×Z.
What is the range of ϕ?
To answer this, first observe that for any (m,n) ∈ Z2, the value f (m,n) =
6m−9n = 3(2m−3n) is a multiple of 3. Thus every number in the range is
a multiple of 3, so the range is a subset of the set of all multiples of 3. On
the other hand if b = 3k is a multiple of 3 we have ϕ(−k,−k)= 6(−k)−9(−k)=
3k = b, which means any multiple of 3 is in the range of ϕ. Therefore the
range of ϕ is the set

{
3k : k ∈Z}

of all multiples of 3.
To conclude this section, let’s use Definition 12.1 to help us understand

what it means for two functions f : A → B and g : C → D to be equal. The
definition says f and g are subsets f ⊆ A×B and g ⊆ C×D. It makes sense
to say that f and g are equal if f = g, that is, if they are equal as sets.

Thus the two functions f = {
(1,a), (2,a), (3,b)

}
and g = {

(3,b), (2,a), (1,a)
}

are equal because the sets f and g are equal. Notice that the domain of
both functions is A = {

1,2,3
}
, the set of first elements x in the ordered pairs

(x, y) ∈ f = g. In general, equal functions must have equal domains.
Observe also that the equality f = g means f (x) = g(x) for every x ∈ A.

We repackage these ideas in the following definition.

Definition 12.3 Two functions f : A → B and g : A → D are equal if
f = g (as sets). Equivalently, f = g if and only if f (x)= g(x) for every x ∈ A.

Observe that f and g can have different codomains and still be equal.
Consider the functions f : Z→N and g : Z→ Z defined as f (x) = |x|+2 and
g(x)= |x|+2. Even though their codomains are different, the functions are
equal because f (x)= g(x) for every x in the domain. If you are bothered that
these equal functions have different codomains, recall that we remarked
on page 225 that a function’s codomain is not really an intrinsic feature of
the function, but more a matter of convenience. (Any set that contains the
range as a subset is a valid choice of codomain.)
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Exercises for Section 12.1
1. Suppose A = {

0,1,2,3,4
}
, B = {

2,3,4,5
}
and f = {

(0,3), (1,3), (2,4), (3,2), (4,2)
}
. State

the domain and range of f . Find f (2) and f (1).
2. Suppose A = {

a,b, c,d
}
, B = {

2,3,4,5,6
}
and f = {

(a,2), (b,3), (c,4), (d,5)
}
. State the

domain and range of f . Find f (b) and f (d).
3. There are four different functions f :

{
a,b

}→ {
0,1

}
. List them. Diagrams suffice.

4. There are eight different functions f :
{
a,b, c

} → {
0,1

}
. List them. Diagrams

suffice.
5. Give an example of a relation from

{
a,b, c,d

}
to

{
d, e

}
that is not a function.

6. Suppose f :Z→Z is defined as f = {
(x,4x+5) : x ∈Z}

. State the domain, codomain
and range of f . Find f (10).

7. Consider the set f = {
(x, y) ∈ Z×Z : 3x+ y = 4

}
. Is this a function from Z to Z?

Explain.
8. Consider the set f = {

(x, y) ∈ Z×Z : x+3y = 4
}
. Is this a function from Z to Z?

Explain.
9. Consider the set f = {

(x2, x) : x ∈R}
. Is this a function from R to R? Explain.

10. Consider the set f = {
(x3, x) : x ∈R}

. Is this a function from R to R? Explain.
11. Is the set θ = {

(X , |X |) : X ⊆Z5
}
a function? If so, what is its domain and range?

12. Is the set θ = {(
(x, y), (3y,2x, x+ y)

)
: x, y ∈R}

a function? If so, what is its domain
and range? What can be said about the codomain?

12.2 Injective and Surjective Functions
You may recall from algebra and calculus that a function may be one-to-one
and onto, and these properties are related to whether or not the function is
invertible. We now review these important ideas. In advanced mathematics,
the word injective is often used instead of one-to-one, and surjective is used
instead of onto. Here are the exact definitions:

Definition 12.4 A function f : A → B is:
1. injective (or one-to-one) if for all a,a′ ∈ A, a 6= a′ implies f (a) 6= f (a′);
2. surjective (or onto B) if for every b ∈ B there is an a ∈ A with f (a)= b;
3. bijective if f is both injective and surjective.

Below is a visual description of Definition 12.4. In essence, injective
means that unequal elements in A always get sent to unequal elements
in B. Surjective means that every element of B has an arrow pointing to it,
that is, it equals f (a) for some a in the domain of f .
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A

A

A

A

B

B

B

B

b ba

a a

a′ a′
Injective means that for any
two a,a′ ∈ A, this happens... ...and not this:

Surjective means that for
any b ∈ B... ...this happens:

For more concrete examples, consider the following functions f , g :R→R.
The function f (x)= x2 is not injective because −2 6= 2, but f (−2)= f (2). Nor
is it surjective, for if b =−1 (or if b is any negative number), then there is
no a ∈ R with f (a) = b. On the other hand, g(x) = x3 is both injective and
surjective, so it is also bijective.

Notice that whether or not f is surjective depends on its codomain. For
example, f (x)= x2 is not surjective as a function R→R, but it is surjective
as a function R→ [0,∞). When we speak of a function being surjective, we
always have in mind a particular codomain.

There are four possible injective/surjective combinations that a function
may possess. This is illustrated below for four functions A → B. Functions
in the first column are injective, those in the second column are not injective.
Functions in the first row are surjective, those in the second row are not.

A

A

A

A

B

B

B

B

1

1

1

1

2

2

2

2

3 3

3

4

4

4

4

5

5

5

5
6 6

6
(bijective)

Injective Not injective

Surjective

Not surjective

We note in passing that, according to the definitions, a function is
surjective if and only if its codomain equals its range.
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Often it is necessary to prove that a particular function f : A → B is
injective. For this, Definition 12.4 says we must prove that for any two
elements a,a′ ∈ A, the conditional statement (a 6= a′)⇒ (

f (a) 6= f (a′)
)
is true.

The two main approaches for this are summarized below.

How to show a function f : A → B is injective:

Direct approach:
Suppose a,a′ ∈ A and a 6= a′.

...
Therefore f (a) 6= f (a′).

Contrapositive approach:
Suppose a,a′ ∈ A and f (a)= f (a′).

...
Therefore a = a′.

Of these two approaches, the contrapositive is often the easiest to use,
especially if f is defined by an algebraic formula. This is because the
contrapositive approach starts with the equation f (a)= f (a′) and proceeds
to the equation a = a′. In algebra, as you know, it is usually easier to work
with equations than inequalities.

To prove that a function is not injective, you must disprove the statement
(a 6= a′)⇒ (

f (a) 6= f (a′)
)
. For this it suffices to find example of two elements

a,a′ ∈ A for which a 6= a′ and f (a)= f (a′).
Next we examine how to prove that f : A → B is surjective. According

to Definition 12.4, we must prove the statement ∀b ∈ B,∃a ∈ A, f (a)= b. In
words, we must show that for any b ∈ B, there is at least one a ∈ A (which
may depend on b) having the property that f (a)= b. Here is an outline:

How to show a function f : A → B is surjective:

Suppose b ∈ B.
[Prove there exists a ∈ A for which f (a)= b.]

The second line involves proving the existence of an a for which f (a)= b.
For this, just finding an example of such an a would suffice. (How to find
such an example depends on how f is defined. If f is given as a formula,
we may be able to find a by solving the equation f (a)= b for a. Sometimes
you can find a by just plain common sense.) To show f is not surjective, we
must prove the negation of ∀b ∈ B,∃a ∈ A, f (a) = b, that is, we must prove
∃b ∈ B,∀a ∈ A, f (a) 6= b.

The following examples illustrate these ideas. (For the first example,
note that the set R−{

0
}
is R with the number 0 removed.)
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Example 12.4 Show that the function f :R−{
0
}→R defined as f (x)= 1

x +1
is injective but not surjective.

We will use the contrapositive approach to show that f is injective.
Suppose a,a′ ∈R−{

0
}
and f (a)= f (a′). This means 1

a+1= 1
a′ +1. Subtracting 1

from both sides and inverting produces a = a′. Therefore f is injective.
The function f is not surjective because there exists an element b = 1 ∈R

for which f (x)= 1
x +1 6= 1 for every x ∈R−{

0
}
.

Example 12.5 Show that the function f :R−{
0
}→R−{

1
}
where f (x)= 1

x +1
is injective and surjective (hence bijective).

This is just like the previous example, except that the codomain has
been changed. The previous example shows f is injective. To show that it
is surjective, take an arbitrary b ∈R−{

1
}
. We seek an a ∈R−{

0
}
for which

f (a) = b, that is, for which 1
a +1 = b. Solving for a gives a = 1

b−1 , which is
defined because b 6= −1. In summary, for any b ∈R−{

1
}
, we have f

( 1
b−1

)= b,
so f is surjective.

Example 12.6 Show that the function g : Z×Z→ Z×Z defined by the
formula g(m,n)= (m+n,m+2n), is both injective and surjective.

We will use the contrapositive approach to show that g is injective.
Thus we need to show that g(m,n) = g(k,`) implies (m,n) = (k,`). Suppose
(m,n), (k,`) ∈ Z×Z and g(m,n)= g(k,`). Then (m+n,m+2n)= (k+`,k+2`). It
follows that m+n = k+` and m+2n = k+2`. Subtracting the first equation
from the second gives n = `. Next, subtract n = ` from m+n = k+` to get
m = k. Since m = k and n = `, it follows that (m,n)= (k,`). Thus g is injective.

To see that g is surjective, consider an arbitrary element (b, c) ∈Z×Z.
We need to show that there is some (x, y) ∈Z×Z for which g(x, y)= (b, c). To
find (x, y), note that g(x, y) = (b, c) means (x+ y, x+2y) = (b, c). This leads to
the following system of equations:

x + y = b
x + 2y = c.

Solving gives x = 2b− c and y= c−b. Then (x, y)= (2b− c, c−b). We now
have g(2b− c, c−b)= (b, c), and it follows that g is surjective.

Example 12.7 Consider function h :Z×Z→Q defined as h(m,n)= m
|n|+1

.
Determine whether this is injective and whether it is surjective.

This function is not injective because of the unequal elements (1,2) and
(1,−2) in Z×Z for which h(1,2)= h(1,−2)= 1

3 . However, h is surjective: Take
any element b ∈Q. Then b = c

d for some c,d ∈Z. Notice we may assume d is
positive by making c negative, if necessary. Then h(c,d−1)= c

|d−1|+1 = c
d = b.
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Exercises for Section 12.2

1. Let A = {
1,2,3,4

}
and B = {

a,b, c
}
. Give an example of a function f : A → B that is

neither injective nor surjective.
2. Consider the logarithm function ln : (0,∞)→R. Decide whether this function is

injective and whether it is surjective.
3. Consider the cosine function cos :R→R. Decide whether this function is injective

and whether it is surjective. What if it had been defined as cos :R→ [−1,1]?
4. A function f :Z→Z×Z is defined as f (n)= (2n,n+3). Verify whether this function

is injective and whether it is surjective.
5. A function f :Z→Z is defined as f (n) = 2n+1. Verify whether this function is

injective and whether it is surjective.
6. A function f : Z×Z→ Z is defined as f (m,n) = 3n− 4m. Verify whether this

function is injective and whether it is surjective.
7. A function f : Z×Z→ Z is defined as f (m,n) = 2n− 4m. Verify whether this

function is injective and whether it is surjective.
8. A function f :Z×Z→Z×Z is defined as f (m,n)= (m+n,2m+n). Verify whether

this function is injective and whether it is surjective.
9. Prove that the function f :R−{

2
}→R−{

5
}
defined by f (x)= 5x+1

x−2 is bijective.
10. Prove the function f :R−{

1
}→R−{

1
}
defined by f (x)= ( x+1

x−1
)3 is bijective.

11. Consider the function θ :
{
0,1

}×N→Z defined as θ(a,b)= (−1)ab. Is θ injective?
Is it surjective? Bijective? Explain.

12. Consider the function θ :
{
0,1

}×N→Z defined as θ(a,b)= a−2ab+b. Is θ injective?
Is it surjective? Bijective? Explain.

13. Consider the function f : R2 → R2 defined by the formula f (x, y) = (xy, x3). Is f
injective? Is it surjective? Bijective? Explain.

14. Consider the function θ : P(Z)→P(Z) defined as θ(X )= X . Is θ injective? Is it
surjective? Bijective? Explain.

15. This question concerns functions f :
{
A,B,C,D,E,F,G

} → {
1,2,3,4,5,6,7

}
. How

many such functions are there? How many of these functions are injective? How
many are surjective? How many are bijective?

16. This question concerns functions f :
{
A,B,C,D,E

}→ {
1,2,3,4,5,6,7

}
. How many

such functions are there? How many of these functions are injective? How many
are surjective? How many are bijective?

17. This question concerns functions f :
{
A,B,C,D,E,F,G

}→ {
1,2

}
. How many such

functions are there? How many of these functions are injective? How many are
surjective? How many are bijective?

18. Prove that the function f :N→Z defined as f (n)= (−1)n(2n−1)+1
4

is bijective.
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12.3 The Pigeonhole Principle Revisited
We first encountered a result called the pigeonhole principle in Section 3.9.
It turns out that the pigeonhole principle has a useful phrasing in the
language of injective and surjective functions, and we now discuss this. Our
discussion will not use any material from Chapter 3, so it does not matter
if you skipped it.

The pigeonhole principle is motivated by a simple thought experiment:
Imagine there is a set A of pigeons and a set B of pigeonholes, and all
the pigeons fly into the pigeonholes. You can think of this as describing a
function f : A → B, where pigeon p flies into pigeonhole f (p). See Figure 12.4.

Pigeons Pigeonholes

(a)

f
Pigeons Pigeonholes

(b)

f

Figure 12.4. The pigeonhole principle

In Figure 12.4(a) there are more pigeons than pigeonholes, and it is
obvious that in such a case at least two pigeons have to fly into the same
pigeonhole, meaning that f is not injective. In Figure 12.4(b) there are
fewer pigeons than pigeonholes, so clearly at least one pigeonhole remains
empty, meaning that f is not surjective.

Although the underlying idea expressed by these figures has little to do
with pigeons, it is nonetheless called the pigeonhole principle:

The Pigeonhole Principle (function version)
Suppose A and B are finite sets and f : A → B is any function.

1. If |A| > |B|, then f is not injective.
2. If |A| < |B|, then f is not surjective.

Though the pigeonhole principle is obvious, it can be used to prove some
things that are not so obvious. Two examples follow.
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Proposition If A is any set of 10 integers between 1 and 100, then there
exist two different subsets X ⊆ A and Y ⊆ A for which the sum of elements
in X equals the sum of elements in Y .

To illustrate what this proposition is saying, consider the random set

A = {
5, 7, 12, 11, 17, 50, 51, 80, 90, 100

}
of 10 integers between 1 and 100. Notice that A has subsets X = {

5,80
}
and

Y = {
7,11,17,50

}
for which the sum of the elements in X equals the sum of

those in Y . If we tried to “mess up” A by changing the 5 to a 6, we get

A = {
6, 7, 12, 11, 17, 50, 51, 80, 90, 100

}
which has subsets X = {

7,12,17,50
}
and Y = {

6,80
}
both of whose elements

add up to the same number (86). The proposition asserts that this is always
possible, no matter what A is. Here is a proof:

Proof. Suppose A ⊆ {
1,2,3,4, . . . ,99,100

}
and |A| = 10, as stated. Notice that

if X ⊆ A, then X has no more than 10 elements, each between 1 and 100,
and therefore the sum of all the elements of X is less than 100 ·10 = 1000.
Consider the function

f : P(A)→ {
0, 1, 2, 3, 4, . . . , 1000

}
,

where f (X ) is the sum of the elements in X . (Examples: f
({

3,7,50
}) = 60;

f
({

1,70,80,95
})= 246.) As |P(A)| = 210 = 1024> 1001= ∣∣{0,1,2,3, . . . ,1000

}∣∣, it
follows from the pigeonhole principle that f is not injective. Therefore there
are two unequal sets X ,Y ∈ P(A) for which f (X ) = f (Y ). In other words,
there are subsets X ⊆ A and Y ⊆ A for which the sum of elements in X
equals the sum of elements in Y . ■

Proposition There are at least two Texans with the same number of
hairs on their heads.

Proof. We will use two facts. First, the population of Texas is more than
twenty million. Second, it is a biological fact that every human head has
fewer than one million hairs. Let A be the set of all Texans, and let B ={
0,1,2,3,4, . . . ,1000000

}
. Let f : A → B be the function for which f (x) equals

the number of hairs on the head of x. Since |A| > |B|, the pigeonhole principle
asserts that f is not injective. Thus there are two Texans x and y for whom
f (x) = f (y), meaning that they have the same number of hairs on their
heads. ■
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Proofs that use the pigeonhole principle tend to be inherently non-
constructive, in the sense discussed in Section 7.4. For example, the above
proof does not explicitly give us two Texans with the same number of hairs
on their heads; it only shows that two such people exist. If we were to make
a constructive proof, we could find examples of two bald Texans. Then they
have the same number of head hairs, namely zero.

Exercises for Section 12.3
1. Prove that if six numbers are chosen at random, then at least two of them will

have the same remainder when divided by 5.

2. Prove that if a is a natural number, then there exist two unequal natural numbers
k and ` for which ak −a` is divisible by 10.

3. Prove that if six natural numbers are chosen at random, then the sum or differ-
ence of two of them is divisible by 9.

4. Consider a square whose side-length is one unit. Select any five points from
inside this square. Prove that at least two of these points are within

p
2

2 units of
each other.

5. Prove that any set of seven distinct natural numbers contains a pair of numbers
whose sum or difference is divisible by 10.

6. Given a sphere S, a great circle of S is the intersection of S with a plane through
its center. Every great circle divides S into two parts. A hemisphere is the union
of the great circle and one of these two parts. Prove that if five points are placed
arbitrarily on S, then there is a hemisphere that contains four of them.

7. Prove or disprove: Any subset X ⊆ {
1,2,3, . . . ,2n

}
with |X | > n contains two (un-

equal) elements a,b ∈ X for which a | b or b | a.

12.4 Composition
You are familiar with the notion of function composition from algebra and
calculus. Still, it is worthwhile to revisit it now with our more sophisticated
ideas about functions.

Definition 12.5 Suppose f : A → B and g : B → C are functions with the
property that the codomain of f equals the domain of g. The composition
of f with g is another function, denoted as g◦ f and defined as follows: If
x ∈ A, then g◦f (x)= g( f (x)). Therefore g◦f sends elements of A to elements
of C, so g◦ f : A → C.

The following figure illustrates the definition. Here f : A → B, g : B → C,
and g◦ f : A → C. We have, for example, g◦ f (0) = g( f (0)) = g(2) = 4. Be very
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careful with the order of the symbols. Even though g comes first in the
symbol g◦ f , we work out g◦ f (x) as g( f (x)), with f acting on x first, followed
by g acting on f (x).

A

A

C

CB

3
2
1
0

3
2
1
0

7
6
5
4

7
6
5
4

3
2
1

f g

g ◦ f

Figure 12.5. Composition of two functions

Notice that the composition g ◦ f also makes sense if the range of f
is a subset of the domain of g. You should take note of this fact, but to
keep matters simple we will continue to emphasize situations where the
codomain of f equals the domain of g.

Example 12.8 Suppose A = {
a,b, c

}
, B = {

0,1
}
, C = {

1,2,3
}
. Let f : A → B

be the function f = {
(a,0), (b,1), (c,0)

}
, and let g : B → C be g = {

(0,3), (1,1)
}
.

Then g ◦ f = {
(a,3), (b,1), (c,3)

}
.

Example 12.9 Say A = {
a,b, c

}
, B = {

0,1
}
, C = {

1,2,3
}
. Let f : A → B

be the function f = {
(a,0), (b,1), (c,0)

}
, and let g : C → B be the function

g = {
(1,0), (2,1), (3,1)

}
. In this situation the composition g ◦ f is not defined

because the codomain B of f is not the same set as the domain C of g.
Remember: In order for g ◦ f to make sense, the codomain of f must equal
the domain of g. (Or at least be a subset of it.)

Example 12.10 Let f : R→ R be defined as f (x) = x2 + x, and g : R→ R be
defined as g(x)= x+1. Then g◦ f :R→R is the function defined by the formula
g ◦ f (x)= g( f (x))= g(x2 + x)= x2 + x+1.

Since the domains and codomains of g and f are the same, we can in
this case do a composition in the other order. Note that f ◦ g :R→R is the
function defined as f ◦ g (x)= f (g(x))= f (x+1)= (x+1)2 + (x+1)= x2 +3x+2.

This example illustrates that even when g ◦ f and f ◦ g are both defined,
they are not necessarily equal. We can express this fact by saying function
composition is not commutative.
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We close this section by proving several facts about composition that you
are likely to encounter in your future study of mathematics. First, we note
that, although it is not commutative, function composition is associative.

Theorem 12.1 Composition of functions is associative. That is if f : A → B,
g : B → C and h : C → D, then (h◦ g)◦ f = h◦ (g ◦ f ).

Proof. Suppose f , g,h are as stated. It follows from Definition 12.5 that
both (h ◦ g)◦ f and h ◦ (g ◦ f ) are functions from A to D. To show that they
are equal, we just need to show(

(h◦ g)◦ f
)
(x)=

(
h◦ (g ◦ f )

)
(x)

for every x ∈ A. Note that Definition 12.5 yields(
(h◦ g)◦ f

)
(x)= (h◦ g)( f (x))= h

(
g
(
f (x)

))
.

Also (
h◦ (g ◦ f )

)
(x)= h

(
g ◦ f (x)

)= h
(
g
(
f (x)

))
.

Thus (
(h◦ g)◦ f

)
(x)=

(
h◦ (g ◦ f )

)
(x),

as both sides equal h
(
g
(
f (x)

))
. ■

Theorem 12.2 Suppose f : A → B and g : B → C. If both f and g are
injective, then g ◦ f is injective. If both f and g are surjective, then g ◦ f is
surjective.

Proof. First suppose both f and g are injective. To see that g◦ f is injective,
we must show that g ◦ f (x)= g ◦ f (y) implies x = y. Suppose g ◦ f (x)= g ◦ f (y).
This means g( f (x)) = g( f (y)). It follows that f (x) = f (y). (For otherwise g
wouldn’t be injective.) But since f (x) = f (y) and f is injective, it must be
that x = y. Therefore g ◦ f is injective.

Next suppose both f and g are surjective. To see that g ◦ f is surjective,
we must show that for any element c ∈ C, there is a corresponding element
a ∈ A for which g ◦ f (a) = c. Thus consider an arbitrary c ∈ C. Because g
is surjective, there is an element b ∈ B for which g(b) = c. And because
f is surjective, there is an element a ∈ A for which f (a) = b. Therefore
g( f (a))= g(b)= c, which means g ◦ f (a)= c. Thus g ◦ f is surjective. ■
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Exercises for Section 12.4
1. Suppose A = {

5,6,8
}
, B = {

0,1
}
, C = {

1,2,3
}
. Let f : A → B be the function f ={

(5,1), (6,0), (8,1)
}
, and g : B → C be g = {

(0,1), (1,1)
}
. Find g ◦ f .

2. Suppose A = {
1,2,3,4

}
, B = {

0,1,2
}
, C = {

1,2,3
}
. Let f : A → B be f = {

(1,0), (2,1),
(3,2), (4,0)

}
, and g : B → C be g = {

(0,1), (1,1), (2,3)
}
. Find g ◦ f .

3. Suppose A = {
1,2,3

}
. Let f : A → A be the function f = {

(1,2), (2,2), (3,1)
}
, and let

g : A → A be the function g = {
(1,3), (2,1), (3,2)

}
. Find g ◦ f and f ◦ g.

4. Suppose A = {
a,b, c

}
. Let f : A → A be the function f = {

(a, c), (b, c), (c, c)
}
, and let

g : A → A be the function g = {
(a,a), (b,b), (c,a)

}
. Find g ◦ f and f ◦ g.

5. Consider the functions f , g :R→R defined as f (x)= 3px+1 and g(x)= x3. Find the
formulas for g ◦ f and f ◦ g.

6. Consider the functions f , g : R→ R defined as f (x) = 1
x2+1 and g(x) = 3x+2. Find

the formulas for g ◦ f and f ◦ g.
7. Consider the functions f , g : Z×Z → Z×Z defined as f (m,n) = (mn,m2) and

g(m,n)= (m+1,m+n). Find the formulas for g ◦ f and f ◦ g.
8. Consider the functions f , g :Z×Z→Z×Z defined as f (m,n)= (3m−4n,2m+n) and

g(m,n)= (5m+n,m). Find the formulas for g ◦ f and f ◦ g.
9. Consider the functions f : Z×Z→ Z defined as f (m,n) = m+n and g : Z→ Z×Z

defined as g(m)= (m,m). Find the formulas for g ◦ f and f ◦ g.
10. Consider the function f :R2 →R2 defined by the formula f (x, y)= (xy, x3). Find a

formula for f ◦ f .

12.5 Inverse Functions
You may recall from calculus that if a function f is injective and surjective,
then it has an inverse function f −1 that “undoes” the effect of f in the sense
that f −1(

f (x)
)= x for every x in the domain. (For example, if f (x)= x3, then

f −1(x)= 3
p

x.) We now review these ideas. Our approach uses two ingredients,
outlined in the following definitions.

Definition 12.6 For a set A, the identity function on A is the function
iA : A → A defined as iA(x)= x for every x ∈ A.

Example: If A = {
1,2,3

}
, then iA = {

(1,1), (2,2), (3,3)
}
. Also iZ = {

(n,n) : n ∈Z}
.

The identity function on a set is the function that sends any element of the
set to itself.

Notice that for any set A, the identity function iA is bijective: It is
injective because iA(x)= iA(y) immediately reduces to x = y. It is surjective
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because if we take any element b in the codomain A, then b is also in the
domain A, and iA(b)= b.

Definition 12.7 Given a relation R from A to B, the inverse relation
of R is the relation from B to A defined as R−1 = {

(y, x) : (x, y) ∈ R
}
. In other

words, the inverse of R is the relation R−1 obtained by interchanging the
elements in every ordered pair in R.

For example, let A = {
a,b, c

}
and B = {

1,2,3
}
, and suppose f is the relation

f = {
(a,2), (b,3), (c,1)

}
from A to B. Then f −1 = {

(2,a), (3,b), (1, c)
}
and this is a

relation from B to A. Notice that f is actually a function from A to B, and
f −1 is a function from B to A. These two relations are drawn below. Notice
the drawing for relation f −1 is just the drawing for f with arrows reversed.

A AB B

c
b
a

c
b
a

3
2
1

3
2
1

f = {
(a,2), (b,3), (c,1)

}
f −1 = {

(2,a), (3,b), (1, c)
}

For another example, let A and B be the same sets as above, but consider
the relation g = {

(a,2), (b,3), (c,3)
}
from A to B. Then g−1 = {

(2,a), (3,b), (3, c)
}

is a relation from B to A. These two relations are sketched below.

A AB B

c
b
a

c
b
a

3
2
1

3
2
1

g = {
(a,2), (b,3), (c,3)

}
g−1 = {

(2,a), (3,b), (3, c)
}

This time, even though the relation g is a function, its inverse g−1 is not
a function because the element 3 occurs twice as a first coordinate of an
ordered pair in g−1.

In the above examples, relations f and g are both functions, and f −1 is a
function and g−1 is not. This raises a question: What properties does f have
and g lack that makes f −1 a function and g−1 not a function? The answer
is not hard to see. Function g is not injective because g(b) = g(c) = 3, and
thus (b,3) and (c,3) are both in g. This causes a problem with g−1 because
it means (3,b) and (3, c) are both in g−1, so g−1 can’t be a function. Thus, in
order for g−1 to be a function, it would be necessary that g be injective.
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But that is not enough. Function g also fails to be surjective because
no element of A is sent to the element 1 ∈ B. This means g−1 contains no
ordered pair whose first coordinate is 1, so it can’t be a function from B to
A. If g−1 were to be a function it would be necessary that g be surjective.

The previous two paragraphs suggest that if g is a function, then it must
be bijective in order for its inverse relation g−1 to be a function. Indeed,
this is easy to verify. Conversely, if a function is bijective, then its inverse
relation is easily seen to be a function. We summarize this in the following
theorem.

Theorem 12.3 Let f : A → B be a function. Then f is bijective if and only
if the inverse relation f −1 is a function from B to A.

Suppose f : A → B is bijective, so according to the theorem f −1 is a
function. Observe that the relation f contains all the pairs (x, f (x)) for x ∈ A,
so f −1 contains all the pairs ( f (x), x). But ( f (x), x) ∈ f −1 means f −1( f (x))= x.
Therefore f −1 ◦ f (x)= x for every x ∈ A. From this we get f −1 ◦ f = iA. Similar
reasoning produces f ◦ f −1 = iB. This leads to the following definitions.

Definition 12.8 If f : A → B is bijective then its inverse is the function
f −1 : B → A. The functions f and f −1 obey the equations f −1 ◦ f = iA and
f ◦ f −1 = iB.

You probably recall from algebra at least one technique for computing
the inverse of a bijective function f . To find f −1, start with the equation
y= f (x). Then interchange variables to get x = f (y). Solving this equation
for y (if possible) produces y= f −1(x). The next two examples illustrate this.

Example 12.11 The function f :R→R defined as f (x)= x3 +1 is bijective.
Find its inverse.

We begin by writing y = x3 +1. Now interchange variables to obtain
x = y3 +1. Solving for y produces y= 3px−1. Thus

f −1(x)= 3px−1.

(You can check your answer by computing

f −1( f (x))= 3
√

f (x)−1= 3
√

x3 +1−1= x.

Therefore f −1( f (x))= x. Any answer other than x indicates a mistake.)
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Example 12.12 Example 12.6 showed that the function g :Z×Z→Z×Z
defined by the formula g(m,n)= (m+n,m+2n) is bijective. Find its inverse.

The approach outlined above should work, but we need to be careful to
keep track of coordinates in Z×Z. We begin by writing (x, y)= g(m,n), then
interchanging the variables (x, y) and (m,n) to get (m,n)= g(x, y). This gives

(m,n)= (x+ y, x+2y),
from which we get the following system of equations:

x + y = m
x + 2y = n.

Solving this system, we get
x = 2m−n

y = n−m.

Then (x, y)= (2m−n,n−m), so g−1(m,n)= (2m−n,n−m).
We can check this by confirming g−1(g(m,n))= (m,n). Doing the math,

g−1(g(m,n)) = g−1(m+n,m+2n)
= (

2(m+n)− (m+2n), (m+2n)− (m+n)
)

= (m,n).

Exercises for Section 12.5
1. Check that f :Z→Z defined by f (n)= 6−n is bijective. Then compute f −1.
2. In Exercise 9 of Section 12.2 you proved that f : R− {

2
} → R− {

5
}
defined by

f (x)= 5x+1
x−2

is bijective. Now find its inverse.

3. Let B = {
2n : n ∈Z}= {

. . . , 1
4 , 1

2 ,1,2,4,8, . . .
}
. Show that the function f :Z→ B defined

as f (n)= 2n is bijective. Then find f −1.
4. The function f :R→ (0,∞) defined as f (x)= ex3+1 is bijective. Find its inverse.
5. The function f :R→R defined as f (x)=πx− e is bijective. Find its inverse.
6. The function f :Z×Z→Z×Z defined by the formula f (m,n)= (5m+4n,4m+3n)

is bijective. Find its inverse.
7. Show that the function f :R2 →R2 defined by the formula f (x, y)= ((x2+1)y, x3) is

bijective. Then find its inverse.
8. Is the function θ : P(Z)→P(Z) defined as θ(X )= X bijective? If so, find θ−1.
9. Consider the function f :R×N→N×R defined as f (x, y)= (y,3xy). Check that this

is bijective; find its inverse.

10. Consider f :N→Z defined as f (n)= (−1)n(2n−1)+1
4

. This function is bijective by
Exercise 18 in Section 12.2. Find its inverse.
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12.6 Image and Preimage
It is time to take up a matter of notation that you will encounter in future
mathematics classes. Suppose we have a function f : A → B. If X ⊆ A, the
expression f (X ) has a special meaning. It stands for the set

{
f (x) : x ∈ X

}
.

And if Y ⊆ B, then f −1(Y ) has a meaning even if f is not invertible: it stands
for the set

{
x ∈ A : f (x) ∈Y

}
. Here are the precise definitions.

Definition 12.9 Suppose f : A → B is a function.
1. If X ⊆ A, the image of X is the set f (X )= {

f (x) : x ∈ X
}⊆ B.

2. If Y ⊆ B, the preimage of Y is the set f −1(Y )= {
x ∈ A : f (x) ∈Y

}⊆ A.

In words, the image f (X ) of X is the set of all things in B that f sends
elements of X to. (Roughly speaking, you might think of f (X ) as a kind of
distorted “copy” or “image” of X in B.) The preimage f −1(Y ) of Y is the set
of all things in A that f sends into Y .

Maybe you have already encountered these ideas in linear algebra, in
a setting involving a linear transformation T : V →W between two vector
spaces. If X ⊆V is a subspace of V , then its image T(X ) is a subspace of W.
If Y ⊆ W is a subspace of W, then its preimage T−1(Y ) is a subspace of V .
(If this does not sound familiar, then ignore it.)

Example 12.13 Let f :
{
s, t,u,v,w, x, y, z

}→ {
0,1,2,3,4,5,6,7,8,9

}
be

f = {
(s,4), (t,8), (u,8), (v,1), (w,2), (x,4), (y,6), (z,4)

}
.

This f is neither injective nor surjective, so it certainly is not invertible. Be
sure you understand the following statements.
1. f

({
s, t,u, z

})= {
8,4

}
2. f

({
s, x, z

})= {
4
}

3. f
({

s,v,w, y
})= {

1,2,4,6
}

4. f (;)=;

5. f −1({
4
})= {

s, x, z
}

6. f −1({
4,9

})= {
s, x, z

}
7. f −1({

9
})=;

8. f −1({
1,4,8

})= {
s, t,u,v, x, z

}
It is important to realize that the X and Y in Definition 12.9 are subsets
(not elements!) of A and B. In Example 12.13 we had f −1({

4
}) = {

s, x, z
}
,

while f −1(4) is meaningless because the inverse function f −1 does not exist.
And there is a subtle difference between f

({
s
})= {

4
}
and f (s)= 4. Be careful.

Example 12.14 Consider the function f :R→R defined as f (x)= x2. Note
that f

({
0,1,2

})= {
0,1,4

}
and f −1({

0,1,4
})= {−2,−1,0,1,2

}
. This shows that

f −1( f (X )) 6= X in general.
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Using the same f, check your understanding of these statements about
images and preimages of intervals: f ([−2,3]) = [0,9], and f −1([0,9])= [−3,3].
Also f (R)= [0,∞) and f −1([−2,−1])=;.

If you continue with mathematics you will likely encounter the following
results. For now, you are asked to prove them in the exercises.

Theorem 12.4 Given f : A → B, let W , X ⊆ A, and Y , Z ⊆ B. Then
1. f (W ∩ X ) ⊆ f (W)∩ f (X )

2. f (W ∪ X ) = f (W)∪ f (X )

3. X ⊆ f −1]
(
f (X )

)
4. f −1(Y ∪Z) = f −1(Y )∪ f −1(Z)

5. f −1(Y ∩Z) = f −1(Y )∩ f −1(Z)

6. f
(
f −1(Y )

) ⊆ Y .

Exercises for Section 12.6

1. Consider the function f : R → R defined as f (x) = x2 + 3. Find f ([−3,5]) and
f −1([12,19]).

2. Consider the function f :
{
1,2,3,4,5,6,7

}→ {
0,1,2,3,4,5,6,7,8,9

}
given as

f = {
(1,3), (2,8), (3,3), (4,1), (5,2), (6,4), (7,6)

}
.

Find: f
({

1,2,3
})
, f

({
4,5,6,7

})
, f (;), f −1({

0,5,9
})

and f −1({
0,3,5,9

})
.

3. This problem concerns functions f :
{
1,2,3,4,5,6,7

} → {
0,1,2,3,4

}
. How many

such functions have the property that
∣∣ f −1({

3
})∣∣= 3?

4. This problem concerns functions f :
{
1,2,3,4,5,6,7,8

} → {
0,1,2,3,4,5,6

}
. How

many such functions have the property that
∣∣ f −1({

2
})∣∣= 4?

5. Consider a function f : A → B and a subset X ⊆ A. We observed in Example 12.14
that f −1( f (X )) 6= X in general. However X ⊆ f −1( f (X )) is always true. Prove this.

6. Given a function f : A → B and a subset Y ⊆ B, is f ( f −1(Y )) = Y always true?
Prove or give a counterexample.

7. Given a function f : A → B and subsets W , X ⊆ A, prove f (W ∩ X )⊆ f (W)∩ f (X ).
8. Given a function f : A → B and subsets W , X ⊆ A, then f (W ∩ X )= f (W)∩ f (X ) is

false in general. Produce a counterexample.
9. Given a function f : A → B and subsets W , X ⊆ A, prove f (W ∪ X )= f (W)∪ f (X ).

10. Given f : A → B and subsets Y , Z ⊆ B, prove f −1(Y ∩Z)= f −1(Y )∩ f −1(Z).
11. Given f : A → B and subsets Y , Z ⊆ B, prove f −1(Y ∪Z)= f −1(Y )∪ f −1(Z).
12. Consider f : A → B. Prove that f is injective if and only if X = f −1( f (X )) for all

X ⊆ A. Prove that f is surjective if and only if f ( f −1(Y ))=Y for all Y ⊆ B.
13. Let f : A → B be a function, and X ⊆ A. Prove or disprove: f

(
f −1( f (X ))

)= f (X ).
14. Let f : A → B be a function, and Y ⊆ B. Prove or disprove: f −1(

f ( f −1(Y ))
)= f −1(Y ).
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CHAPTER 13

Proofs in Calculus

The proofs we have dealt with so far in this text have been largely proofs
about integers, or about structures related to integers (divisibility,

congruence modulo n, sets of integers, relations among integers, functions
of integers, etc.).

Of course mathematics is not restricted to just integers. Calculus is
built on the system of real numbers R. Thus the main definitions in calculus
cater to R. Consequently the proofs in calculus (which use the definitions)
have a distinct flavor that is quite different from proofs in other areas of
mathematics. In reading and writing proofs in calculus you will still use the
main proof techniques (direct, contrapositive, contradiction), but it can take
some time to adjust your thinking to the idiosyncrasies of R. This chapter
is intended to ease that adjustment. It is an introduction to some of the
ideas you will encounter in later courses in advanced calculus (also called
analysis). This chapter is not needed for the remainder of the text, so it can
be skipped without a loss of continuity.

Single-variable calculus (the first two semesters of a standard calculus
sequence) deals with functions f : R→ R, or more generally f : X → R for
X ⊆ R. Usually the domain X is an interval or a union of intervals. For
example, f (x)= x2+5

(x−1)(x−2) is a function f : (−∞,1)∪ (1,2)∪ (2,∞)→R, whereas
f (x)=p

x has domain X = [0,∞), and f (x)= x2−x has domain X = (−∞,∞)=R.
Calculus rests on the idea of a limit, and it is the limit that separates

calculus from algebra and trigonometry. Wewill study limits in sections 13.2
through 13.6. It is assumed that you have had a prior course in calculus
and already have some experience with limits. But our present treatment is
more theoretical. It serves the double purpose of putting your earlier work
on a firmer foundation while preparing you for more advanced studies.

Another calculus topic (typically from the second semester of a standard
course) concerns sequences and series, where functions f : N→ R play a
major role. We will turn to this in sections 13.7 and 13.8.

All of this requires a result called the triangle inequality, so we begin
there.
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13.1 The Triangle Inequality
Definitions in calculus and analysis use absolute value extensively. As you
know, the absolute value of a real number x is the non-negative number

|x| =
{

x if x ≥ 0
−x if x < 0.

Fundamental properties of absolute value include |xy| = |x| · |y| and x ≤ |x|.
Another property—used often in proofs—is the triangle inequality:
Theorem 13.1 (Triangle inequality) If x, y, z ∈R, then |x− y| ≤ |x−z|+|z− y|.
Proof. The name triangle inequality comes from the fact that the theorem
can be interpreted as asserting that for any “triangle” on the number line,
the length of any side never exceeds the sum of the lengths of the other two
sides. Indeed, the distance between any two numbers a,b ∈R is |a−b|. With
this in mind, observe in the diagrams below that regardless of the order of
x, y, z on the number line, the inequality |x− y| ≤ |x− z|+ |z− y| holds.

x y z︸ ︷︷ ︸
|x−z|

|x−y|︷ ︸︸ ︷ |z−y|︷ ︸︸ ︷
y x z︸ ︷︷ ︸

|z−y|

|x−y|︷ ︸︸ ︷ |x−z|︷ ︸︸ ︷
z x y︸ ︷︷ ︸

|z−y|

|x−z|︷ ︸︸ ︷ |x−y|︷ ︸︸ ︷

x z y︸ ︷︷ ︸
|x−y|

|x−z|︷ ︸︸ ︷ |z−y|︷ ︸︸ ︷
y z x︸ ︷︷ ︸

|x−y|

|z−y|︷ ︸︸ ︷ |x−z|︷ ︸︸ ︷
z y x︸ ︷︷ ︸

|x−z|

|z−y|︷ ︸︸ ︷ |x−y|︷ ︸︸ ︷

(These diagrams show x, y, z as distinct points. If x = y, x = z or y= z, then
|x− y| ≤ |x− z|+ |z− y| holds automatically.) ■

The triangle inequality says the shortest route from x to y avoids z unless
z lies between x and y. Several useful results flow from it. Put z = 0 to get

|x− y| ≤ |x|+ |y| for any x, y ∈R. (13.1)

Using the triangle inequality, |x+ y| = |x−(−y)| ≤ |x−0|+|0−(−y)| = |x|+|y|, so

|x+ y| ≤ |x|+ |y| for any x, y ∈R. (13.2)

Also by the triangle inequality, |x−0| ≤ |x− (−y)|+ |− y−0|, which yields

|x|− |y| ≤ |x+ y| for any x, y ∈R. (13.3)

The three inequalities (13.1), (13.2) and (13.3) are very useful in proofs.
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13.2 Definition of a Limit
Limits are designed to deal with the following type of problem: We need to
know how a certain function f (x) behaves when x is close to some number c.
Perhaps f (c) is not even defined, so the graph of f looks something as shown
below; a curve with a hole at a point (c,L).

x

y

c

L

y= f (x)

x

y

↑
↓

←−−→x

f (x)

x

f (x)

c

L

y= f (x)

lim
x→c

f (x)= L

In this picture, for any x 6= c, the corresponding value f (x) is either greater
than L or less than L. But the closer x is to c, the closer f (x) is to L, as
illustrated on the right. We express this as lim

x→c
f (x)= L. That is, the symbols

lim
x→c

f (x) stand for the number that f (x) approaches as x approaches c.
Your calculus text probably presented an informal, intuitive definition

of a limit that likely went something like this.

Definition 13.1 (Informal definition of a limit)
Suppose f is a function and c is a number. Then lim

x→c
f (x)= L means that

f (x) is arbitrarily close to L provided that x is sufficiently close to c.

The idea is that no matter how close we want to make f (x) to L, we can
be assured that it will be that close (or closer) if x is close enough to c.

Definition 13.1 is sufficient for the first few semesters of calculus, but it
is not adequate for deeper, more rigorous investigations. The problem is
that it is too vague. What, exactly, is meant by close? Saying x is “close” to c
is not much better than saying that an integer n is “sort of even.” No proof
can be done in the presence of such ambiguity.

So this section’s first task is to motivate and develop a more rigorous and
precise limit definition, the one used in advanced calculus. Achieving this
goal forces us the grapple with the imprecise term close. What do we mean
by close? Within 0.1 units? Within 0.001 or 0.00001 units, or even closer?
We will make the definition precise by introducing a numeric, quantitative
measure of closeness.
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Standard practice uses the Greek letters ε (epsilon) and δ (delta) for
variables representing how close f (x) is to L, and x is to c. For instance,
x is within a distance of δ from c if and only if c − δ < x < c + δ, that is,
−δ < x− c < δ, or |x− c| < δ. So for any real number δ > 0 (no matter how
small) the statement |x− c| < δ means that x is within δ units from c.

c−δ c x c+δ

δ︷ ︸︸ ︷ δ︷ ︸︸ ︷
Likewise | f (x)−L| < ε means that f (x) is within ε units from L. Let’s apply
these ideas to Definition 13.1, and transform it line by line.

Informal definition Precise definition

lim
x→c

f (x)= L means that lim
x→c

f (x)= L means that
f (x) is arbitrarily close to L for any ε> 0, | f (x)−L| < ε
provided that provided that
x is sufficiently close to c 0< |x− c| < δ for some δ> 0.

We have arrived at a precise definition of a limit.

Definition 13.2 (Precise definition of a limit)
Suppose f : X →R is a function, where X ⊆R, and c ∈R. Then lim

x→c
f (x)= L

means that for any real ε> 0 (no matter how small), there is a real number
δ> 0 for which | f (x)−L| ≤ ε provided that 0< |x− c| ≤ δ.

Figure 13.1 illustrates this. For any ε> 0, no matter how small, consider
the narrow shaded band of points on the plane whose y-coordinates are
between y = L−ε and y = L+ε. Given this ε, we can find another number
δ> 0 such that the point (x, f (x)) is in the shaded band whenever x is within
δ units from c. In other words, | f (x)−L| ≤ ε provided that 0< |x− c| ≤ δ.

x

y

L−ε

L+ε

c−δ c+δc

L

x

f (x) (x, f (x))

y= f (x)

lim
x→c

f (x)= L

Figure 13.1. A graphic description of the limit definition.
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Three comments are in order. First, we have slipped into Definition 13.2
the expression 0 < |x− c| < δ instead of |x− c| < δ. This is to rule out the
possibility x = c, as f (c) may not be defined, depending of f and c.

Second, Definition 13.2 applies only if there is some δ > 0 for which
(c−δ, c)∪ (c, c+δ) is a subset of the domain of f . Otherwise the statement
“| f (x)−L| provided that 0< |x− c| < δ” is meaningless for some x, no matter
how small δ is. Thus lim

x→c
f (x) makes sense only if f (x) is defined for all x ∈R

that are “close to” c in the sense that x ∈ (c−δ, c)∪ (c, c+δ) for some δ.
Third, in symbolic form Definition 13.2 says lim

x→c
f (x)= L if and only if

∀ε> 0, ∃δ> 0,
(
0< |x− c| < δ)⇒ ( | f (x)−L| < ε)

. (13.4)

Thus proving lim
x→c

f (x)= L amounts to proving that Statement (13.4) is true.
One strategy for proving Statement (13.4) is the direct approach. Begin

by assuming ε> 0. Then find a δ for which
(
0 < |x− c| < δ

)⇒ ( | f (x)−L| < ε
)
.

To find δ, try to extract a factor of |x− c| from | f (x)−L|. If you can do this,
inspection usually tells you how small |x−c| needs to be to make | f (x)−L| < ε.

We will use this strategy in Example 13.1, which proves lim
x→2

(3x+4)= 10.
Here f (x)= 3x+4 and L = 10, so | f (x)−L| is |(3x+4)−10|. Also |x− c| is |x−2|.
Example 13.1 Prove that lim

x→2
(3x+4)= 10.

Proof. Suppose ε> 0. Note that |(3x+4)−10| = |3x−6| = |3(x−2)| = 3|x−2|.
So if δ= ε

3 , then 0< |x−2| < δ yields |(3x+4)−10| = 3|x−2| < 3δ= 3 ε
3 = ε.

In summary, for any ε> 0, there is a δ= ε
3 for which 0< |x−2| < δ implies

|(3x+4)−10| < ε. By Definition 13.2, lim
x→2

(3x+4)= 10. ■

Example 13.2 Prove that lim
x→2

5x2 = 20.

Proof. Suppose ε> 0. Notice that

| f (x)−L| = |5x2 −20| = |5(x2 −4)| = |5(x−2)(x+2)| = 5 · |x−2| · |x+2|.
Now we have a factor of |x−2| in | f (x)−L|, but it is accompanied with |x+2|.
But if |x−2| is small, then x is close to 2, so |x+2| should be close to 4. In
fact, if |x−2| ≤ 1, then |x+2| = |(x−2)+4| ≤ |x−2| + |4| ≤ 1+4 = 5. (Here we
applied the inequality (13.2) from page 245.) In other words, if |x−2| ≤ 1,
then |x+2| ≤ 5, and the above equation yields

| f (x)−L| = |5x2 −20| = 5 · |x−2| · |x+2| < 5 · |x−2| ·5= 25|x−2|.
Take δ to be smaller than both 1 and ε

25 . Then 0 < |x−2| < δ implies
|5x2 −20| < 25 · |x−2| < 25δ< 25 ε

25 = ε. By Definition 13.2, lim
x→2

5x2 = 20. ■
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The examples above (and the exercises below) involve limits that you
probably regard as obvious. Our point is to illustrate Definition 13.2, not to
compute difficult limits. Difficult limits come later (mostly in more advanced
courses, not in this book) where Definition 13.2 will be used to great effect.

Exercises for Section 13.2
1. Prove that lim

x→5
(8x−3)= 37. 2. Prove that lim

x→−1
(4x+6)= 2.

3. Prove that lim
x→0

(x+2)= 2. 4. Prove that lim
x→8

(2x−7)= 9.

5. Prove that lim
x→3

(x2 −2)= 7. 6. Prove that lim
x→1

(4x2 +1)= 5.

13.3 Limits That Do Not Exist
Given a function f and a number c, there are two ways that lim

x→c
f (x)= L can

be false. First, there may be a different number M 6= L for which lim
x→c

f (x)= M.
Second, it may be that Statement (13.4) is false for all L ∈R. In such a case
we say that lim

x→c
f (x) does not exist. Contradiction is one way to prove that

lim
x→c

f (x) does not exist. Assume lim
x→c

f (x)= L and produce a contradiction.

Example 13.3 Suppose f (x)= x
2
+ |x−2|

x−2
+2. Prove lim

x→2
f (x) does not exist.

Proof. Notice that f (2) is not defined, as it involves division by zero. Also,
f (x) behaves differently depending on whether x is to the right or left of 2.
If x > 2, then x−2 is positive, so |x−2| = x−2 and |x−2|

x−2 = 1, so f (x)= x
2 +3.

If x < 2, then x−2 is negative, so |x−2| = −(x−2) and |x−2|
x−2 =−1, so f (x)= x

2 +1.

Therefore f, graphed below, is a piecewise function f (x)=
{

1
2 x+3 if x > 2
1
2 x+1 if x < 2.

Suppose for the sake of contradiction that
lim
x→2

f (x)= L, where L is a real number. Let ε= 1
2 .

By Definition 13.2, there is a real number δ> 0
for which 0< |x−2| < δ implies

∣∣ f (x)−L
∣∣< 1

2 .
Put a = 2− δ

2 , so 0< |a−2| < δ. Hence
∣∣ f (a)−L

∣∣< 1
2 .

Put b = 2+ δ
2 , so 0< |b−2| < δ. Hence

∣∣ f (b)−L
∣∣< 1

2 .
Further, f (a)< 2 and f (b)> 4, so 2< | f (b)− f (a)|.
With this and the help of the inequality (13.1),
we get a contradiction 2< 1, as follows:

x

y
y= f (x)

2 2+δ2−δ

2

4
L+ε

L
L−ε

a b

f (a)

f (b)

2< ∣∣ f (b)− f (a)
∣∣= ∣∣( f (b)−L

)− (
f (a)−L

)∣∣≤ ∣∣ f (b)−L
∣∣+ ∣∣ f (a)−L

∣∣< 1
2 + 1

2 = 1. ■
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Our next limit is a classic example of a non-existent limit. It often
appears in first-semester calculus texts, where it is treated informally.

Example 13.4 Prove that lim
x→0

sin
(

1
x

)
does not exist.

As x approaches 0, the number 1
x grows bigger, approaching infinity, so

sin
(1

x
)
just bounces up and down, faster and faster the closer x gets to 0.

y= sin
(

1
x

)
x

y

Intuitively, we would guess that the limit does not exist, because sin
(1

x
)
does

not approach any single number as x approaches 0. Here is a proof.

Proof. Suppose for the sake of contradiction that lim
x→0

sin
(1

x
) = L for L ∈ R.

Definition 13.2 guarantees a number δ for which 0 < |x− 0| < δ implies∣∣sin
(1

x
)−L

∣∣< 1
4 . Select k ∈N large enough so that 1

kπ < δ. As 0< ∣∣ 1
kπ −0

∣∣< δ,
we have

∣∣sin
( 1

1/kπ
)−L

∣∣< 1
4 , and this yields

∣∣sin(kπ)−L
∣∣= |0−L| = |L| < 1

4 .
Next, take ` ∈N large enough so that 1

π
2 +2`π < δ. Then 0< ∣∣ 1

π
2 +2`π−0

∣∣< δ, so
we have

∣∣∣∣sin
(

1
1

π
2 +2`π

)
−L

∣∣∣∣< 1
4 , which simplifies to

∣∣sin
(
π
2 +2`π

)−L
∣∣= |1−L| < 1

4 .
Above we showed |L| ≤ 1

4 and |1−L| ≤ 1
4 . Now apply the inequality (13.2)

to get the contradiction 1< 1
2 , as 1= ∣∣L+ (1−L)

∣∣≤ ∣∣L∣∣+ ∣∣1−L
∣∣< 1

4 + 1
4 = 1

2 . ■

Example 13.5 Investigate lim
x→0

xsin
(

1
x

)
.

This is like the previous example, except for the extra x. Because
∣∣sin

(1
x
)∣∣≤ 1,

we expect xsin
(1

x
)
to go to 0 as x goes to 0. Indeed, we prove lim

x→0
xsin

(1
x
)= 0.

Proof. Given ε > 0, let δ = ε. Suppose 0 < |x−0| ≤ δ. Simplifying, |x| < δ,
which is the same as |x| < ε. We get

∣∣xsin
(1

x
)−0

∣∣= ∣∣xsin
(1

x
)∣∣= |x| · ∣∣sin

(1
x
)∣∣<

ε
∣∣sin

(1
x
)∣∣≤ ε ·1= ε. From this, Definition 13.2 gives lim

x→0
xsin

(1
x
)= 0. ■

One final point. We remarked on page 248 that for lim
x→c

f (x)= L to make
sense, there must be a δ for which f (x) is defined for all x ∈ (c−δ, c)∪ (c, c+δ).
Thus, for example, following Definition 13.2 to the letter, we have to say that
lim
x→0

p
x does not exist because p

x is not defined for all x ∈ (−δ,0)∪ (0,δ). Your
calculus text probably introduced a right-hand limit lim

x→0+
p

x = 0. Though
this notion is not programed into our Definition 13.2, you may revisit such
embellishments in later courses.

Richard Hammack Book of Proof



Limits Laws 251

Exercises for Section 13.3
Prove that the following limits do not exist.
1. lim

x→0
log10 |x| 2. lim

x→0
|x|
x 3. lim

x→0
1
x2

4. lim
x→ π

2

cos
( 1

x
)

5. lim
x→0

xcot
( 1

x
)

6. lim
x→1

1
x2−2x+1

13.4 Limits Laws
When you studied Calculus I your text presented a number of limit laws,
such as lim

x→c
f (x)g(x)=

(
lim
x→c

f (x)
)
·
(
lim
x→c

g(x)
)
. These laws allowed you to compute

complex limits by reducing them to simpler limits, until the answer was at
hand. But your calculus text probably did not prove the laws. Rather, you
were asked to accept them as intuitively plausible (and useful) facts.

Using Definition 13.2, we now present proofs of some limit laws. This
serves two purposes. First, it puts your knowledge of calculus on a firmer
foundation. Second, it highlights various strategies and thought patterns
that are useful in limit proofs, which come to bear in later courses and work.

The inequalities (13.1), (13.2) and (13.3) from page 245 play a crucial
role. For convenience we repeat them here. For any x, y ∈R,

|x− y| ≤ |x|+ |y|, |x+ y| ≤ |x|+ |y|, and |x|− |y| ≤ |x+ y|.

We will use these frequently, usually without comment.
Our first limit law concerns the constant function f (x)= a where a ∈R.

Its graph is a horizontal line with y-intercept a. It should be obvious that
lim
x→c

f (x)= a for any real number c. Nonetheless, let’s prove this obvious fact.

Theorem 13.2 (Constant function rule) If a ∈R, then lim
x→c

a = a.

Proof. Suppose a ∈ R. According to Definition 13.2, to prove lim
x→c

a = a, we
must show that for any ε> 0, there is a δ> 0 for which 0< |x− c| < δ implies
|a−a| < ε. This is almost too easy. Just let δ= 1 (or any other number). Then
|a−a| < ε is automatic, because |a−a| = 0. ■

The identity function f :R→R is f (x)= x. Next we prove lim
x→c

f (x)= c.

Theorem 13.3 (Identity function rule) If c ∈R, then lim
x→c

x = c.

Proof. Given ε > 0, let δ = ε. Then 0 < |x − c| < δ implies |x − c| < ε. By
Definition 13.2, this means lim

x→c
x = c. ■
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Theorem 13.4 (Constant multiple rule)
If lim

x→c
f (x) exists, and a ∈R, then lim

x→c
af (x)= a lim

x→c
f (x).

Proof. Suppose lim
x→c

f (x) = L exists. We must show lim
x→c

af (x) = a lim
x→c

f (x). If
a = 0, then this reduces to lim

x→c
0= 0, which is true by Theorem 13.2. Thus,

for the remainder of the proof we can assume a 6= 0.
Suppose lim

x→c
f (x)= L. We must prove lim

x→c
af (x)= aL. By Definition 13.2,

this means we must show that for any ε > 0, there is a δ > 0 for which
0 < |x− c| < δ implies

∣∣af (x)−aL
∣∣ < ε. Let ε > 0. Because lim

x→c
f (x) = L, there

exists a δ> 0 for which 0< |x− c| < δ implies
∣∣ f (x)−L

∣∣< ε
|a| . So if 0< |x− c| < δ,

then
∣∣af (x)−aL

∣∣= ∣∣a(
f (x)−L

)∣∣= |a| · ∣∣ f (x)−L
∣∣< |a| ε|a| = ε.

In summary, we’ve shown that for any ε> 0, there is a δ> 0 for which
0< |x− c| < δ implies

∣∣af (x)−aL
∣∣< ε. By Definition 13.2, lim

x→c
af (x)= aL. ■

Theorem 13.5 (Sum rule)
If both lim

x→c
f (x) and lim

x→c
g(x) exist, then lim

x→c

(
f (x)+ g(x)

)= lim
x→c

f (x)+ lim
x→c

g(x).

Proof. Let lim
x→c

f (x) = L and lim
x→c

g(x) = M. We must prove lim
x→c

(
f (x)+ g(x)

) =
L+M. To prove this, take ε> 0. We need to find a corresponding δ for which
0< |x−c| < δ implies

∣∣( f (x)+ g(x)
)−(L+M)

∣∣< ε. With this in mind, notice that∣∣( f (x)+ g(x)
)− (L+M)

∣∣= ∣∣( f (x)−L
)+ (

g(x)−M
)∣∣

≤ ∣∣ f (x)−L
∣∣+ ∣∣g(x)−M

∣∣. (A)

As lim
x→c

f (x)= L, there is a δ′ > 0 such that 0< |x− c| < δ′ implies
∣∣ f (x)−L

∣∣< ε
2 .

As lim
x→c

g(x)= M, there is a δ′′ > 0 such that 0< |x−c| < δ′′ implies
∣∣g(x)−M

∣∣< ε
2 .

Now put δ = min
{
δ′,δ′′

}
, meaning that δ equals the smaller of δ′ and δ′′.

If 0< |x− c| < δ, then (A) gives
∣∣( f (x)+ g(x)

)− (L+M)
∣∣≤ ε

2 + ε
2 = ε.

We’ve now shown that for any ε> 0, there is a δ> 0 for which 0< |x−c| < δ
implies

∣∣( f (x)+ g(x)
)− (L+M)

∣∣< ε. Thus lim
x→c

(
f (x)+ g(x)

)= L+M. ■

Theorem 13.6 (Difference rule)
If both lim

x→c
f (x) and lim

x→c
g(x) exist, then lim

x→c

(
f (x)− g(x)

)= lim
x→c

f (x)− lim
x→c

g(x).

Proof. Combining the sum rule with the constant multiple rule gives

lim
x→c

(
f (x)− g(x)

)= lim
x→c

(
f (x)+ (−1) · g(x)

)= lim
x→c

f (x)+ lim
x→c

(−1) · g(x)

= lim
x→c

f (x)+ (−1) lim
x→c

g(x)= lim
x→c

f (x)− lim
x→c

g(x). ■
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Theorem 13.7 (Multiplication rule)
If both lim

x→c
f (x) and lim

x→c
g(x) exist, then lim

x→c
f (x)g(x)=

(
lim
x→c

f (x)
)
·
(
lim
x→c

g(x)
)
.

Proof. Let lim
x→c

f (x) = L and lim
x→c

g(x) = M. We must prove lim
x→c

f (x)g(x) = LM.
To prove this, take ε > 0. We need to find a corresponding δ for which
0< |x− c| < δ implies

∣∣ f (x)g(x)−LM
∣∣< ε. With this in mind, notice that∣∣ f (x)g(x)−LM

∣∣= ∣∣( f (x)g(x)−Lg(x)
)+ (

Lg(x)−LM
)∣∣

≤ ∣∣ f (x)g(x)−Lg(x)
∣∣ + ∣∣Lg(x)−LM

∣∣
= ∣∣( f (x)−L

)
g(x)

∣∣ + ∣∣L(
g(x)−M

)∣∣
= ∣∣ f (x)−L

∣∣ · ∣∣g(x)
∣∣+|L| · ∣∣g(x)−M

∣∣. (A)

Because lim
x→c

f (x)= L and lim
x→c

g(x)= M, we can make the expressions
∣∣ f (x)−L

∣∣
and |L| · ∣∣g(x)−M

∣∣ in (A) arbitrarily small by making |x− c| sufficiently small.
But the term

∣∣ f (x)−L
∣∣ ·∣∣g(x)

∣∣ is a problem. For all we know,
∣∣g(x)

∣∣ could grow
large as

∣∣ f (x)−L
∣∣ shrinks. To deal with this, choose some δ′ > 0 small enough

so that 0< |x− c| < δ′ implies
∣∣g(x)−M

∣∣< 1. Then as long as 0< |x− c| < δ′,∣∣g(x)
∣∣= ∣∣(g(x)−M

)+M
∣∣≤ ∣∣g(x)−M

∣∣+|M| < 1+|M|.

Replacing the factor of
∣∣g(x)

∣∣ in (A) with the larger quantity 1+|M|, we get∣∣ f (x)g(x)−LM
∣∣< ∣∣ f (x)−L

∣∣ · (1+|M|)+|L| · ∣∣g(x)−M
∣∣, (B)

which holds provided 0< |x− c| < δ′.
Choose δ′′ > 0 such that 0 < |x − c| < δ′′ implies

∣∣ f (x) − L
∣∣ < ε

2(1+|M|) .
Also choose δ′′′ > 0 such that 0 < |x − c| < δ′′′ implies

∣∣g(x) − M
∣∣ < ε

2|L| .
Now put δ=min

{
δ′,δ′′,δ′′′

}
. If 0< |x− c| < δ, then (B) becomes

∣∣ f (x)g(x)−LM
∣∣< ε

2(1+|M|) ·
(
1+|M|)+|L| · ε

2|L| =
ε

2
+ ε

2
= ε.

To summarize, we’ve shown that for any ε > 0, there is a δ > 0 for which
0< |x− c| < δ implies

∣∣ f (x)g(x)−LM
∣∣< ε. Therefore lim

x→c
f (x)g(x)= LM. ■

Our final rule has proof similar to that of the multiplication rule. We
just have to take a little extra care with the denominators.

Theorem 13.8 (Division rule)

If both lim
x→c

f (x) and lim
x→c

g(x) exist, and lim
x→c

g(x) 6= 0, then lim
x→c

f (x)
g(x)

=
lim
x→c

f (x)

lim
x→c

g(x)
.
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Proof. Suppose lim
x→c

f (x)= L and lim
x→c

g(x)= M 6= 0. We must prove lim
x→c

f (x)
g(x) = L

M .
To prove this, take ε > 0. We need to find a corresponding δ for which
0< |x− c| < δ implies

∣∣∣ f (x)
g(x) − L

M

∣∣∣< ε. With this in mind, notice that

∣∣∣∣ f (x)
g(x)

− L
M

∣∣∣∣= ∣∣∣∣ M f (x)−Lg(x)
M g(x)

∣∣∣∣= ∣∣∣∣
(
M f (x)−LM

)− (
Lg(x)−LM

)
M g(x)

∣∣∣∣
=

∣∣∣∣ 1
g(x)

(
f (x)−L

)− L
M g(x)

(
g(x)−M

)∣∣∣∣
≤

∣∣∣∣ 1
g(x)

(
f (x)−L

)∣∣∣∣+ ∣∣∣∣ L
M g(x)

(
g(x)−M

)∣∣∣∣
= 1∣∣g(x)

∣∣ · ∣∣ f (x)−L
∣∣+ 1∣∣g(x)

∣∣ ·
∣∣∣∣ L
M

∣∣∣∣ · ∣∣g(x)−M
∣∣. (A)

Because lim
x→c

f (x)= L and lim
x→c

g(x)= M, we can make the terms
∣∣ f (x)−L

∣∣ and∣∣ L
M

∣∣ · ∣∣g(x)−M
∣∣ in (A) arbitrarily small by making |x− c| sufficiently small.

To deal with the factor 1
|g(x)| , choose δ′ > 0 so that 0 < |x− c| < δ′ implies∣∣g(x)−M

∣∣< |M|
2 . So if 0< |x− c| < δ′, the inequality (13.3) assures us∣∣g(x)
∣∣= ∣∣M+ (

g(x)−M
)∣∣ ≥ ∣∣M∣∣− ∣∣g(x)−M

∣∣> ∣∣M∣∣− |M|
2 = |M|

2 .

That is,
∣∣g(x)

∣∣> |M|
2 , and consequently 1

|g(x)| < 2
|M| . Replacing the occurrences

of 1
|g(x)| in (A) with the larger value 2

|M| , we get∣∣∣∣ f (x)
g(x)

− L
M

∣∣∣∣< 2
|M| ·

∣∣ f (x)−L
∣∣+ ∣∣∣∣ 2L

M2

∣∣∣∣ · ∣∣g(x)−M
∣∣, (B)

which holds provided 0< |x− c| < δ′. Two cases finish the proof.
Case 1. Suppose L 6= 0. Choose δ′′ > 0 so 0< |x−c| < δ′′ implies

∣∣ f (x)−L
∣∣< ε|M|

4 .
Also choose δ′′′ > 0 so that 0 < |x− c| < δ′′′ implies

∣∣g(x)− M
∣∣ < ε

∣∣∣ M2

4L

∣∣∣. Put
δ=min

{
δ′,δ′′,δ′′′

}
. If 0< |x− c| < δ, then (B) yields∣∣∣∣ f (x)

g(x)
− L

M

∣∣∣∣ < 2
|M| ·

ε|M|
4

+
∣∣∣∣ 2L
M2

∣∣∣∣ ·ε ∣∣∣∣ M2

4L

∣∣∣∣= ε

2
+ ε

2
= ε.

Case 2. Suppose L = 0. Let δ′′ > 0 be such that 0 < |x− c| < δ′′ implies∣∣ f (x)−L
∣∣< ε|M|

2 . Putting δ=min
{
δ′,δ′′

}
, the inequality (B) becomes∣∣∣∣ f (x)

g(x)
− L

M

∣∣∣∣ < 2
|M|

ε|M|
2

= ε.

In each case we have shown that for any ε > 0, there is a δ > 0 for which
0< |x− c| < δ implies

∣∣∣ f (x)
g(x) − L

M

∣∣∣< ε, so the proof is finished. ■
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Though you may not have proved any limit laws in your calculus course,
you used them extensively. A common situation involved lim

x→c
f (x), where f (c)

was undefined because of a zero denominator. You learned to overcome this
by algebraically canceling the offending part of the denominator.

Example 13.6 Find lim
x→1

1
x −1
1− x

.

Here x approaches 1, but simply plugging in x = 1 gives
1
1−1
1−1 = 0

0 (undefined).
So we apply whatever algebra is needed to cancel the denominator 1− x,
and follow this with limit laws:

lim
x→1

1
x −1
1− x

= lim
x→1

1
x −1
1− x

x
x

(multiply quotient by 1= x
x )

= lim
x→1

(1− x)
(1− x)x

(distribute x on top)

= lim
x→1

1
x

(cancel the (1− x))

=
lim
x→1

1

lim
x→1

x
= 1

1
= 1. (apply limit laws)

Exercises for Section 13.4
1. Given two or more functions f1, f2, . . . , fn, suppose that lim

x→c
f i(x) exists for each

1≤ i ≤ n. Prove that lim
x→c

(
f1(x)+ f2(x)+·· ·+ fn(x)

)= lim
x→c

f1(x)+lim
x→c

f2(x)+·· ·+lim
x→c

fn(x).
Use induction on n, with Theorem 13.5 serving as the base case.

2. Given two or more functions f1, f2, . . . , fn, suppose that lim
x→c

f i(x) exists for each

1 ≤ i ≤ n. Prove that lim
x→c

(
f1(x) f2(x) · · · fn(x)

) = (
lim
x→c

f1(x)
)
·
(
lim
x→c

f2(x)
)
· · ·

(
lim
x→c

fn(x)
)
.

Use induction on n, with Theorem 13.7 serving as the base case.

3. Use the previous two exercises and the constant multiple rule (Theorem 13.4) to
prove that that if f (x) is a polynomial, then lim

x→c
f (x)= f (c) for any c ∈R.

4. Use Exercise 3 with a limit law to prove that if f (x)
g(x) is a rational function (a

polynomial divided by a polynomial), and g(c) 6= 0, then lim
x→c

f (x)
g(x) = f (c)

g(c) .

5. Use Definition 13.2 to prove that limits are unique in the sense that if lim
x→c

f (x)= L
and lim

x→c
f (x)= M, then L = M.

6. Prove the squeeze theorem: Suppose g(x) ≤ f (x) ≤ h(x) for all x ∈ R satisfying
0< |x− c| < δ for some δ> 0. If lim

x→c
g(x)= L = lim

x→c
h(x), then lim

x→c
f (x)= L.
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13.5 Continuity and Derivatives
A major purpose of limits is that they can give information about how a
function behaves near a “bad point” x = c. Even if f (c) is not defined, it may
be that lim

x→c
f (x)= L, for some number L. In this event we know that f (x)

becomes ever closer to L as x approaches the forbidden c.
Of course not every value x = c is a “bad point.” It could be that f (c) is

defined, and, moreover, lim
x→c

f (x)= f (c). If this is the case for every c in the
domain of f (x), then we say that f is continuous. Issues concerning whether
or not f is continuous are called issues of continuity.

In a first course in calculus it is easy to overlook the huge importance
of continuity. And happily, we can (in a first course) almost ignore it. But
in fact, the theoretical foundation of calculus rests on continuity. Roughly
speaking, there are countless theorems having the form

If f is continuous, then f has some significant property.

Continuity allows us to draw certain important conclusions about a function.
Here is its definition.

Definition 13.3 A function f (x) is continuous at x = c if lim
x→c

f (x)= f (c).
Note that this means all of the following three conditions must be met:

1. f (c) is defined,
2. lim

x→c
f (x) exists,

3. lim
x→c

f (x)= f (c).
If one or more of these conditions fail, then f (x) is discontinuous at c.

To illustrate this definition, five functions f (x) are graphed below. Only
the function on the far right is continuous at x = c.

c c c c c

1,3 fail 3 fails 2,3 fail 1,2,3 fail 1,2,3 all hold︸ ︷︷ ︸
f (x) is discontinuous at x = c

f (x) is continuous at x = c
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Most familiar functions are continuous at each point x = c in their domain.
For instance, exercises 3 and 4 in the previous section imply that polynomials
and rational functions are continuous at any number c in their domains.

One application of continuity is a limit law for composition. The previous
section might prompt us to conjecture that lim

x→c
f
(
g(x)

)= f
(
lim
x→c

g(x)
)
. However,

this does not hold without an assumption of continuity.

Theorem 13.9 (Composition rule)
If lim

x→c
g(x)= L and f is continuous at x = L, then lim

x→c
f
(
g(x)

)= f
(
lim
x→c

g(x)
)
.

Proof. Suppose lim
x→c

g(x)= L and f is continuous at x = L. We need to show
lim
x→c

f
(
g(x)

)= f (L). According to Definition 13.2, for any ε> 0 we must show
there is a corresponding δ> 0 for which 0< |x− c| < δ implies

∣∣ f
(
g(x)

)−L
∣∣< ε.

So let ε> 0. As f is continuous at L, Definition 13.3 yields lim
x→L

f (x)= f (L).
From this, we know there is a real number δ′ > 0 for which

|x−L| < δ′ implies
∣∣ f (x)− f (L)

∣∣< ε. (A)

But also, from lim
x→c

g(x)= L, we know that there is a real number δ > 0 for
which 0< |x− c| < δ implies

∣∣g(x)−L
∣∣< δ′.

If 0 < |x− c| < δ, then we have
∣∣g(x)−L

∣∣ < δ′, and from this (A) yields∣∣ f
(
g(x)

)− f (L)
∣∣< ε. Thus lim

x→c
f
(
g(x)

)= f (L), and the proof is complete. ■

In calculus you learned that the derivative of a real-valued function f
is another function f ′ for which f ′(c) is defined as

f ′(c)= lim
x→c

f (x)− f (c)
x− c

,

provided the limit exists (in which case we say f is differentiable at c).
You may recall that differentiability implies continuity.

Theorem 13.10 If f is differentiable at c, then f is continuous at c.

Proof. Suppose f is differentiable at c, so lim
x→c

f (x)− f (c)
x−c = f ′(c). Write f (x) as

f (x)= f (x)− f (c)
x− c

(x− c)+ f (c).

Taking limits of both sides and using limit laws,

lim
x→c

f (x)=
(
lim
x→c

f (x)− f (c)
x− c

)
·
(
lim
x→c

(x− c)
)
+ lim

x→c
f (c)= f ′(c) ·0+ f (c)= f (c).

Thus lim
x→c

f (x)= f (c), which means f is continuous at c. ■
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Exercises for Section 13.5
1. Prove that the function f (x)=p

x is continuous at any number c > 0. Deduce that
lim
x→c

√
g(x)=

√
lim
x→c

g(x), provided lim
x→c

g(x) exists and is greater than zero.

2. Show that the condition of continuity in Theorem 13.9 is necessary by finding
functions f and g for which lim

x→c
g(x)= L, and f is not continuous at x = L, and

lim
x→c

f
(
g(x)

) 6= f
(
lim
x→c

g(x)
)
.

13.6 Limits at Infinity
For some functions f (x), limits such as lim

x→∞ f (x) and lim
x→−∞ f (x) make sense.

Consider the function graphed below. As x moves to the right (towards
positive infinity) the corresponding f (x) value approaches 2. We express
this in symbols as lim

x→∞ f (x)= 2. Such a limit is called a limit at infinity,
which is a bit of a misnomer because x is never “at” infinity, just moving
toward it.

x

y

2

−1

x −→x −→x −→

f (x)→

y= f (x)

The graph squeezes in on the dashed horizontal line y= 2 as x moves to ∞.
This line is called a horizontal asymptote of the function f (x). It is not a
part of the graph, but it helps us visualize the behavior of f (x) as x grows.

Also, in this picture, as x moves to the left (toward negative infinity),
the corresponding value f (x) approaches −1. We express this in symbols as
lim

x→−∞ f (x)=−1. The horizontal line y=−1 is a second horizontal asymptote
of this function f (x).

In general, lim
x→∞ f (x)= L means that f (x) is arbitrarily close to L, provided

that x is sufficiently large (i.e., “provided that x is sufficiently close to ∞”).
In other words, given any ε > 0, there is a number N > 0 (possibly quite
large) such that x > N implies

∣∣ f (x)−L
∣∣< ε. This is illustrated below.
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x

y

L

L+ε

L−ε

N x

f (x)

y= f (x)

Analogously, for x approaching −∞, we say lim
x→−∞ f (x)= L means that f (x)

is arbitrarily close to L, provided x is a sufficiently close to −∞. In other
words, given any ε > 0, there is a number N < 0 such that x < N implies∣∣ f (x)−L

∣∣< ε. Here is a summary of these ideas.

Definition 13.4 (Limits at Infinity)
1. The statement lim

x→∞ f (x)= L means that for any real ε> 0, there is a
number N > 0 for which x > N implies | f (x)−L| ≤ ε.

2. The statement lim
x→−∞ f (x)= L means that for any real ε> 0, there is a

number N < 0 for which x < N implies | f (x)−L| ≤ ε.

Example 13.7 Investigate lim
x→∞

sin(x)
x

.

For any x ∈R, we know that −1≤ sin(x)≤ 1. Consequently we would expect
sin(x)

x to be very small when x is large, that is, we expect lim
x→∞

sin(x)
x = 0.

Let us use Definition 13.4 to prove this. Given ε> 0, put N = 1
ε
. If x > N,

then x > 1
ε
, so 1

x < ε, and hence −ε< 1
x sin(x)< ε, meaning

∣∣ sin(x)
x

∣∣< ε.
In summary, given ε > 0, there is an N > 0 for which x > N implies∣∣ sin(x)

x −0
∣∣< ε. By Definition 13.4, lim

x→∞
sin(x)

x = 0.

x

y

1 y= sin(x)
x

In a similar manner we can prove lim
x→−∞

sin(x)
x = 0. Thus the x-axis y= 0 is

a horizontal asymptote to sin(x)
x , as illustrated above.
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Of course, not every limit at infinity will exist. Consider lim
x→∞x2. As x

goes to infinity, the quantity x2 approaches infinity too. Common sense says
the limit does not exist because x2 eventually exceeds any finite number L.
But it’s good practice to prove this common-sensical statement.

Suppose for the sake of contradiction that lim
x→∞x2 = L for some L ∈R. Let

ε= 1, and apply Definition 13.4 to get a number N for which x > N implies∣∣x2 −L
∣∣< 1. The inequality (13.3) yields |x2|− |L| = |x2|− |−L| ≤ ∣∣x2 + (−L)

∣∣=∣∣x2 −L
∣∣< 1. In other words, x2 −|L| < 1, or x2 < 1+|L| for all x > N. But this

is false for those x that are bigger than both N and 1+|L|, a contradiction.
Even though lim

x→∞x2 does not exist, we allow the notation lim
x→∞x2 = ∞

to indicate that x2 grows without bound as x goes to infinity. In general,
lim
x→∞ f (x)=∞ means that f (x) eventually exceeds any number L:

1. lim
x→∞ f (x) =∞ means that for any real number L, there is a positive N
for which x > N implies f (x)> L.

2. lim
x→∞ f (x)=−∞ means that for any real number L, there is a positive N
for which x > N implies f (x)< L.

Limits of the form lim
x→∞ f (x)=±∞ play a small role in the next section.

Exercises for Section 13.6
Use Definition 13.4 to prove the following results. (Where appropriate, you may
wish to adapt the corresponding proofs from Section 13.4.)

1. lim
x→∞

1
xn = 0 if n ∈N. 2. lim

x→∞
3x+2
2x−1 = 3

2 . 3. If a ∈R, then lim
x→∞ a = a.

4. If lim
x→∞ f (x) exists, and a ∈R, then lim

x→∞ af (x)= a lim
x→∞ f (x).

5. If both lim
x→∞ f (x) and lim

x→∞ g(x) exist, then lim
x→∞

(
f (x)+ g(x)

)= lim
x→∞ f (x)+ lim

x→∞ g(x).

6. If both lim
x→∞ f (x) and lim

x→∞ g(x) exist, then lim
x→∞ f (x)g(x)=

(
lim
x→∞ f (x)

)
·
(

lim
x→∞ g(x)

)
.

7. If both lim
x→∞ f (x) and lim

x→∞ g(x) exist, then lim
x→∞

(
f (x)− g(x)

)= lim
x→∞ f (x)− lim

x→∞ g(x).

8. If both lim
x→∞ f (x) and lim

x→∞ g(x) exist, and lim
x→∞ g(x) 6= 0, then lim

x→∞
f (x)
g(x)

=
lim
x→∞ f (x)

lim
x→∞ g(x)

.

9. If lim
x→∞ g(x)= L and f is continuous at x = L, then lim

x→∞ f
(
g(x)

)= f
(

lim
x→∞ g(x)

)
.

10. Prove that lim
x→∞sin(x) does not exist.
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13.7 Sequences
Our final two sections treat sequences and series, topics usually covered in
a second semester of calculus.

Recall that a sequence is an infinitely long list of real numbers
a1, a2, a3, a4, a5, . . .

The number a1 is called the first term, a2 is the second term, a3 is the third
term, and so on. For example, the sequence

2, 3
4 , 4

9 , 5
16 , 6

25 , 7
36 , . . .

has nth term an = n+1
n2 . The nth term is sometimes called the general term.

We can define a sequence by giving a formula for its general term. The
sequence with general term an = (−1)n+1(n+1)

n is
2, −3

2 , 4
3 , −5

4 , 6
5 , −7

5 , · · · .
We denote a sequence with nth term an as

{
an

}
. For example, the three

sequences displayed above are denoted compactly as
{
an} and

{ n+1
n2

}
and{

(−1)n+1(n+1)
n

}
, respectively. In this manner, the sequence

{
n2 +1

}
is

2, 5, 10, 17, 26, 37, · · · .
Sometimes we define a sequence by writing down its first several terms,

with the agreement that the general term is implied by the number pattern.
For instance, the sequence

1, 4, 9, 16, 25, · · ·
is understood to be

{
n2}

because n2 is the most obvious formula that matches
the first six terms. But be alert to the fact that a finite number of terms can
never completely and unambiguously specify an infinite sequence. For all
we know, the nth term of 1,4,9,16,25, . . . might not be an = n2, but actually
an = n2 + (n−1)(n−2)(n−3)(n−4)(n−5). This agrees with the first five listed
terms, but the sixth term is a6 = 156, not the expected a6 = 36.

A sequence
{
an} can be regarded as a function f :N→R, where f (n)= an.

For example, the sequence
{
1− 1

n
}
is the function f (n)= 1− 1

n . In this sense
we can graph a sequence; but the graph looks like a string of beads rather
than a curve, because the domain is N, not R. Here is the graph of

{
1− 1

n
}
.

n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

· · ·1

1
2

Free PDF version



262 Proofs in Calculus

Roughly speaking, we say a sequence
{
an} converges to a number L if

the numbers an get closer and closer to L as n gets bigger and bigger.
For example, the sequence

{
1− 1

n
}
from the previous page converges to

L = 1, because as n gets big, the number 1− 1
n approaches 1.

In general, proving facts about convergence requires a precise definition.
For this, we can adapt the definition of a limit at infinity from Section 13.6.
The sequence

{
an

}
converges to L if an can be made arbitrarily close to L by

choosing n sufficiently large. Here is the exact definition.

Definition 13.5 A sequence
{
an

}
converges to a number L ∈R provided

that for any ε> 0 there is an N ∈N for which n > N implies
∣∣an −L

∣∣< ε.
If

{
an

}
converges to L, we denote this state of affairs as lim

n→∞an = L.

If
{
an

}
does not converge to any number L, the we say it diverges.

Definition 13.5 is illustrated below. For any ε> 0 (no matter how small),
there is an integer N for which the terms an of the sequence lie between
L−ε and L+ε provided n > N. Smaller values of ε require larger values of N.
But no matter how small ε is, there is a (possibly quite large) number N for
which an is within ε units from L when n > N.

n

an

L

L+ε

L−ε

N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

For our first example, let’s return to the sequence
{
1− 1

n
}
, which is

graphed on the previous page (page 261). Notice that as n gets large, 1
n

approaches 0, and 1− 1
n approaches 1. So we can see that the sequence

converges to 1. But let’s prove this, in order to illustrate Definition 13.5.

Example 13.8 Prove that the sequence
{
1− 1

n
}
converges to 1.

Proof. Suppose ε> 0. Choose an integer N > 1
ε
, so that 1

N < ε. Then if n > N
we have

∣∣an −1
∣∣ = ∣∣(1− 1

n
)−1

∣∣ = 1
n < 1

N < ε. By Definition 13.5 the sequence{
1− 1

n
}
converges to 1. ■
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Example 13.9 Investigate the sequence
{

(−1)n+1(n+1)
n

}
.

The first few terms of this sequence are 2,−3
2 , 4

3 ,−5
4 , 6

5 ,−7
6 , · · · . The terms

alternate between positive and negative, with the odd terms positive and
the even terms negative. Here is a graph of the sequence.

n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

· · ·

· · ·

1

−1

The picture suggests that as n increases, the terms bounce back and forth
between values that are alternately close to 1 and −1. This is also evident by
inspection of the general term an = (−1)n+1(n+1)

n , because n+1
n approaches 1 as

n grows toward infinity, while the power of −1 alternates the sign. Because
the general term does not approach any single number, it appears that this
sequence diverges. Now let’s set out to prove this. Our proof formalizes the
idea that if the sequence did converge to a number L, then L would have to
be within ε units of both −1 and 1, and this is impossible if ε< 1.

Proof. Suppose for the sake of contradiction that the sequence
{ (−1)n+1(n+1)

n
}

converges to a real number L. Let ε= 1. By Definition 13.5 there is an N ∈N
for which n > N implies

∣∣ (−1)n+1(n+1)
n −L

∣∣< 1.
If n is odd, then the nth term of the sequence is an = (−1)n+1(n+1)

n = n+1
n > 1.

For n even, the nth term of the sequence is is an = (−1)n+1(n+1)
n = − n+1

n < −1.
Take an odd number m > N and an even number n > N. The above three
lines yield

2= 1− (−1) < am −an (because 1< am and 1<−an)
= ∣∣am −an

∣∣ (am −an is positive)
= ∣∣(am −L

)− (
an −L

)∣∣ (add 0= L−L to am −an)
≤ ∣∣am −L

∣∣+ ∣∣an −L
∣∣ (using |x− y| < |x|+ |y|)

< 1+1= 2. (because
∣∣an −L

∣∣≤ 1 when n > N)

Thus 2< 2, which is a contradiction. Consequently the series diverges. ■
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For another example of a sequence that diverges, consider 1,4,9,16,25, . . .
whose nth term is an = n2. Clearly this diverges, because lim

n→∞n2 =∞, which
is not a number. In such a case we say that the sequence diverges to ∞.

Definition 13.6 (Divergence to infinity)
1. We say a sequence

{
an

}
diverges to ∞ if lim

n→∞an =∞. This means
that for any L > 0, there is a positive N for which n > N implies an > L.

2. We say a sequence
{
an

}
diverges to −∞ if lim

n→∞an =−∞. This means
that for any L < 0, there is a positive N for which n > N implies an < L.

This definition spells out a condition called divergence to ∞. But we
haven’t yet proved that a sequence meeting this condition actually diverges
in the sense of Definition 13.5. Exercise 7 below asks you to do this.

Exercises for Section 13.7
1. Prove that

{
2n

n!

}
converges to 0. 2. Prove that

{
5+ 2

n2

}
converges to 5.

3. Prove that
{

2n2+1
3n−1

}
diverges to ∞. 4. Prove that

{
1− 1

2n
}
converges to 1.

5. Prove that
{ 2n+1

3n−1
}
converges to 2

3 . 6. Prove that
{

5n2+n+1
4n2+2

}
converges to 5

4 .

7. Prove that if a sequence diverges to infinity, then it diverges.

8. Prove that the constant sequence c, c, c, c, . . . converges to c, for any c ∈R.

9. Prove that if
{
an

}
converges to L, and c ∈R, then the sequence

{
can

}
converges

to cL.

10. Prove that if
{
an

}
converges to L and

{
bn

}
converges to M, then the sequence{

an +bn
}
converges to L+M.

11. Prove that if
{
an

}
converges to L and

{
bn

}
converges to M, then the sequence{

anbn
}
converges to LM.

12. Prove that if
{
an

}
converges to L and

{
bn

}
converges to M 6= 0, then the sequence{ an

bn

}
converges to L

M . (You may assume bn 6= 0 for each n ∈N.)

13. For any sequence
{
an

}
, there is a corresponding sequence

{|an|
}
. Prove that if{|an|

}
converges to 0, then

{
an

}
converges to 0. Give an example of a sequence{

an
}
for which

{|an|
}
converges to a number L 6= 0, but

{
an

}
diverges.

14. Suppose that
{
an

}
,

{
bn

}
, and

{
cn

}
are sequences for which an ≤ bn ≤ cn for all

sufficiently large n. (That is, an ≤ bn ≤ cn for all n > M for some integer M.) Prove
that if

{
an

}
and

{
cn

}
converge to L, then

{
bn

}
also converges to L.
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13.8 Series
You may recall from your calculus course that there is a big difference
between a sequence and a series.

A sequence is an infinite list a1, a2, a3, a4, a5, a6, · · · .
But a series is an infinite sum a1 +a2 +a3 +a4 +a5 +a6 + ·· · .
We use the notation

{
an

}
to denote the sequence a1, a2, a3, a4, . . ., but we

use sigma notation to denote a series:
∞∑

k=1
ak = a1 +a2 +a3 +a4 +a5 +a6 + ·· · .

For example,
∞∑

k=1

1
2k = 1

2
+ 1

4
+ 1

8
+ 1

16
+ 1

32
+ 1

64
+ ·· · .

You may have a sense that this series should sum to 1, whereas
∞∑

k=1

k+1
k

= 2
1
+ 3

2
+ 4

3
+ 5

4
+ 6

5
+ 7

6
+ ·· ·

equals ∞ because every fraction in the infinite sum is greater than 1.
Series are significant in calculus because many complex functions can be

expressed as series involving terms built from simple algebraic operations.
For example, your calculus course may have developed the Maclaurin series
for various functions, such as

cos(x) =
∞∑

k=0

(−1)k

(2k)!
x2k = 1− x2

2!
+ x4

4!
− x6

6!
+ x8

8!
− x10

10!
+·· · .

But before we make any progress with series, it is essential that we
clearly specify what it means to add up infinitely many numbers. We need
to understand the situations in which this does and does not make sense.

The key to codifying whether or not a series
∞∑

k=1
ak = a1 +a2 +a3 +a4 +a5 +a6 +a7 +a8 +a9 · · ·

adds up to a finite number is to terminate it at an arbitrary nth term:
n∑

k=1
ak = a1 +a2 +a3 +a4 +a5 +a6 +·· ·+an.

This is sum called the nth partial sum of the series, and is denoted as sn.
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The series has a partial sum sn for each positive integer n:

s1 = a1

s2 = a1 +a2

s3 = a1 +a2 +a3

s4 = a1 +a2 +a3 +a4

s5 = a1 +a2 +a3 +a4 +a5
...

sn = a1 +a2 +a3 +a4 +a5 +·· ·+an =
n∑

k=1
ak.

...

If indeed the infinite sum S =
∞∑

k=1
ak makes sense, then we expect that the

partial sum sn =
n∑

k=1
ak is a very good approximation to S when n is large.

Moreover, the larger n gets, the closer sn should be to S. In other words,
the sequence s1, s2, s3, s4, s5, . . . of partial sums should converge to S. This
leads to our main definition. We say that an infinite series converges if its
sequence of partial sums converges.

Definition 13.7 A series
∞∑

k=1
ak converges to a real number S if its

sequence of partial sums
{
sn

}
converges to S. In this case we say

∞∑
k=1

ak = S.

We say
∞∑

k=1
ak diverges if the sequence

{
sn

}
diverges. In this case

∞∑
k=1

ak

does not make sense as a sum or does not sum to a finite number.

Example 13.10 Prove that
∞∑

k=1

1
2k = 1.

Proof. Consider the partial sum sn = 1
21 + 1

22 + 1
23 +·· ·+ 1

2n . We can get a neat
formula for sn by noting sn = 2sn − sn. Then simplify and cancel like terms:

sn = 2sn − sn = 2
(

1
21 + 1

22 + 1
23 +·· ·+ 1

2n−1 + 1
2n

)
−

(
1
21 + 1

22 + 1
23 +·· ·+ 1

2n−1 + 1
2n

)
=

(
2
21 + 2

22 + 2
23 +·· ·+ 2

2n−1 + 2
2n

)
−

(
1
21 + 1

22 + 1
23 +·· ·+ 1

2n−1 + 1
2n

)
=

(
1+ 1

21 + 1
22 +·· ·+ 1

2n−2 + 1
2n−1

)
−

(
1
21 + 1

22 + 1
23 +·· ·+ 1

2n−1 + 1
2n

)
= 1− 1

2n .

Thus sn = 1− 1
2n , so the sequence of partial sums is

{
sn

} = {
1− 1

2n

}
, which

converges to 1 by Exercise 13.7.4. Definition 13.7 yields
∞∑

k=1

1
2k = 1. ■
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Despite the previous example, in practice definitions 13.7 and 13.5 are
rarely used to prove that a particular sequence or series converges to a
particular number. Instead we tend to use a multitude of convergence tests
that are covered in a typical calculus course. Examples of such tests include
the the comparison test, the ratio test, the root test and the alternating series
test. You learned how to use these tests and techniques in your calculus
course, though that course may not have actually proved that the tests were
valid. The point of our present discussion is that definitions 13.7 and 13.5
can be used to prove the tests. To underscore this point, this section’s
exercises ask you to prove several convergence tests.

By way of illustration, we close with a proof of a theorem that leads to a
test for divergence.

Theorem 13.11 If
∞∑

k=1
ak converges, then the sequence

{
an

}
converges to 0.

Proof. We use direct proof. Suppose
∞∑

k=1
ak converges, and say

∞∑
k=1

ak = S.

Then by Definition 13.7, the sequence of partial sums
{
sn

}
converges to S.

From this, Definition 13.5 says that for any ε> 0 there is an N ∈N for which
n > N implies

∣∣sn −S
∣∣< ε. Thus also n−1> N implies

∣∣sn−1 −S
∣∣< ε.

We need to show that
{
an

}
converges to 0. So take ε> 0. By the previous

paragraph, there is an N ′ ∈ N for which n > N ′ implies
∣∣sn − S

∣∣ < ε
2 and∣∣sn−1 −S

∣∣< ε
2 . Notice that an = sn − sn−1 for any n > 2. So if n > N ′ we have∣∣an −0

∣∣= ∣∣sn − sn−1
∣∣ = ∣∣(sn −S

)− (
sn−1 −S

)∣∣
≤ ∣∣sn −S

∣∣ + ∣∣sn−1 −S
∣∣ < ε

2
+ ε

2
= ε.

Therefore, by Definition 13.5, the sequence
{
an

}
converges to 0. ■

The contrapositive of this theorem is a convenient test for divergence:
Corollary 13.1 (Divergence test) If

{
an

}
diverges, or if it converges to a

non-zero number, then
∞∑

k=1
ak diverges.

For example, according to the divergence test, the series
∞∑

k=1

(
1− 1

k
)

diverges, because the sequence
{
1− 1

n
}
converges to 1. Also,

∞∑
k=1

(−1)k+1(k+1)
k

diverges because
{

(−1)n+1(n+1)
n

}
diverges. (See Example 13.9 on page 263.)

The divergence test gives only a criterion for deciding if a series diverges.
It says nothing about convergence. If

{
an

}
converges to 0, then

∞∑
k=1

ak may
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or may not converge, depending on the particular series. Certainly if
∞∑

k=1
ak

converges, then
{
an

}
converges to 0, by Theorem 13.11. But

{
an

}
converging

to 0 does not necessarily mean that
∞∑

k=1
ak converges. A significant example

of this is the so-called harmonic series:
∞∑

k=1

1
k

= 1+ 1
2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+·· · .

According to Exercise 21 in Chapter 10, if we go out as far as 2n terms, then
the 2nth partial sum satisfies

s2n = 1
1
+ 1

2
+ 1

3
+ 1

4
+·· ·+ 1

2n−1 + 1
2n ≥ 1+ n

2
.

Because 1+ n
2 grows arbitrarily large as n increases, the sequence of partial

sums diverges to ∞. Consequently the harmonic series diverges.

Exercises for Section 13.8
Use Definition 13.7 (and Definition 13.5, as needed) to prove the following results.
Solutions for these exercises are not included in the back of the book, for they can
be found in most good calculus texts. In the exercises we abbreviate

∞∑
k=1

ak as ∑
ak.

1. A geometric series is one having the form a+ar+ar2+ar3 · · · , where a, r ∈R. (The
first term in the sum is a, and beyond that, the kth term is r times the previous
term.) Prove that if |r| < 1, then the series converges to a

1−r . Also, if a 6= 0 and
|r| ≥ 1, then the series diverges. (If you need guidance, you may draw inspiration
from Example 13.10, which concerns a geometric series with a = r = 1

2 .)

2. Prove the comparison test: Suppose ∑
ak and ∑

bk are series. If 0 ≤ ak ≤ bk for
each k, and ∑

bk converges, then ∑
ak converges. Also, if 0 ≤ bk ≤ ak for each k,

and ∑
bk diverges, then ∑

ak diverges.

3. Prove the limit comparison test: Suppose ∑
ak and ∑

bk are series for which
ak,bk > 0 for each k. If lim

n→∞
ak
bk

= 0 and ∑
bk converges, then ∑

ak converges. (Your
proof may use any of the above exercises.)

4. Prove the absolute convergence test: Let ∑
ak be a series. If ∑ |ak| converges, then∑

ak converges. (Your proof may use any of the above exercises.)

5. Prove the ratio test: Given a series ∑
ak with each ak positive, if lim

n→∞
ak+1
ak

= L < 1,
then ∑

ak converges. Also, if L > 1, then ∑
ak diverges. (Your proof may use any

of the above exercises.)
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CHAPTER 14

Cardinality of Sets

This chapter is all about cardinality of sets. At first this looks like a very
simple concept. To find the cardinality of a set, just count its elements.

If A = {
a,b, c,d

}
, then |A| = 4; if B = {

n ∈Z :−5≤ n ≤ 5
}
, then |B| = 11. In this

case |A| < |B|. What could be simpler than that?
Actually, the idea of cardinality becomes quite subtle when the sets

are infinite. The main point of this chapter is to explain how there are
numerous different kinds of infinity, and some infinities are bigger than
others. Two sets A and B can both have infinite cardinality, yet |A| < |B|.
14.1 Sets with Equal Cardinalities
We begin with a discussion of what it means for two sets to have the same
cardinality. Up until this point we’ve said |A| = |B| if A and B have the same
number of elements: Count the elements of A, then count the elements of
B. If you get the same number, then |A| = |B|.

Although this is a fine strategy if the sets are finite (and not too big!),
it doesn’t apply to infinite sets because we’d never be done counting their
elements. We need a new approach that applies to both finite and infinite
sets. Here it is:

Definition 14.1 Two sets A and B have the same cardinality, written
|A| = |B|, if there exists a bijective function f : A → B. If no such bijective
f exists, then the sets have unequal cardinalities, written |A| 6= |B|.

e
d
c
b
a

4
3
2
1
0

A B
f

The above picture illustrates our definition. There is a bijective function
f : A → B, so |A| = |B|. The function f matches up A with B. Think of f as
describing how to overlay A onto B so that they fit together perfectly.
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On the other hand, if A and B are as indicated in either of the following
figures, then there can be no bijection f : A → B. (The best we can do is a
function that is either injective or surjective, but not both.) Therefore the
definition says |A| 6= |B| in these cases.

d
c
b
a

4
3
2
1
0

A B
f

d
c
b
a

e
3
2
1
0

A B
f

Example 14.1 The sets A = {
n ∈ Z : 0 ≤ n ≤ 5

}
and B = {

n ∈ Z : −5 ≤ n ≤ 0
}

have the same cardinality because there is a bijective function f : A → B
given by the rule f (n)=−n.

Several comments are in order. First, if |A| = |B|, there can be lots of
bijective functions from A to B. We only need to find one of them in order to
conclude |A| = |B|. Second, as bijective functions play such a big role here,
we use the word bijection to mean bijective function. Thus the function
f (n) = −n from Example 14.1 is a bijection. Also, an injective function is
called an injection and a surjective function is called a surjection.

We emphasize and reiterate that Definition 14.1 applies to finite as well
as infinite sets. If A and B are infinite, then |A| = |B| provided there exists
a bijection f : A → B. If no such bijection exists, then |A| 6= |B|.
Example 14.2 This example shows that |N| = |Z|. To see why this is true,
notice that the following table describes a bijection f :N→Z.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

f (n) 0 1 −1 2 −2 3 −3 4 −4 5 −5 6 −6 7 −7 . . .

Notice that f is described in such a way that it is both injective and surjective.
Every integer appears exactly once on the infinitely long second row. Thus,
according to the table, given any b ∈ Z there is some natural number n
with f (n) = b, so f is surjective. It is injective because the way the table
is constructed forces f (m) 6= f (n) whenever m 6= n. Because of this bijection
f :N→Z, we must conclude from Definition 14.1 that |N| = |Z|.

Example 14.2 may seem slightly unsettling. On one hand it makes sense
that |N| = |Z| because N and Z are both infinite, so their cardinalities are
both “infinity.” On the other hand, Zmay seem twice as large as N because Z
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has all the negative integers as well as the positive ones. Definition 14.1
settles the issue. Because the bijection f :N→ Z matches up N with Z, it
follows that |N| = |Z|. We summarize this with a theorem.
Theorem 14.1 There exists a bijection f :N→Z. Therefore |N| = |Z|.

The fact thatN andZ have the same cardinalitymight prompt us compare
the cardinalities of other infinite sets. How, for example, doN and R compare?
Let’s turn our attention to this.

In fact, |N| 6= |R|. This was first recognized by Georg Cantor (1845–1918),
who devised an ingenious argument to show that there are no surjective
functions f : N→ R. (This in turn implies that there can be no bijections
f :N→R, so |N| 6= |R| by Definition 14.1.)

We now describe Cantor’s argument for why there are no surjections
f :N→R. We will reason informally, rather than writing out an exact proof.
Take any arbitrary function f :N→R. Here’s why f can’t be surjective:

Imagine making a table for f , where values of n in N are in the left-hand
column and the corresponding values f (n) are on the right. The first few
entries might look something as follows. In this table, the real numbers f (n)
are written with all their decimal places trailing off to the right. Thus, even
though f (1) happens to be the real number 0.4, we write it as 0.40000000. . . .,
etc.

n f (n)

1 0 . 4 0 0 0 0 0 0 0 0 0 0 0 0 0. . .
2 8 . 5 0 0 6 0 7 0 8 6 6 6 9 0 0. . .
3 7 . 5 0 5 0 0 9 4 0 0 4 4 1 0 1. . .
4 5 . 5 0 7 0 4 0 0 8 0 4 8 0 5 0. . .
5 6 . 9 0 0 2 6 0 0 0 0 0 0 5 0 6. . .
6 6 . 8 2 8 0 9 5 8 2 0 5 0 0 2 0. . .
7 6 . 5 0 5 0 5 5 5 0 6 5 5 8 0 8. . .
8 8 . 7 2 0 8 0 6 4 0 0 0 0 4 4 8. . .
9 0 . 5 5 0 0 0 0 8 8 8 8 0 0 7 7. . .

10 0 . 5 0 0 2 0 7 2 2 0 7 8 0 5 1. . .
11 2 . 9 0 0 0 0 8 8 0 0 0 0 9 0 0. . .
12 6 . 5 0 2 8 0 0 0 8 0 0 9 6 7 1. . .
13 8 . 8 9 0 0 8 0 2 4 0 0 8 0 5 0. . .
14 8 . 5 0 0 0 8 7 4 2 0 8 0 2 2 6. . .

...
...
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There is a diagonal shaded band in the table. For each n ∈ N, this band
covers the nth decimal place of f (n):

The 1st decimal place of f (1) is the 1st entry on the diagonal.
The 2nd decimal place of f (2) is the 2nd entry on the diagonal.
The 3rd decimal place of f (3) is the 3rd entry on the diagonal.
The 4th decimal place of f (4) is the 4th entry on the diagonal, etc.

The diagonal helps us construct a number b ∈R that is unequal to any f (n).
Just let the nth decimal place of b differ from the nth entry of the diagonal.
Then the nth decimal place of b differs from the nth decimal place of f (n).
In order to be definite, define b to be the positive number less than 1 whose
nth decimal place is 0 if the nth decimal place of f (n) does not equal 0, and
whose nth decimal place is 1 if the nth decimal place of f (n) equals 0. Thus,
for the function f illustrated in the above table, we have

b = 0.01010001001000. . .

and b has been defined so that, for any n ∈N, its nth decimal place is unequal
to the nth decimal place of f (n). Therefore f (n) 6= b for every natural number
n, meaning f is not surjective.

Since this argument applies to any function f :N→R (not just the one in
the above example) we conclude that there exist no bijections f :N→R, so
|N| 6= |R| by Definition 14.1. We summarize this as a theorem.

Theorem 14.2 There exists no bijection f :N→R. Therefore |N| 6= |R|.

This is our first indication of how there are different kinds of infinities.
Both N and R are infinite sets, yet |N| 6= |R|. We will continue to develop this
theme throughout this chapter. The next example shows that the intervals
(0,∞) and (0,1) on R have the same cardinality.

∞

1


1

x

P

0−1

f (x)

Figure 14.1. A bijection f : (0,∞)→ (0,1). Imagine a light source at point P.
Then f (x) is the point on the y-axis whose shadow is x.
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Example 14.3 Show that |(0,∞)| = |(0,1)|.
To accomplish this, we need to show that there is a bijection f : (0,∞)→ (0,1).
We describe this function geometrically. Consider the interval (0,∞) as the
positive x-axis of R2. Let the interval (0,1) be on the y-axis as illustrated in
Figure 14.1, so that (0,∞) and (0,1) are perpendicular to each other.

The figure also shows a point P = (−1,1). Define f (x) to be the point on
(0,1) where the line from P to x ∈ (0,∞) intersects the y-axis. By similar
triangles, we have

1
x+1

= f (x)
x

,

and therefore
f (x)= x

x+1
.

If it is not clear from the figure that f : (0,∞)→ (0,1) is bijective, then you
can verify it using the techniques from Section 12.2. (Exercise 16, below.)

It is important to note that equality of cardinalities is an equivalence
relation on sets: it is reflexive, symmetric and transitive. Let us confirm
this. Given a set A, the identity function A → A is a bijection, so |A| = |A|.
(This is the reflexive property.) For the symmetric property, if |A| = |B|, then
there is a bijection f : A → B, and its inverse is a bijection f −1 : B → A, so
|B| = |A|. For transitivity, suppose |A| = |B| and |B| = |C|. Then there are
bijections f : A → B and g : B → C. The composition g◦ f : A → C is a bijection
(Theorem 12.2), so |A| = |C|.

The transitive property can be useful. If, in trying to show two sets A
and C have the same cardinality, we can produce a third set B for which
|A| = |B| and |B| = |C|, then transitivity assures us that indeed |A| = |C|. The
next example uses this idea.

Example 14.4 Show that |R| = |(0,1)|.
Because of the bijection g : R→ (0,∞) where g(x) = 2x, we have |R| = |(0,∞)|.
Also, Example 14.3 shows that |(0,∞)| = |(0,1)|. Therefore |R| = |(0,1)|.

So far in this chapter we have declared that two sets have “the same
cardinality” if there is a bijection between them. They have “different
cardinalities” if there exists no bijection between them. Using this idea,
we showed that |Z| = |N| 6= |R| = |(0,∞)| = |(0,1)|. So, we have a means of
determining when two sets have the same or different cardinalities. But
we have neatly avoided saying exactly what cardinality is. For example, we
can say that |Z| = |N|, but what exactly is |Z|, or |N|? What exactly are these
things that are equal? Certainly not numbers, for they are too big. And
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saying they are “infinity” is not accurate, because we now know that there
are different types of infinity. So just what kind of mathematical entity is
|Z|? In general, given a set X , exactly what is its cardinality |X |?

This is a lot like asking what a number is. A number, say 5, is an
abstraction, not a physical thing. Early in life we instinctively grouped
together certain sets of things (five apples, five oranges, etc.) and conceived
of 5 as the thing common to all such sets. In a very real sense, the number
5 is an abstraction of the fact that any two of these sets can be matched
up via a bijection. That is, it can be identified with a certain equivalence
class of sets under the “has the same cardinality as” relation. (Recall that
this is an equivalence relation.) This is easy to grasp because our sense of
numeric quantity is so innate. But in exactly the same way we can say that
the cardinality of a set X is what is common to all sets that can be matched
to X via a bijection. This may be harder to grasp, but it is really no different
from the idea of the magnitude of a (finite) number.

In fact, we could be concrete and define |X | to be the equivalence class of
all sets whose cardinality is the same as that of X . This has the advantage
of giving an explicit meaning to |X |. But there is no harm in taking the
intuitive approach and just interpreting the cardinality |X | of a set X to be
a measure the “size” of X . The point of this section is that we have a means
of deciding whether two sets have the same size or different sizes.

Exercises for Section 14.1
A. Show that the two given sets have equal cardinality by describing a bijection

from one to the other. Describe your bijection with a formula (not as a table).
1. R and (0,∞)

2. R and (
p

2,∞)

3. R and (0,1)

4. The set of even integers and
the set of odd integers

5. A = {
3k : k ∈Z}

and B = {
7k : k ∈Z}

6. N and S = {p
2

n : n ∈N}
7. Z and S = {

. . . , 1
8 , 1

4 , 1
2 ,1,2,4,8,16, . . .

}
8. Z and S = {

x ∈R : sin x = 1
}

9.
{
0,1

}×N and N
10.

{
0,1

}×N and Z
11. [0,1] and (0,1)

12. N and Z (Suggestion: use Exercise 18 of Section 12.2.)
13. P(N) and P(Z) (Suggestion: use Exercise 12, above.)
14. N×N and

{
(n,m) ∈N×N : n ≤ m

}
B. Answer the following questions concerning bijections from this section.

15. Find a formula for the bijection f in Example 14.2 (page 270).
16. Verify that the function f in Example 14.3 (page 273) is a bijection.
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14.2 Countable and Uncountable Sets
Let’s summarize the main points from the previous section.

1. |A| = |B| if and only if there exists a bijection A → B.
2. |N| = |Z| because there exists a bijection N→Z.
3. |N| 6= |R| because there exists no bijection N→R.
Thus, even though N, Z and R are all infinite sets, their cardinalities

are not all the same. The sets N and Z have the same cardinality, but R’s
cardinality is different from that of both the other sets. This means infinite
sets can have different sizes. We now make some definitions to put words
and symbols to this phenomenon.

In a certain sense you can count the elements of N; you can count its
elements off as 1,2,3,4, . . ., but you’d have to continue this process forever
to count the whole set. Thus we will call N a countably infinite set, and the
same term is used for any set whose cardinality equals that of N.

Definition 14.2 Suppose A is a set. Then A is countably infinite if
|N| = |A|, that is, if there exists a bijection N→ A. The set A is countable
if it is finite or countably infinite. The set A isuncountable if it is infinite
and |N| 6= |A|, that is, if A is infinite and there is no bijection N→ A.

Thus Z is countably infinite but R is uncountable. This section deals
mainly with countably infinite sets. Uncountable sets are treated later.

If A is countably infinite, then |N| = |A|, so there is a bijection f :N→ A.
Think of f as “counting” the elements of A. The first element of A is f (1),
followed by f (2), then f (3) and so on. It makes sense to think of a countably
infinite set as the smallest type of infinite set, because if the counting
process stopped, the set would be finite, not infinite; a countably infinite set
has the fewest elements that a set can have and still be infinite. We reserve
the special symbol ℵ0 to stand for the cardinality of countably infinite sets.

Definition 14.3 The cardinality of the natural numbers is denoted
as ℵ0. That is, |N| = ℵ0. Thus any countably infinite set has cardinality ℵ0.

(The symbol ℵ is the first letter in the Hebrew alphabet, and is pronounced
“aleph.” The symbol ℵ0 is pronounced “aleph naught.”) The summary of
facts at the beginning of this section shows |Z| = ℵ0 and |R| 6= ℵ0.
Example 14.5 Let E = {

2k : k ∈Z}
be the set of even integers. The function

f : Z→ E defined as f (n) = 2n is easily seen to be a bijection, so we have
|Z| = |E|. Thus, as |N| = |Z| = |E|, the set E is countably infinite and |E| = ℵ0.
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Here is a significant fact: The elements of any countably infinite set A
can be written in an infinitely long list a1, a2, a3, a4, . . . that begins with some
element a1 ∈ A and includes every element of A. For example, the set E in
the above example can be written in list form as 0, 2, −2, 4, −4, 6, −6, 8, −8, . . .
The reason that this can be done is as follows. Since A is countably infinite,
Definition 14.2 says there is a bijection f :N→ A. This allows us to list out
the set A as an infinite list f (1), f (2), f (3), f (4), . . . Conversely, if the elements
of A can be written in list form as a1,a2,a3, . . ., then the function f :N→ A
defined as f (n)= an is a bijection, so A is countably infinite. We summarize
this as follows.
Theorem 14.3 A set A is countably infinite if and only if its elements can
be arranged in an infinite list a1,a2,a3,a4, . . .

As an example of how this theorem might be used, let P denote the set
of all prime numbers. Since we can list its elements as 2,3,5,7,11,13, . . ., it
follows that the set P is countably infinite.

As another consequence of Theorem 14.3, note that we can interpret the
fact that the set R is not countably infinite as meaning that it is impossible
to write out all the elements of R in an infinite list. (After all, we tried to do
that in the table on page 271, and failed!)

This raises a question. Is it also impossible to write out all the elements
of Q in an infinite list? In other words, is the set Q of rational numbers
countably infinite or uncountable? If you start plotting the rational numbers
on the number line, they seem to mostly fill up R. Sure, some numbers
such as

p
2, π and e will not be plotted, but the dots representing rational

numbers seem to predominate. We might thus expect Q to be uncountable.
However, it is a surprising fact that Q is countable. The proof presented
below arranges all the rational numbers in an infinitely long list.
Theorem 14.4 The set Q of rational numbers is countably infinite.

Proof. To prove this, we just need to show how to write the set Q in list
form. Begin by arranging all rational numbers in an infinite array. This is
done by making the following chart. The top row has a list of all integers,
beginning with 0, then alternating signs as they increase. Each column
headed by an integer k contains all the fractions (in reduced form) with
numerator k. For example, the column headed by 2 contains the fractions
2
1 , 2

3 , 2
5 , 2

7 , . . ., and so on. It does not contain 2
2 ,

2
4 ,

2
6 , etc., because those are

not reduced, and in fact their reduced forms appear in the column headed
by 1. You should examine this table and convince yourself that it contains
all rational numbers in Q.
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0 1 −1 2 −2 3 −3 4 −4 5 −5 · · ·

0
1

1
1

−1
1

2
1

−2
1

3
1

−3
1

4
1

−4
1

5
1

−5
1 · · ·

1
2

−1
2

2
3

−2
3

3
2

−3
2

4
3

−4
3

5
2

−5
2 · · ·

1
3

−1
3

2
5

−2
5

3
4

−3
4

4
5

−4
5

5
3

−5
3 · · ·

1
4

−1
4

2
7

−2
7

3
5

−3
5

4
7

−4
7

5
4

−5
4 · · ·

1
5

−1
5

2
9

−2
9

3
7

−3
7

4
9

−4
9

5
6

−5
6 · · ·

1
6

−1
6

2
11

−2
11

3
8

−3
8

4
11

−4
11

5
7

−5
7 · · ·

1
7

−1
7

2
13

−2
13

3
10

−3
10

4
13

−4
13

5
8

−5
8 · · ·

...
...

...
...

...
...

...
...

...
...

. . .

Next, draw an infinite path in this array, beginning at 0
1 and snaking

back and forth as indicated below. Every rational number is on this path.

0 1 −1 2 −2 3 −3 4 −4 5 −5 · · ·

0
1

1
1

−1
1

2
1

−2
1

3
1

−3
1

4
1

−4
1

5
1

−5
1 · · ·

1
2

−1
2

2
3

−2
3

3
2

−3
2

4
3

−4
3

5
2

−5
2 · · ·

1
3

−1
3

2
5

−2
5

3
4

−3
4

4
5

−4
5

5
3

−5
3 · · ·

1
4

−1
4

2
7

−2
7

3
5

−3
5

4
7

−4
7

5
4

−5
4 · · ·

1
5

−1
5

2
9

−2
9

3
7

−3
7

4
9

−4
9

5
6

−5
6 · · ·

1
6

−1
6

2
11

−2
11

3
8

−3
8

4
11

−4
11

5
7

−5
7 · · ·

1
7

−1
7

2
13

−2
13

3
10

−3
10

4
13

−4
13

5
8

−5
8 · · ·

1
8

−1
8

2
15

−2
15

3
11

−3
11

4
15

−4
15

5
9

−5
9 · · ·

1
9

−1
9

2
17

−2
17

3
13

−3
13

4
17

−4
17

5
11

−5
11 · · ·

...
...

...
...

...
...

...
...

...
...

. . .
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Beginning at 0
1 and following the path, we get an infinite list of all

rational numbers:

0, 1,
1
2

, −1
2

, −1, 2,
2
3

,
2
5

, −1
3

,
1
3

,
1
4

, −1
4

,
2
7

, −2
7

, −2
5

, −2
3

, −2
3

, −2, 3,
3
2

, . . .

By Theorem 14.3, it follows that Q is countably infinite, that is, |Q| = |N|. ■

It is also true that the Cartesian product of two countably infinite sets
is itself countably infinite, as our next theorem states.

Theorem 14.5 If A and B are both countably infinite, then so is A×B.

Proof. Suppose A and B are both countably infinite. By Theorem 14.3, we
know we can write A and B in list form as

A = {
a1,a2,a3,a4, . . .

}
,

B = {
b1,b2,b3,b4, . . .

}
.

Figure 14.2 shows how to form an infinite path winding through all of A×B.
Therefore A×B can be written in list form, so it is countably infinite. ■

(a1,b1)

(a1,b2)

(a1,b3)

(a1,b4)

(a1,b5)

(a1,b6)

(a1,b7)

(a2,b1)

(a2,b2)

(a2,b3)

(a2,b4)

(a2,b5)

(a2,b6)

(a2,b7)

(a3,b1)

(a3,b2)

(a3,b3)

(a3,b4)

(a3,b5)

(a3,b6)

(a3,b7)

(a4,b1)

(a4,b2)

(a4,b3)

(a4,b4)

(a4,b5)

(a4,b6)

(a4,b7)

(a5,b1)

(a5,b2)

(a5,b3)

(a5,b4)

(a5,b5)

(a5,b6)

(a5,b7)

(a6,b1)

(a6,b2)

(a6,b3)

(a6,b4)

(a6,b5)

(a6,b6)

(a6,b7)

(a7,b1)

(a7,b2)

(a7,b3)

(a7,b4)

(a7,b5)

(a7,b6)

(a7,b7)

a1 a2 a3 a4 a5 a6 a7

b1

b2

b3

b4

b5

b6

b7

...
...

...
...

...
...

...
...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

A

B

Figure 14.2. A product of two countably infinite sets is countably infinite
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As an example of a consequence of this theorem, notice that since Q is
countably infinite, the set Q×Q is also countably infinite.

Recall that the word “corollary” means a result that follows easily from
some other result. We have the following corollary of Theorem 14.5.

Corollary 14.1 Given n countably infinite sets A1, A2, . . . , An, with n ≥ 2,
the Cartesian product A1 × A2 ×·· ·× An is also countably infinite.

Proof. The proof is by induction on n. For the basis step, notice that when
n = 2 the statement asserts that for countably infinite sets A1 and A2, the
product A1 × A2 is countably infinite, and this is true by Theorem 14.5.

Assume that for some k ≥ 2, any product A1 × A2 ×·· ·× Ak of countably
infinite sets is countably infinite. Consider a product A1×A2×·· ·×Ak×Ak+1

of k+1 countably infinite sets. It is easy to confirm that the function

f : A1 × A2 × A3 ×·· ·× Ak × Ak+1 −→ (A1 × A2 × A3 ×·· ·× Ak)× Ak+1

f (x1, x2, . . . , xk, xk+1) = (
(x1, x2, . . . , xk), xk+1

)
is bijective, so

∣∣A1×A2×A3×·· ·×Ak×Ak+1
∣∣= ∣∣(A1×A2×A3×·· ·×Ak)×Ak+1

∣∣.
By the induction hypothesis, (A1 × A2 × A3 ×·· ·× Ak)× Ak+1 is a product of
two countably infinite sets, so it is countably infinite by Theorem 14.5. As
noted above, A1×A2×A3×·· ·×Ak×Ak+1 has the same cardinality as the set
(A1 × A2 × A3 ×·· ·× Ak)× Ak+1, so it too is countably infinite. ■

Theorem 14.6 If A and B are both countably infinite, then their union
A∪B is countably infinite.

Proof. Suppose A and B are both countably infinite. By Theorem 14.3, we
know we can write A and B in list form as

A = {
a1,a2,a3,a4, . . .

}
,

B = {
b1,b2,b3,b4, . . .

}
.

We can “shuffle” A and B into one infinite list for A∪B as follows.

A∪B = {
a1,b1,a2,b2,a3,b3,a4,b4, . . .

}
.

(We agree not to list an element twice if it belongs to both A and B.) Thus
A∪B is countably infinite by Theorem 14.3. ■
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Exercises for Section 14.2
1. Prove that the set A = {

ln(n) : n ∈N}⊆R is countably infinite.
2. Prove that the set A = {

(m,n) ∈N×N : m ≤ n
}
is countably infinite.

3. Prove that the set A = {
(5n,−3n) : n ∈Z}

is countably infinite.
4. Prove that the set of all irrational numbers is uncountable. (Suggestion: Consider

proof by contradiction using Theorems 14.4 and 14.6.)
5. Prove or disprove: There exists a countably infinite subset of the set of irrational

numbers.
6. Prove or disprove: There exists a bijective function f :Q→R.
7. Prove or disprove: The set Q100 is countably infinite.
8. Prove or disprove: The set Z×Q is countably infinite.
9. Prove or disprove: The set

{
0,1

}×N is countably infinite.
10. Prove or disprove: The set A = {p

2
n : n ∈N}

countably infinite.
11. Describe a partition of N that divides N into eight countably infinite subsets.
12. Describe a partition of N that divides N into ℵ0 countably infinite subsets.
13. Prove or disprove: If A = {X ⊆N : X is finite}, then |A| = ℵ0.
14. Suppose A = {

(m,n) ∈N×R : n =πm
}
. Is it true that |N| = |A|?

15. Theorem 14.5 implies that N×N is countably infinite. Construct an alternate
proof of this fact by showing that the function ϕ :N×N→N defined as ϕ(m,n)=
2n−1(2m−1) is bijective.

14.3 Comparing Cardinalities
At this point we know that there are at least two different kinds of infinity.
On one hand, there are countably infinite sets such as N, of cardinality ℵ0.
Then there is the uncountable set R. Are there other kinds of infinity
beyond these two kinds? The answer is “yes,” but to see why we first need
to introduce some new definitions and theorems.

Our first task will be to formulate a definition of what we mean by
|A| < |B|. Of course if A and B are finite we know exactly what this means:
|A| < |B| means that when the elements of A and B are counted, A is found
to have fewer elements than B. But this process breaks down if A or B is
infinite, for then the elements can’t be counted.

The language of functions helps us overcome this difficulty. Notice that
for finite sets A and B it is intuitively clear that |A| < |B| if and only if
there exists an injective function f : A → B but there is no bijective function
f : A → B. The following diagram illustrates this:
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d
c
b
a

4
3
2
1
0

A B
f

Wewill use this idea to define what is meant by |A| < |B| and |A| ≤ |B|. For
emphasis, the following definition also restates what is meant by |A| = |B|.

Definition 14.4 Suppose A and B are sets.
1. |A| = |B| means there is a bijection A → B.
2. |A| < |B| means there is an injection A → B, but no bijection A → B.
3. |A| ≤ |B| means there is an injection A → B.

For example, consider N and R. The function f :N→R defined as f (n)= n
is clearly injective, but it is not surjective because given the element 1

2 ∈R,
we have f (n) 6= 1

2 for every n ∈ N. In fact, Theorem 14.2 of Section 14.1
asserts that there is no surjection N→ R, and hence no bijections either.
Definition 14.4 yields

|N| < |R|. (14.1)

Said differently, ℵ0 < |R|.
Is there a set X for which |R| < |X |? The answer is “yes.” The next

theorem implies |R| < |P(R)|. (Recall that P(A) denotes the power set of A.)
Theorem 14.7 If A is any set, then |A| < |P(A)|.
Proof. Before beginning the proof, we remark that this statement is obvious
if A is finite, for then |A| < 2|A| = |P(A)|. But our proof must apply to all
sets A, both finite and infinite, so it must use Definition 14.4.

We prove the theorem with direct proof. Let A be an arbitrary set.
According to Definition 14.4, to prove |A| < |P(A)| we must show that there
is an injection f : A →P(A), but no bijection f : A →P(A).

To see that there is an injection f : A → P(A), define f by the rule
f (x) = {

x
}
. In words, f sends any element x of A to the one-element set{

x
} ∈P(A). Then f : A →P(A) is injective, as follows. Suppose f (x) = f (y).

Then
{
x
}= {

y
}
. Now, the only way that

{
x
}
and

{
y
}
can be equal is if x = y,

so it follows that x = y. Thus f is injective.
Next we need to show that there exists no bijection A → P(A). We

will verify this by proving that there is no surjection A →P(A). Take an
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arbitrary function f : A →P(A). To show f is not surjective we will produce
a set B ∈P(A) for which f (a) 6= B for all a ∈ A. Notice that for any element
x ∈ A, we have f (x) ∈P(A), that is, f (x) ⊆ A. Thus f is a function sending
elements of A to subsets of A. It follows that for any x ∈ A, either x ∈ f (x) or
x ∉ f (x). Using this idea, define the following element B ∈P(A):

B = {
x ∈ A : x ∉ f (x)

}⊆ A.

Take an arbitrary a ∈ A. The following two cases show that f (a) 6= B.
Case 1. If a ∉ f (a), then the definition of B implies a ∈ B. Consequently,
f (a)= B is impossible, for it would mean a ∉ B and a ∈ B.
Case 2. If a ∈ f (a), then the definition of B implies a ∉ B. Consequently,
f (a)= B is impossible, for it would mean a ∈ B and a ∉ B.
So f (a) 6= B for all a ∈ A, and hence f is not surjective. As this holds for
any function f : A →P(A), there are no surjective functions f : A →P(A).
Consequently there are no such bijections either.

In conclusion, we have seen that there exists an injection A →P(A) but
no bijection A →P(A), so Definition 14.4 implies that |A| < |P(A)|. ■

Beginning with the set A =N and applying Theorem 14.7 over and over
again, we get the following chain of infinite cardinalities.

ℵ0 = |N| < |P(N)| < |P(P(N))| < |P(P(P(N)))| < · · · (14.2)

Thus there is an infinite sequence of different types of infinity, starting with
ℵ0 and becoming ever larger. The set N is countable, and all the sets P(N),
P(P(N)), etc., are uncountable.

In the next section we will prove that |P(N)| = |R|. Thus |N| and |R| are
the first two entries in the chain (14.2) above. They are just two relatively
tame infinities in a long list of other wild and exotic infinities.

Unless you plan on studying advanced set theory or the foundations of
mathematics, you are unlikely to ever encounter any types of infinity beyond
ℵ0 and |R|. Still you will in future mathematics courses need to distinguish
between countably infinite and uncountable sets, so we close with two final
theorems that can help you do this.

Theorem 14.8 An infinite subset of a countably infinite set is countably
infinite.

Proof. Suppose A is an infinite subset of the countably infinite set B. As B
is countably infinite, its elements can be written in a list b1,b2,b3,b4, . . .
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Then we can also write A’s elements in list form by proceeding through
the elements of B, in order, and selecting those that belong to A. Thus A
can be written in list form, and since A is infinite, its list will be infinite.
Consequently A is countably infinite. ■

Theorem 14.9 If U ⊆ A, and U is uncountable, then A is uncountable.

Proof. For the sake of contradiction say that U ⊆ A, and U is uncountable
but A is not uncountable. Then since U ⊆ A and U is infinite, then A must
be infinite too. Since A is infinite, and not uncountable, it must be countably
infinite. Then U is an infinite subset of a countably infinite set A, so U
is countably infinite by Theorem 14.8. Thus U is both uncountable and
countably infinite, a contradiction. ■

Theorems 14.8 and 14.9 can be useful when we need to decide whether a
set is countably infinite or uncountable. They sometimes allow us to decide
its cardinality by comparing it to a set whose cardinality is known.

For example, suppose we want to decide whether or not the set A =R2 is
uncountable. Since the x-axis U = {

(x,0) : x ∈R}⊆R2 has the same cardinality
as R, it is uncountable. Theorem 14.9 implies that R2 is uncountable. Other
examples can be found in the exercises.

Exercises for Section 14.3

1. Suppose B is an uncountable set and A is a set. Given that there is a surjective
function f : A → B, what can be said about the cardinality of A?

2. Prove that the set C of complex numbers is uncountable.
3. Prove or disprove: If A is uncountable, then |A| = |R|.
4. Prove or disprove: If A ⊆ B ⊆ C and A and C are countably infinite, then B is

countably infinite.
5. Prove or disprove: The set

{
0,1

}×R is uncountable.
6. Prove or disprove: Every infinite set is a subset of a countably infinite set.
7. Prove or disprove: If A ⊆ B and A is countably infinite and B is uncountable,

then B− A is uncountable.
8. Prove or disprove: The set

{
(a1,a2,a3, . . .) : ai ∈Z} of infinite sequences of integers

is countably infinite.
9. Prove that if A and B are finite sets with |A| = |B|, then any injection f : A → B is

also a surjection. Show this is not necessarily true if A and B are not finite.
10. Prove that if A and B are finite sets with |A| = |B|, then any surjection f : A → B

is also an injection. Show this is not necessarily true if A and B are not finite.
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14.4 The Cantor-Bernstein-Schröder Theorem
An often used property of numbers is that if a ≤ b and b ≤ a, then a = b. It
is reasonable to ask if the same property applies to cardinality. If |A| ≤ |B|
and |B| ≤ |A|, is it true that |A| = |B|? This is in fact true, and this section’s
goal is to prove it. This will yield an alternate (and highly effective) method
of proving that two sets have the same cardinality.

Recall (Definition 14.4) that |A| ≤ |B| means that there is an injection
f : A → B. Likewise, |B| ≤ |A| implies that there is an injection g : B → A.

Our aim is to show that if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|. In
other words, we aim to show that if there are injections f : A → B and
g : B → A, then there is a bijection h : A → B. The proof of this fact, though
not particularly difficult, is not entirely trivial, either. The fact that f and
g guarantee that such an h exists is called the the Cantor-Bernstein-
Schröder theorem. This theorem is very useful for proving two sets A
and B have the same cardinality: it says that instead of finding a bijection
A → B, it suffices to find injections A → B and B → A. This is useful because
injections are often easier to find than bijections.

We will prove the Cantor-Bernstein-Schröder theorem, but before doing
so let’s work through an informal visual argument that will guide us through
(and illustrate) the proof.

Suppose there are injections f : A → B and g : B → A. We want to use
them to produce a bijection h : A → B. Sets A and B are sketched below.
For clarity, each has the shape of the letter that denotes it, and to help
distinguish them the set A is shaded.

A B

Figure 14.3. The sets A and B

The injections f : A → B and g : B → A are illustrated in Figure 14.4.
Think of f as putting a “copy” f (A)= {

f (x) : x ∈ A
}
of A into B, as illustrated.

This copy, the range of f , does not fill up all of B (unless f happens to be
surjective). Likewise, g puts a “copy” g(B) of B into A. Because they are not
necessarily bijective, neither f nor g is guaranteed to have an inverse. But
the map g : B → g(B) from B to g(B)= {g(x) : x ∈ B} is bijective, so there is an
inverse g−1 : g(B)→ B. (We will need this inverse soon.)

Richard Hammack Book of Proof



The Cantor-Bernstein-Schröder Theorem 285

f g

g−1

Figure 14.4. The injections f : A → B and g : B → A

Consider the chain of injections illustrated in Figure 14.5. On the left,
g puts a copy of B into A. Then f puts a copy of A (containing the copy of B)
into B. Next, g puts a copy of this B-containing-A-containing-B into A, and
so on, always alternating g and f .

g g g
f f f · · ·

Figure 14.5. An infinite chain of injections

Let’s analyze our infinite sequence B → A → B → A → B → A →···
The first time A occurs in this sequence, it has a shaded region A− g(B).

In the second occurrence of A, the shaded region is (A−g(B))∪(g◦ f )(A−g(B)).
In the third occurrence of A, the shaded region is

(A− g(B)) ∪ (g ◦ f )(A− g(B)) ∪ (g ◦ f ◦ g ◦ f )(A− g(B)).

To tame the notation, let’s say (g ◦ f )2 = (g ◦ f ) ◦ (g ◦ f ), and (g ◦ f )3 =
(g ◦ f )◦ (g ◦ f )◦ (g ◦ f ), and so on. Let’s also agree that (g ◦ f )0 = ιA, that is, it
is the identity function on A. Then the shaded region of the nth occurrence
of A in the sequence is

n−1⋃
k=0

(g ◦ f )k(
A− g(B)

)
.

This process divides A into gray and white regions: the gray region is

G =
∞⋃

k=0
(g ◦ f )k(

A− g(B)
)
,

and the white region is A−G. (See Figure 14.6.)
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Figure 14.6 suggests our desired bijection h : A → B. The injection f
sends the gray areas on the left bijectively to the gray areas on the right.
The injection g−1 : g(B)→ B sends the white areas on the left bijectively to
the white areas on the right. We can thus define h : A → B so that h(x)= f (x)
if x is a gray point, and h(x)= g−1(x) if x is a white point.

f

g−1

f

g−1

...

A B

Figure 14.6. The bijection h : A → B

This informal argument suggests that given injections f : A → B and
g : B → A, there is a bijection h : A → B. But it is not a proof. We now present
this as a theorem and tighten up our reasoning in a careful proof, with the
above diagrams and ideas as a guide.

Theorem 14.10 (The Cantor-Bernstein-Schröder Theorem)
If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|. In other words, if there are injections
f : A → B and g : B → A, then there is a bijection h : A → B.

Proof. (Direct) Suppose there are injections f : A → B and g : B → A. Then,
in particular, g : B → g(B) is a bijection from B onto the range of g, so it
has an inverse g−1 : g(B) → B. (Note that g : B → A itself has no inverse
g−1 : A → B unless g is surjective.) Consider the subset

G =
∞⋃

k=0
(g ◦ f )k(

A− g(B)
)⊆ A.
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Let W = A−G, so A =G∪W is partitioned into two sets G (think gray) and
W (think white). Define a function h : A → B as

h(x)=
{

f (x) if x ∈G
g−1(x) if x ∈W .

Notice that this makes sense: if x ∈W, then x ∉G, so x ∉ A− g(B)⊆G, hence
x ∈ g(B), so g−1(x) is defined.

To finish the proof, we must show that h is both injective and surjective.
For injective, we assume h(x)= h(y), and deduce x = y. There are three

cases to consider. First, if x and y are both in G, then h(x) = h(y) means
f (x)= f (y), so x = y because f is injective. Second, if x and y are both in W,
then h(x) = h(y) means g−1(x) = g−1(y), and applying g to both sides gives
x = y. In the third case, one of x and y is in G and the other is in W. Say
x ∈ G and y ∈ W. The definition of G gives x = (g ◦ f )k(z) for some k ≥ 0 and
z ∈ A− g(B). Note h(x)= h(y) now implies f (x)= g−1(y), that is, f ((g◦ f )k(z))=
g−1(y). Applying g to both sides gives (g ◦ f )k+1(z) = y, which means y ∈ G.
But this is impossible, as y ∈W. Thus this third case cannot happen. But in
the first two cases h(x)= h(y) implies x = y, so h is injective.

To see that h is surjective, take any b ∈ B. We will find an x ∈ A with
h(x) = b. Note that g(b) ∈ A, so either g(b) ∈W or g(b) ∈G. In the first case,
h(g(b)) = g−1(g(b)) = b, so we have an x = g(b) ∈ A for which h(x) = b. In the
second case, g(b) ∈G. The definition of G shows

g(b)= (g ◦ f )k(z)

for some z ∈ A− g(B) and k ≥ 0. In fact we have k > 0, because k = 0 would
give g(b)= (g ◦ f )0(z)= z ∈ A− g(B), but clearly g(b) ∉ A− g(B). Thus

g(b) = (g ◦ f )◦ (g ◦ f )k−1(z)

= g
(
f
(
(g ◦ f )k−1(z)

))
.

Because g is injective, this implies

b = f
(
(g ◦ f )k−1(z)

)
.

Let x = (g ◦ f )k−1(z), so x ∈ G by definition of G. Observe that h(x) = f (x) =
f
(
(g◦ f )k−1(z)

)= b. We have now seen that for any b ∈ B, there is an x ∈ A for
which h(x)= b. Thus h is surjective.

Since h : A → B is both injective and surjective, it is also bijective. ■
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Here are some examples illustrating how the Cantor-Bernstein-Schröder
theorem can be used. This includes a proof that |R| = |P(N)|.
Example 14.6 The intervals [0,1) and (0,1) in R have equal cardinalities.

Surely this fact is plausible, for the two intervals are identical except for
the endpoint 0. Yet concocting a bijection [0,1)→ (0,1) is tricky. (Though not
particularly difficult: see the solution of Exercise 11 of Section 14.1.)

For a simpler approach, note that f (x)= 1
4 + 1

2 x is an injection [0,1)→ (0,1).
Also, g(x) = x is an injection (0,1) → [0,1). The Cantor-Bernstein-Schröder
theorem guarantees a bijection h : [0,1)→ (0,1), so |[0,1)| = |(0,1)|.

Theorem 14.11 The sets R and P(N) have the same cardinality.

Proof. Example 14.4 shows that |R| = |(0,1)|, andExample 14.6 shows |(0,1)| =
|[0,1)|. Thus |R| = |[0,1)|, so to prove the theorem we just need to show that
|[0,1)| = |P(N)|. By the Cantor-Bernstein-Schröder theorem, it suffices to
find injections f : [0,1)→P(N) and g : P(N)→ [0,1).

To define f : [0,1)→P(N), we use the fact that any number in [0,1) has
a unique decimal representation 0.b1b2b3b4 . . ., where each bi one of the
digits 0,1,2, . . . ,9, and there is not a repeating sequence of 9’s at the end.
(Recall that, e.g., 0.359999= 0.360, etc.) Define f : [0,1)→P(N) as

f
(
0.b1b2b3b4 . . .

)= {
10b1, 102b2, 103b3, . . .

}
.

For example, f (0.121212) = {
10,200,1000,20000,100000, . . .

}
, and f (0.05) ={

0,500
}
. Also f (0.5) = f (0.50) = {

0,50
}
. To see that f is injective, take two

unequal numbers 0.b1b2b3b4 . . . and 0.d1d2d3d4 . . . in [0,1). Then bi 6= di

for some index i. Now, either bi 6= 0 or di 6= 0; without loss of generality
say bi 6= 0. Then bi10i ∈ f (0.b1b2b3b4 . . .) but bi10i ∉ f (0.d1d2d3d4 . . .), so
f (0.b1b2b3b4 . . .) 6= f (0.d1d2d3d4 . . .). Consequently f is injective.

Next, define g : P(N) → [0,1), where g(X ) = 0.b1b2b3b4 . . . is the number
for which bi = 1 if i ∈ X and bi = 0 if i ∉ X . For example, g

({
1,3

})= 0.101000,
and g

({
2,4,6,8, . . .

}) = 0.01010101. Also g(;) = 0 and g(N) = 0.1111. To see
that g is injective, suppose X 6= Y . Then there is at least one integer i
that belongs to one of X or Y , but not the other. Consequently g(X ) 6= g(Y )
because they differ in the ith decimal place. This shows g is injective.

From the injections f : [0,1) → P(N) and g : P(N) → [0,1), the Cantor-
Bernstein-Schröder theorem guarantees a bijection h : [0,1)→P(N). Hence
|[0,1)| = |P(N)|. As |R| = |[0,1)|, we conclude |R| = |P(N)|. ■
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We know that |R| 6= |N|. But we just proved |R| = |P(N)|. This suggests
that the cardinality of R is not “too far” from |N| = ℵ0. We close with a few
informal remarks on this mysterious relationship between ℵ0 and |R|.

We established earlier in this chapter that ℵ0 < |R|. For nearly a cen-
tury after Cantor formulated his theories on infinite sets, mathematicians
struggled with the question of whether or not there exists a set A for which

ℵ0 < |A| < |R|.

It was commonly suspected that no such set exists, but no one was able to
prove or disprove this. The assertion that no such A exists came to be called
the continuum hypothesis.

Theorem 14.11 states that |R| = |P(N)|. Placing this in the context of the
chain (14.2) on page 282, we have the following relationships.

ℵ0 |R|

= =

|N| < |P(N)| < |P(P(N))| < |P(P(P(N)))| < · · ·

From this, we can see that the continuum hypothesis asserts that no set
has a cardinality between that of N and its power set.

Though this may seem intuitively plausible, it eluded proof since Cantor
first posed it in the 1880s. In fact, the real state of affairs seems almost
paradoxical. In 1931, the logician Kurt Gödel proved that for any sufficiently
strong and consistent axiomatic system, there exist statements which can
neither be proved nor disproved within the system.

Later he proved that the negation of the continuum hypothesis cannot be
proved within the standard axioms of set theory (i.e., the Zermelo-Fraenkel
axioms, mentioned in Section 1.10). This meant that either the continuum
hypothesis is false and cannot be proven false, or it is true.

In 1964, Paul Cohen discovered another startling truth: Given the laws
of logic and the axioms of set theory, no proof can deduce the continuum
hypothesis. In essence he proved that the continuum hypothesis cannot be
proved.

Taken together, Gödel and Cohens’ results mean that the standard
axioms of mathematics cannot “decide” whether the continuum hypothesis
is true or false, and that no logical conflict can arise from either asserting
or denying the continuum hypothesis. We are free to either accept it as
true or accept it as false, and the two choices lead to different—but equally
consistent—versions of set theory.
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On the face of it, this seems to undermine the foundation of logic, and
everything we have done in this book. The continuum hypothesis should be
a statement—it should be either true or false. How could it be both?

Here is an analogy that may help make sense of this. Consider the
number systems Zn. What if we asked whether [2]= [0] is true or false? Of
course the answer depends on n. The expression [2]= [0] is true in Z2 and
false in Z3. Moreover, if we assert that [2]= [0] is true, we are logically forced
to the conclusion that this is taking place in the system Z2. If we assert
that [2]= [0] is false, then we are dealing with some other Zn. The fact that
[2] = [0] can be either true or false does not necessarily mean that there
is some inherent inconsistency within the individual number systems Zn.
The equation [2]= [0] is a true statement in the “universe” of Z2 and a false
statement in the universe of (say) Z3.

It is the same with the continuum hypothesis. Saying it’s true leads to
one system of set theory. Saying it’s false leads to some other system of set
theory. Gödel and Cohens’ discoveries mean that these two types of set
theory, although different, are equally consistent and valid mathematical
universes.

So what should you believe? Fortunately, it does not make much dif-
ference, because most important mathematical results do not hinge on
the continuum hypothesis. (They are true in both universes.) Unless you
undertake a deep study of the foundations of mathematics, you will be fine
accepting the continuum hypothesis as true. Most mathematicians are
agnostics on this issue, but they tend to prefer the version of set theory in
which the continuum hypothesis holds.

The situation with the continuum hypothesis is a testament to the
immense complexity of mathematics. It is a reminder of the importance
of rigor and careful, systematic methods of reasoning that begin with the
ideas introduced in this book.

Exercises for Section 14.4
1. Show that if A ⊆ B and there is an injection g : B → A, then |A| = |B|.
2. Show that |R2| = |R|. Suggestion: Begin by showing |(0,1)× (0,1)| = |(0,1)|.
3. Let F be the set of all functions N→ {

0,1
}
. Show that |R| = |F |.

4. Let F be the set of all functions R→ {
0,1

}
. Show that |R| < |F |.

5. Consider the subset B = {
(x, y) : x2 + y2 ≤ 1

}⊆R2. Show that |B| = |R2|.
6. Show that |P(N×N)| = |P(N)|.
7. Prove or disprove: If there is a injection f : A → B and a surjection g : A → B, then

there is a bijection h : A → B.
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Conclusion

If you have internalized the ideas in this book, then you have a gained set of
rhetorical tools for deciphering and communicating mathematics. These

tools are indispensable at the advanced levels. But of course it takes more
than mere tools to build something. Creativity, inspiration, skill, talent,
intuition, passion, planning and persistence are also vitally important. It
is safe to say that if you have come this far, then you probably possess a
sufficient measure of these traits.

The quest to understand mathematics has no end, but you are well
equipped for the journey. It is my hope that the things you have learned
from this book will lead you to a higher plane of understanding, creativity
and expression.

Good luck and best wishes.

R.H.



Solutions

Chapter 1 Exercises
Section 1.1
1. {5x−1 : x ∈Z}= {. . .−11,−6,−1,4,9,14,19,24,29, . . .}
3. {x ∈Z :−2≤ x < 7}= {−2,−1,0,1,2,3,4,5,6}
5.

{
x ∈R : x2 = 3

}= {−p3,
p

3
}

7.
{
x ∈R : x2 +5x =−6

}= {−2,−3}
9. {x ∈R : sinπx = 0}= {. . . ,−2,−1,0,1,2,3,4, . . .}=Z

11. {x ∈Z : |x| < 5}= {−4,−3,−2,−1,0,1,2,3,4}
13. {x ∈Z : |6x| < 5}= {0}
15. {5a+2b : a,b ∈Z}= {. . . ,−2,−1,0,1,2,3, . . .}=Z
17. {2,4,8,16,32,64 . . .}= {2x : x ∈N}
19. {. . . ,−6,−3,0,3,6,9,12,15, . . .}= {3x : x ∈Z}
21. {0,1,4,9,16,25,36, . . .}= {

x2 : x ∈Z}
23. {3,4,5,6,7,8}= {x ∈Z : 3≤ x ≤ 8}= {x ∈N : 3≤ x ≤ 8}
25.

{
. . . , 1

8 , 1
4 , 1

2 ,1,2,4,8, . . .
}= {2n : n ∈Z}

27.
{
. . . ,−π,−π

2 ,0, π2 ,π, 3π
2 ,2π, 5π

2 , . . .
}= {

kπ
2 : k ∈Z

}
29. |{{1} , {2, {3,4}} ,;}| = 3 31. |{{{1} , {2, {3,4}} ,;}}| = 1 33. |{x ∈Z : |x| < 10}| = 19

35. |{x ∈Z : x2 < 10
}| = 7 37. |{x ∈N : x2 < 0

}| = 0

39. {(x, y) : x ∈ [1,2], y ∈ [1,2]}

−3 −2 −1 1 2 3

−2

−1

1

2

41. {(x, y) : x ∈ [−1,1], y= 1}

−3 −2 −1 1 2 3

−2

−1

1

2

43. {(x, y) : |x| = 2, y ∈ [0,1]}

−3 −2 −1 1 2 3

−2

−1

1

2

45. {
(x, y) : x, y ∈R, x2 + y2 = 1

}

−3 −2 −1 1 2 3

−2

−1

1

2

47. {
(x, y) : x, y ∈R, y≥ x2 −1

}

−3 −2 −1 1 2 3

−2

−1

1

2

3

49. {(x, x+ y) : x ∈R, y ∈Z}

−3 −2 −1 1 2 3

−3
−2
−1

1
2
3
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51. {(x, y) ∈R2 : (y− x)(y+ x)= 0}

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Section 1.2

1. Suppose A = {1,2,3,4} and B = {a, c}.
(a) A×B = {(1,a), (1, c), (2,a), (2, c), (3,a), (3, c), (4,a), (4, c)}

(b) B× A = {(a,1), (a,2), (a,3), (a,4), (c,1), (c,2), (c,3), (c,4)}

(c) A× A = {(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4),
(3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4)}

(d) B×B = {(a,a), (a, c), (c,a), (c, c)}

(e) ;×B = {(a,b) : a ∈;,b ∈ B}=; (There are no ordered pairs (a,b) with a ∈;.)
(f) (A×B)×B =

{((1,a),a), ((1, c),a), ((2,a),a), ((2, c),a), ((3,a),a), ((3, c),a), ((4,a),a), ((4, c),a),
((1,a), c), ((1, c), c), ((2,a), c), ((2, c), c), ((3,a), c), ((3, c), c), ((4,a), c), ((4, c), c)}

(g) A× (B×B)={
(1, (a,a)), (1, (a, c)), (1, (c,a)), (1, (c, c)),
(2, (a,a)), (2, (a, c)), (2, (c,a)), (2, (c, c)),
(3, (a,a)), (3, (a, c)), (3, (c,a)), (3, (c, c)),
(4, (a,a)), (4, (a, c)), (4, (c,a)), (4, (c, c))

}
(h) B3 = {(a,a,a), (a,a, c), (a, c,a), (a, c, c), (c,a,a), (c,a, c), (c, c,a), (c, c, c)}

3.
{
x ∈R : x2 = 2

}× {a, c, e}= {
(−p2,a), (

p
2,a), (−p2, c), (

p
2, c), (−p2, e), (

p
2, e)

}
5.

{
x ∈R : x2 = 2

}× {x ∈R : |x| = 2}= {
(−p2,−2), (

p
2,2), (−p2,2), (

p
2,−2)

}
7. {;}× {0,;}× {0,1}= {(;,0,0), (;,0,1), (;,;,0), (;,;,1)}

Sketch the following Cartesian products on the x-y plane.
9. {1,2,3}× {−1,0,1}

−3 −2 −1 1 2 3

−2

−1

1

2

11. [0,1]× [0,1]

−3 −2 −1 1 2 3

−2

−1

1

2

13. {1,1.5,2}× [1,2]

−3 −2 −1 1 2 3

−2

−1

1

2
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15. {1}× [0,1]

−3 −2 −1 1 2 3

−2

−1

1

2

17. N×Z

−3 −2 −1 1 2 3

−2

−1

1

2

19. [0,1]× [0,1]× [0,1]

−3 −2 −1 1 2 3

−2

−1

1

2

Section 1.3
A. List all the subsets of the following sets.

1. The subsets of {1,2,3,4} are: {}, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4},
{3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}.

3. The subsets of {{R}} are: {} and {{R}}.
5. The subsets of {;} are {} and {;}.
7. The subsets of {R, {Q,N}} are {}, {R},{{Q,N}}, {R, {Q,N}}.

B. Write out the following sets by listing their elements between braces.
9.

{
X : X ⊆ {3,2,a} and |X | = 2

} = {{3,2} , {3,a} , {2,a}}

11.
{
X : X ⊆ {3,2,a} and |X | = 4

} = {}=;

C. Decide if the following statements are true or false.
13. R3 ⊆R3 is true because any set is a subset of itself.
15.

{
(x, y) : x−1= 0

}⊆ {
(x, y) : x2 − x = 0

}
. This is true. (The even-numbered ones

are both false. You have to explain why.)

Section 1.4
A. Find the indicated sets.

1. P({{a,b} , {c}})= {;, {{a,b}} , {{c}} , {{a,b} , {c}}}

3. P({{;} ,5})= {;, {{;}} , {5} , {{;} ,5}}

5. P(P({2}))= {;, {;} , {{2}} , {;, {2}}}

7. P({a,b})×P({0,1})={
(;,;), (;, {0}), (;, {1}), (;, {0,1}),

({a} ,;), ({a} , {0}), ({a} , {1}), ({a} , {0,1}),
({b} ,;), ({b} , {0}), ({b} , {1}), ({b} , {0,1}),

({a,b} ,;), ({a,b} , {0}), ({a,b} , {1}), ({a,b} , {0,1})
}

9. P({a,b}× {0})= {;, {(a,0)} , {(b,0)} , {(a,0), (b,0)}}

11. {X ⊆P({1,2,3}) : |X | ≤ 1}=
{;, {;} , {{1}} , {{2}} , {{3}} , {{1,2}} , {{1,3}} , {{2,3}} , {{1,2,3}}}

B. Suppose that |A| = m and |B| = n. Find the following cardinalities:
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13. |P(P(P(A)))| = 2
(
2(2m )

)
15. |P(A×B)| = 2mn

17. |{X ∈P(A) : |X | ≤ 1}| = m+1

19. |P(P(P(A×;)))| = |P(P(P(;)))| = 4

Section 1.5

1. Suppose A = {4,3,6,7,1,9}, B = {5,6,8,4} and C = {5,8,4} . Find:
(a) A∪B = {1,3,4,5,6,7,8,9}
(b) A∩B = {4,6}
(c) A−B = {3,7,1,9}
(d) A−C = {3,6,7,1,9}
(e) B− A = {5,8}

(f) A∩C = {4}

(g) B∩C = {5,8,4}

(h) B∪C = {5,6,8,4}

(i) C−B = ;

3. Suppose A = {0,1} and B = {1,2}. Find:
(a) (A×B)∩ (B×B)= {(1,1), (1,2)}

(b) (A×B)∪ (B×B)= {(0,1), (0,2), (1,1), (1,2), (2,1), (2,2)}

(c) (A×B)− (B×B)= {(0,1), (0,2)}

(d) (A∩B)× A = {(1,0), (1,1)}

(e) (A×B)∩B = ;

(f) P(A)∩P(B)= {;, {1}}

(g) P(A)−P(B)= {{0} , {0,1}}

(h) P(A∩B)= {{} , {1}}

(i)
{;, {(0,1)}, {(0,2)}, {(1,1)}, {(1,2)}, {(0,1), (0,2)}, {(0,1), (1,1)}, {(0,1), (1,2)}, {(0,2), (1,1)},

{(0,2), (1,2)}, {(1,1), (1,2)}, {(0,2), (1,1), (1,2)}, {(0,1), (1,1), (1,2)}, {(0,1), (0,2), (1,2)},
{(0,1), (0,2), (1,1)}, {(0,1), (0,2), (1,1), (1,2)}

}
5. Sketch the sets X = [1,3]× [1,3] and Y = [2,4]× [2,4] on the plane R2. On separate

drawings, shade in the sets X ∪Y , X ∩Y , X −Y and Y − X . (Hint: X and Y are
Cartesian products of intervals. You may wish to review how you drew sets like
[1,3]× [1,3] in the Section 1.2.)

Y

X

X ∪Y

X ∩Y X −Y

Y − X

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

7. Sketch the sets X = {
(x, y) ∈R2 : x2 + y2 ≤ 1

}
and Y = {

(x, y) ∈R2 : x ≥ 0
}
on R2. On

separate drawings, shade in the sets X ∪Y , X ∩Y , X −Y and Y − X .

X
Y X ∪Y X ∩Y X −Y Y − X

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2
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9. The first statement is true. (A picture should convince you; draw one if necessary.)
The second statement is false: Notice for instance that (0.5,0.5) is in the right-
hand set, but not the left-hand set.

Section 1.6

1. Suppose A = {4,3,6,7,1,9} and B = {5,6,8,4} have universal setU = {n ∈Z : 0≤ n ≤ 10}.
(a) A = {0,2,5,8,10}
(b) B = {0,1,2,3,7,9,10}
(c) A∩ A = ;
(d) A∪ A = {0,1,2,3,4,5,6,7,8,9,10}=U
(e) A− A = A

(f) A−B = {4,6}

(g) A−B = {5,8}

(h) A∩B = {5,8}

(i) A∩B = {0,1,2,3,4,6,7,9,10}

3. Sketch the set X = [1,3]× [1,2] on the plane R2. On separate drawings, shade in
the sets X , and X ∩ ([0,2]× [0,3]).

X

X

X ∩ ([0,2]× [0,3])
−1 1 2 3
−1

1

2

3

−1 1 2 3
−1

1

2

3

−1 1 2 3
−1

1

2

3

5. Sketch the set X = {
(x, y) ∈R2 : 1≤ x2 + y2 ≤ 4

}
on the plane R2. On a separate

drawing, shade in the set X .

X
X

1 2 3

1
2
3

1 2 3

1
2
3

Solution of 1.6, #5.

A

A (shaded)
U

Solution of 1.7, #1.

Section 1.7

1. Draw a Venn diagram for A (solution above right).
3. Draw a Venn diagram for (A−B)∩C.

Scratch work is shown on the right. The set
A−B is indicated with vertical shading. The
set C is indicated with horizontal shading.
The intersection of A−B and C is thus the
overlapping region that is shaded with both
vertical and horizontal lines. The final an-
swer is drawn on the far right, where the set
(A−B)∩C is shaded in gray.

A AB B

C C

5. Draw Venn diagrams for A∪(B∩C) and (A∪B)∩(A∪C). Based on your drawings,
do you think A∪ (B∩C) = (A∪B)∩ (A∪C)?
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If you do the drawings carefully, you will find
that your Venn diagrams are the same for both
A ∪ (B∩C) and (A ∪B)∩ (A ∪C). Each looks as
illustrated on the right. Based on this, we are
inclined to say that the equation A ∪ (B∩C) =
(A∪B)∩ (A∪C) holds for all sets A, B and C. A B

C

7. Suppose sets A and B are in a universal set U. Draw Venn diagrams for A∩B
and A∪B. Based on your drawings, do you think it’s true that A∩B = A∪B?

The diagrams for A∩B and A ∪B look exactly
alike. In either case the diagram is the shaded
region illustrated on the right. Thus we would
expect that the equation A∩B = A∪B is true for
any sets A and B.

A B

U

9. Venn diagram for (A∩B)−C:

A B

C
11. The simplest answer is (B∩C)− A.
13. One answer is (A∪B∪C)− (A∩B∩C).

Section 1.8

1. Suppose A1 = {a,b,d, e, g, f }, A2 = {a,b, c,d}, A3 = {b,d,a} and A4 = {a,b,h}.

(a)
4⋃

i=1
A i = {a,b, c,d, e, f , g,h} (b)

4⋂
i=1

A i = {a,b}

3. For each n ∈N, let An = {0,1,2,3, . . . ,n}.
(a)

⋃
i∈N

A i = {0}∪N (b)
⋂
i∈N

A i = {0,1}

5. (a)
⋃
i∈N

[i, i+1]=[1,∞) (b)
⋂
i∈N

[i, i+1]=;

7. (a)
⋃
i∈N

R× [i, i+1]= {(x, y) : x, y ∈R, y≥ 1} (b)
⋂
i∈N

R× [i, i+1]= ;

9. (a)
⋃

X∈P(N)
X = N (b)

⋂
X∈P(N)

X = ;

11. Yes, this is always true.
13. The first is true, the second is false.

Chapter 2 Exercises
Section 2.1

1. Every real number is an even integer. (Statement, False)
3. If x and y are real numbers and 5x = 5y, then x = y. (Statement, True)
5. Sets Z and N are infinite. (Statement, True)
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7. The derivative of any polynomial of degree 5 is a polynomial of degree 6. (State-
ment, False)

9. cos(x)=−1
This is not a statement. It is an open sentence because whether it’s true or false
depends on the value of x.

11. The integer x is a multiple of 7.
This is an open sentence, and not a statement.

13. Either x is a multiple of 7, or it is not.
This is a statement, for the sentence is true no matter what x is.

15. In the beginning God created the heaven and the earth.
This is a statement, for it is either definitely true or definitely false. There is
some controversy over whether it’s true or false, but no one claims that it is
neither true nor false.

Section 2.2
Express each statement as one of the forms P ∧Q, P ∨Q, or ∼ P. Be sure to also
state exactly what statements P and Q stand for.
1. The number 8 is both even and a power of 2.

P ∧Q
P: 8 is even
Q: 8 is a power of 2
Note: Do not say “Q: a power of 2,” because that is not a statement.

3. x 6= y ∼ (x = y) (Also ∼ P where P : x = y.)
5. y≥ x ∼ (y< x) (Also ∼ P where P : y< x.)
7. The number x equals zero, but the number y does not.

P∧∼Q
P : x = 0
Q : y= 0

9. x ∈ A−B
(x ∈ A)∧∼ (x ∈ B)

11. A ∈ {
X ∈P(N) : |X | <∞}

(A ⊆N)∧ (|A| <∞).
13. Human beings want to be good, but not too good, and not all the time.

P∧∼Q∧∼ R
P : Human beings want to be good.
Q : Human beings want to be too good.
R : Human beings want to be good all the time.

Section 2.3
Without changing their meanings, convert each of the following sentences into a
sentence having the form “If P, then Q.”
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1. A matrix is invertible provided that its determinant is not zero.
Answer: If a matrix has a determinant not equal to zero, then it is invertible.

3. For a function to be continuous, it is necessary that it is integrable.
Answer: If a function is continuous, then it is integrable.

5. An integer is divisible by 8 only if it is divisible by 4.
Answer: If an integer is divisible by 8, then it is divisible by 4.

7. A series converges whenever it converges absolutely.
Answer: If a series converges absolutely, then it converges.

9. A function is integrable provided the function is continuous.
Answer: If a function is continuous, then that function is integrable.

11. You fail only if you stop writing.
Answer: If you fail, then you have stopped writing.

13. Whenever people agree with me I feel I must be wrong.
Answer: If people agree with me, then I feel I must be wrong.

Section 2.4

Without changing their meanings, convert each of the following sentences into a
sentence having the form “P if and only if Q.”
1. For a matrix to be invertible, it is necessary and sufficient that its determinant

is not zero.
Answer: A matrix is invertible if and only if its determinant is not zero.

3. If xy= 0 then x = 0 or y= 0, and conversely.
Answer: xy= 0 if and only if x = 0 or y= 0

5. For an occurrence to become an adventure, it is necessary and sufficient for one
to recount it.
Answer: An occurrence becomes an adventure if and only if one recounts it.

Section 2.5
1. Write a truth table for P ∨ (Q ⇒ R)

P Q R Q ⇒ R P ∨ (Q ⇒ R)

T T T T T
T T F F T
T F T T T
T F F T T
F T T T T
F T F F F
F F T T T
F F F T T

3. Write a truth table for ∼ (P ⇒Q)

P Q P ⇒Q ∼ (P ⇒Q)

T T T F
T F F T
F T T F
F F T F
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5. Write a truth table for (P∧∼ P)∨Q

P Q (P∧∼ P) (P∧∼ P)∨Q

T T F T
T F F F
F T F T
F F F F

7. Write a truth table for (P∧∼ P)⇒Q

P Q (P∧∼ P) (P∧∼ P)⇒Q

T T F T
T F F T
F T F T
F F F T

9. Write a truth table for ∼ (∼ P∨∼Q).

P Q ∼ P ∼Q ∼ P∨∼Q ∼ (∼ P∨∼Q)

T T F F F T
T F F T T F
F T T F T F
F F T T T F

11. Suppose P is false and that the statement (R ⇒ S) ⇔ (P ∧Q) is true. Find the
truth values of R and S. (This can be done without a truth table.)
Answer: Since P is false, it follows that (P ∧Q) is false also. But then in order
for (R ⇒ S)⇔ (P ∧Q) to be true, it must be that (R ⇒ S) is false. The only way for
(R ⇒ S) to be false is if R is true and S is false.

Section 2.6

1. P ∧ (Q∨R)= (P ∧Q)∨ (P ∧R)

P Q R Q∨R P ∧Q P ∧R P ∧ (Q∨R) (P ∧Q)∨ (P ∧R)

T T T T T T T T
T T F T T F T T
T F T T F T T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

Thus since the columns agree, the two statements are logically equivalent.
3. P ⇒Q = (∼ P)∨Q

P Q ∼ P (∼ P)∨Q P ⇒Q

T T F T T
T F F F F
F T T T T
F F T T T

Since the columns agree, the two
statements are logically equivalent.
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5. ∼ (P ∨Q∨R) = (∼ P)∧ (∼Q)∧ (∼ R)

P Q R P ∨Q∨R ∼ P ∼Q ∼ R ∼ (P ∨Q∨R) (∼ P)∧ (∼Q)∧ (∼ R)

T T T T F F F F F
T T F T F F T F F
T F T T F T F F F
T F F T F T T F F
F T T T T F F F F
F T F T T F T F F
F F T T T T F F F
F F F F T T T T T

Since the columns agree, the two statements are logically equivalent.
7. P ⇒Q = (P∧∼Q)⇒ (Q∧∼Q)

P Q ∼Q P∧∼Q Q∧∼Q (P∧∼Q)⇒ (Q∧∼Q) P ⇒Q

T T F F F T T
T F T T F F F
F T F F F T T
F F T F F T T

Since the columns agree, the two statements are logically equivalent.

9. By DeMorgan’s law, we have ∼ (∼ P∨ ∼ Q) =∼∼ P∧ ∼∼ Q = P ∧Q. Thus the two
statements are logically equivalent.

11. (∼ P)∧ (P ⇒Q) and ∼ (Q ⇒ P)

P Q ∼ P P ⇒Q Q ⇒ P (∼ P)∧ (P ⇒Q) ∼ (Q ⇒ P)

T T F T T F F
T F F F T F F
F T T T F T T
F F T T T T F

The columns for the two statements do not quite agree, thus the two statements
are not logically equivalent.

Section 2.7
Write the following as English sentences. Say if the statements are true or false.
1. ∀x ∈R, x2 > 0

Answer: For every real number x, x2 > 0.
Also: For every real number x, it follows that x2 > 0.
Also: The square of any real number is positive. (etc.)
Statement is false. Reason: 0 is a real number, but it’s not true that 02 > 0.
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3. ∃a ∈R,∀x ∈R,ax = x.
Answer: There exists a real number a for which ax = x for every real number x.
This statement is TRUE. Reason: Consider a = 1.

5. ∀n ∈N,∃X ∈P(N), |X | < n
Answer: For every natural number n, there is a subset X of N with |X | < n.
This statement is TRUE. Reason: Suppose n ∈N. Let X =;. Then |X | = 0< n.

7. ∀X ⊆N,∃n ∈Z, |X | = n
Answer: For any subset X of N, there exists an integer n for which |X | = n.
This statement is FALSE. For example, the set X = {2,4,6,8, . . .} of all even natural
numbers is infinite, so there does not exist any integer n for which |X | = n.

9. ∀n ∈Z,∃m ∈Z,m = n+5
Answer: For every integer n there is another integer m such that m = n+5.
This statement is TRUE.

Section 2.9

Translate each of the following sentences into symbolic logic.
1. If f is a polynomial and its degree is greater than 2, then f ′ is not constant.

Translation: (P ∧Q)⇒ R, where
P : f is a polynomial,
Q : f has degree greater than 2,
R : f ′ is not constant.

3. If x is prime then p
x is not a rational number.

Translation: P ⇒∼Q, where
P : x is prime,
Q :

p
x is a rational number.

5. For every positive number ε, there is a positive number δ for which |x−a| < δ

implies | f (x)− f (a)| < ε.
Translation: ∀ ε ∈R,ε> 0,∃ δ ∈R,δ> 0, (|x−a| < δ)⇒ (| f (x)− f (a)| < ε)

7. There exists a real number a for which a+ x = x for every real number x.
Translation: ∃a ∈R,∀x ∈R,a+ x = x

9. If x is a rational number and x 6= 0, then tan(x) is not a rational number.
Translation: ((x ∈Q)∧ (x 6= 0))⇒ (tan(x) ∉Q)

11. There is a Providence that protects idiots, drunkards, children and the United
States of America.
One translation is as follows. Let R be union of the set of idiots, the set of
drunkards, the set of children, and the set consisting of the USA. Let P be the
open sentence P(x): x is a Providence. Let S be the open sentence S(x, y): x
protects y. Then the translation is ∃x,∀ y ∈ R,P(x)∧S(x, y).
(Notice that, although this is mathematically correct, some humor has been lost
in the translation.)
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13. Everything is funny as long as it is happening to somebody else.
Translation: ∀x, (∼ M(x)∧S(x))⇒ F(x),
where M(x): x is happening to me, S(x): x is happening to someone, and F(x) : x
is funny.

Section 2.10
Negate the following sentences.

1. The number x is positive, but the number y is not positive.
The “but” can be interpreted as “and.” Using DeMorgan’s law, the negation is:
The number x is not positive or the number y is positive.

3. For every prime number p, there is another prime number q with q > p.
Negation: There is a prime number p such that for every prime number q, q ≤ p.
Also: There exists a prime number p for which q ≤ p for every prime number q.
(etc.)

5. For every positive number ε there is a positive number M for which | f (x)−b| < ε
whenever x > M.
To negate this, it may be helpful to first write it in symbolic form. The statement
is ∀ε ∈ (0,∞),∃M ∈ (0,∞), (x > M)⇒ (| f (x)−b| < ε).
Working out the negation, we have

∼ (∀ε ∈ (0,∞),∃M ∈ (0,∞), (x > M)⇒ (| f (x)−b| < ε)) =
∃ε ∈ (0,∞),∼ (∃M ∈ (0,∞), (x > M)⇒ (| f (x)−b| < ε)) =
∃ε ∈ (0,∞),∀M ∈ (0,∞),∼ (

(x > M)⇒ (| f (x)−b| < ε)).
Finally, using the idea from Example 2.15, we can negate the conditional state-
ment that appears here to get

∃ε ∈ (0,∞),∀M ∈ (0,∞),∃x, (x > M)∧∼ (| f (x)−b| < ε)).
Negation: There exists a positive number εwith the property that for every positive
number M, there is a number x for which x > M and | f (x)−b| ≥ ε.

7. I don’t eat anything that has a face.
Negation: I will eat some things that have a face.
(Note: If your answer was “I will eat anything that has a face.” then that is
wrong, both morally and mathematically.)

9. If sin(x)< 0, then it is not the case that 0≤ x ≤π.
Negation: There exists a number x for which sin(x)< 0 and 0≤ x ≤π.

11. You can fool all of the people all of the time.
There are several ways to negate this, including:
There is a person that you can’t fool all the time. or
There is a person x and a time y for which x is not fooled at time y.
(But Abraham Lincoln said it better.)
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Chapter 3 Exercises
Section 3.2

1. Consider lists made from the letters T, H, E, O, R, Y, with repetition allowed.
(a) How many length-4 lists are there? Answer: 6 ·6 ·6 ·6= 1296.
(b) How many length-4 lists are there that begin with T?

Answer: 1 ·6 ·6 ·6= 216.
(c) How many length-4 lists are there that do not begin with T?

Answer: 5 ·6 ·6 ·6= 1080.
3. How many ways can you make a list of length 3 from symbols a,b,c,d,e,f if...

(a) ... repetition is allowed. Answer: 6 ·6 ·6= 216.
(b) ... repetition is not allowed. Answer: 6 ·5 ·4= 120.
(c) ... repetition is not allowed and the list must contain the letter a.

Answer: 5 ·4+5 ·4+5 ·4= 60.

(d) ... repetition is allowed and the list must contain the letter a.
Answer: 6 ·6 ·6−5 ·5 ·5= 91.

(Note: See Example 3.3 if a more detailed explanation is required.)
5. This problems involves 8-digit binary strings such as 10011011 or 00001010. (i.e.,

8-digit numbers composed of 0’s and 1’s.)
(a) How many such strings are there? Answer: 2 ·2 ·2 ·2 ·2 ·2 ·2 ·2= 256.
(b) How many such strings end in 0? Answer: 2 ·2 ·2 ·2 ·2 ·2 ·2 ·1= 128.

(c) How many such strings have the property that their second and fourth digits
are 1’s? Answer: 2 ·1 ·2 ·1 ·2 ·2 ·2 ·2= 64.

(d) How many such strings are such that their second or fourth digits are 1’s?
Solution: These strings can be divided into three types. Type 1 consists of
those strings of form ∗1∗0∗∗∗∗, Type 2 consist of strings of form ∗0∗1∗∗∗∗,
and Type 3 consists of those of form ∗1∗1∗∗∗∗. By the multiplication principle
there are 26 = 64 strings of each type, so there are 3 ·64= 192 8-digit binary
strings whose second or fourth digits are 1’s.

7. This problem concerns 4-letter codes made from the letters A,B,C,D,...,Z.
(a) How many such codes can be made? Answer: 26 ·26 ·26 ·26= 456,976
(b) How many such codes have no two consecutive letters the same?

Solution: We use the multiplication principle. There are 26 choices for the first
letter. The second letter can’t be the same as the first letter, so there are only
25 choices for it. The third letter can’t be the same as the second letter, so there
are only 25 choices for it. The fourth letter can’t be the same as the third letter,
so there are only 25 choices for it. Thus there are 26 ·25 ·25 ·25= 406,250
codes with no two consecutive letters the same.

9. A new car comes in a choice of five colors, three engine sizes and two transmis-
sions. How many different combinations are there? Answer 5 ·3 ·2= 30.
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Section 3.3

1. Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such lineups are there that have at least one red card?
Solution: All together there are 52 ·51 ·50 ·49 ·48 = 311875200 possible lineups.
The number of lineups that do not have any red cards (i.e. are made up only
of black cards) is 26 ·25 ·24 ·23 ·22= 7,893,600. By the subtraction principle, the
answer to the question is 311,875,200−7,893,600= 303,981,600.
How many such lineups are there in which the cards are all black or all hearts?
Solution: The number of lineups that are all black is 26 ·25 ·24 ·23 ·22= 7,893,600.
The number of lineups that are hearts (which are red) is 13·12·11·10·9= 154,440.
By the addition principle, the answer to the question is 7,893,600+154,440 =
8,048,040.

3. Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such lineups are there in which all 5 cards are of the same color (i.e., all
black or all red)?
Solution: There are 26 ·25 ·24 ·23 ·22= 7,893,600 possible black-card lineups and
26·25·24·23·22= 7,893,600 possible red-card lineups, so by the addition principle
the answer is 7,893,600+7,893,600= 15,787,200.

5. How many integers between 1 and 9999 have no repeated digits?
Solution: Consider the 1-digit, 2-digit, 3-digit and 4-digit number separately.
The number of 1-digit numbers that have no repeated digits is 9 (i.e., all of
them). The number of 2-digit numbers that have no repeated digits is 9 ·9= 81.
(The number can’t begin in 0, so there are only 9 choices for its first digit.) The
number of 3-digit numbers that have no repeated digits is 9 ·9 ·8 = 648. The
number of 4-digit numbers that have no repeated digits is 9 ·9 ·8 ·7= 4536. By
the addition principle, the answer to the question is 9+81+648+4536= 5274.
How many integers between 1 and 9999 have at least one repeated digit?
Solution: The total number of integers between 1 and 9999 is 9999. Using the
subtraction principle, we can subtract from this the number of digits that have
no repeated digits, which is 5274, as above. Therefore the answer to the question
is 9999−5274= 4725.

7. A password on a certain site must have five characters made from letters of the
alphabet, and there must be at least one upper case letter. How many different
passwords are there?
Solution: Let U be the set of all possible passwords made from a choice of upper
and lower case letters. Let X be the set of all possible passwords made from
lower case letters. Then U−X is the set of passwords that have at least one lower
case letter. By the subtraction principle our answer will be |U − X | = |U |− |X |.
All together, there are 26+26= 52 upper and lower case letters, so by the multi-
plication principle |U | = 52 ·52 ·52 ·52 ·52= 525 = 380,204,032.
Likewise |X | = 26 ·26 ·26 ·26 ·26= 265 = 11,881,376.
Thus the answer is |U |− |X | = 380,204,032−11,881,376= 368,322,656.
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What if there must be a mix of upper and lower case?
Solution: The number of passwords using only upper case letters is 265 =
11,881,376, and, as calculated above, this is also the number of passwords that
use only lower case letters. By the addition principe, the number of passwords
that use only lower case or only upper case is 11,881,376+11,881,376= 23,762,752.
By the subtraction principle, the number of passwords that use a mix of upper
and lower case it the total number of possible passwords minus the number
that use only lower case or only upper case, namely 380,204,032−23,762,752=
356,441,280.

9. This problem concerns lists of length 6 made from the letters A,B,C,D,E,F,G,H.
How many such lists are possible if repetition is not allowed and the list contains
two consecutive vowels?
Solution: There are just two vowels A and E to choose from. The lists we want
to make can be divided into five types. They have one of the forms VV∗∗∗∗,
or ∗VV ∗∗∗, or ∗∗VV ∗∗, or ∗∗∗VV∗, or ∗∗∗∗VV , where V indicates a
vowel and ∗ indicates a consonant. By the multiplication principle, there are
2 ·1 ·6 ·5 ·4 ·3= 720 lists of form VV ∗∗∗∗. In fact, that for the same reason there
are 720 lists of each form. Thus by the addition principle, the answer to the
question is 720+720+720+720+720= 3600

11. How many integers between 1 and 1000 are divisible by 5? How many are not?
Solution: The integers that are divisible by 5 are 5,10,15,20, . . . ,995,1000. There
are 1000/5= 200 such numbers. By the subtraction principle, the number that
are not divisible by 5 is 1000−200= 800.

Sections 3.4
1. Answer n = 14.

3. Answer: 5!= 120.

5. 120!
118! = 120·119·118!

118! = 120 ·119= 14,280.

7. Answer: 5!4!= 2880.
9. How many permutations of the letters A,B,C,D,E,F,G are there in which the

three letters ABC appear consecutively, in alphabetical order?
Solution: Regard ABC as a single symbol ABC . Then we are looking for the
number of permutations of the five symbols ABC , D, E, F, G. The number of
such permutations is 5!= 120.

11. You deal 7 cards off of a 52-card deck and line them up in a row. How many
possible lineups are there in which not all cards are red?
Solution: All together, there are P(52,7) 7-card lineups with cards selected from
the entire deck. And there are P(26,7) 7-card lineups with red cards selected
from the 26 red cards in the deck. By the subtraction principle, the number of
lineups that are not all red is P(52,7)−P(26,7)= 670,958,870,400.

13. P(26,6)= 165,765,600 15. P(15,4)= 32,760 17. P(10,3)= 720
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Section 3.5

1. Suppose a set A has 37 elements. How many subsets of A have 10 elements?
How many subsets have 30 elements? How many have 0 elements?
Answers:

(37
10

)= 348,330,136;
(37
30

)= 10,295,472;
(37

0
)= 1.

3. A set X has exactly 56 subsets with 3 elements. What is the cardinality of X?
Solution: The answer will be the n for which

(n
3
)= 56. After some trial and error,

you will discover
(8
3
)= 56, so |X | = 8.

5. How many 16-digit binary strings contain exactly seven 1’s?
Solution: Make such a string as follows. Start with a list of 16 blank spots.
Choose 7 of the blank spots for the 1’s and put 0’s in the other spots. There are(16

7
)= 11,440 ways to do this.

7. |{X ∈P({0,1,2,3,4,5,6,7,8,9}) : |X | < 4}| = (10
0

)+(10
1

)+(10
2

)+(10
3

)=1+10+45+120= 176.
9. This problem concerns lists of length six made from the letters A,B,C,D,E,F,

without repetition. How many such lists have the property that the D occurs
before the A?
Solution: Make such a list as follows. Begin with six blank spaces and select two
of these spaces. Put the D in the first selected space and the A in the second.
There are

(6
2
) = 15 ways of doing this. For each of these 15 choices there are

4!= 24 ways of filling in the remaining spaces. Thus the answer to the question
is 15×24= 360 such lists.

11. How many 10-digit integers contain no 0’s and exactly three 6’s?
Solution: Make such a number as follows: Start with 10 blank spaces and choose
three of these spaces for the 6’s. There are

(10
3

) = 120 ways of doing this. For
each of these 120 choices we can fill in the remaining seven blanks with choices
from the digits 1,2,3,4,5,7,8,9, and there are 87 to do this. Thus the answer to
the question is

(10
3

) ·87 = 251,658,240.
13. Assume n,k ∈Z with 0≤ k ≤ n. Then

(n
k
)= n!

(n−k)!k! = n!
k!(n−k)! = n!

(n−(n−k))!(n−k)! =
( n
n−k

)
.

15. How many 10-digit binary strings are there that do not have exactly four 1’s?
Solution: All together, there are 210 different binary strings. The number of
10-digit binary strings with exactly four 1’s is

(10
4
)
, because to make one we need

to choose 4 out of 10 positions for the 1’s and fill the rest in with 0’s. By the
subtraction principle, the answer to our questions is 210 − (10

4
)
.

17. Howmany 10-digit binary numbers are there that have exactly four 1’s or exactly
five 1’s?
Solution: By the addition principle the answer is

(10
4
)+ (10

5
)
.

How many do not have exactly four 1’s or exactly five 1’s?
Solution: By the subtraction principle combined with the answer to the first
part of this problem, the answer is 210 − (10

4
)− (10

5
)

19. A 5-card poker hand is called a flush if all cards are the same suit. How many
different flushes are there?
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Solution: There are
(13

5
)= 1287 5-card hands that are all hearts. Similarly, there

are
(13

5
)= 1287 5-card hands that are all diamonds, or all clubs, or all spades. By

the addition principle, there are then 1287+1287+1287+1287= 5148 flushes.

Section 3.6

1. Write out Row 11 of Pascal’s triangle.
Answer: 1 11 55 165 330 462 462 330 165 55 11 1

3. Use the binomial theorem to find the coefficient of x8 in (x+2)13.
Answer: According to the binomial theorem, the coefficient of x8 y5 in (x+ y)13 is(13

5
)
x8 y5 = 1287x8 y5. Now plug in y= 2 to get the final answer of 41184x8.

5. Use the binomial theorem to show ∑n
k=0

(n
k
)= 2n. Hint: Observe that 2n = (1+1)n.

Now use the binomial theorem to work out (x+ y)n and plug in x = 1 and y= 1.
7. Use the binomial theorem to show ∑n

k=0 3k (n
k
)= 4n.

Hint: Observe that 4n = (1+3)n. Now look at the hint for the previous problem.
9. Use the binomial theorem to show

(n
0
)−(n

1
)+(n

2
)−(n

3
)+(n

4
)−(n

5
)+. . .±(n

n
)= 0. Hint:

Observe that 0= 0n = (1+ (−1))n. Now use the binomial theorem.
11. Use the binomial theorem to show 9n =∑n

k=0(−1)k (n
k
)
10n−k.

Hint: Observe that 9n = (10+ (−1))n. Now use the binomial theorem.
13. Assume n ≥ 3. Then

(n
3
)= (n−1

3
)+(n−1

2
)= (n−2

3
)+(n−2

2
)+(n−1

2
)= ·· · = (2

2
)+(3

2
)+·· ·+(n−1

2
)
.

Section 3.7

1. At a certain university 523 of the seniors are history majors or math majors (or
both). There are 100 senior math majors, and 33 seniors are majoring in both
history and math. How many seniors are majoring in history?
Solution: Let A be the set of senior math majors and B be the set of senior
history majors. From |A ∪B| = |A| + |B| − |A ∩B| we get 523 = 100+ |B| −33, so
|B| = 523+33−100= 456. There are 456 history majors.

3. How many 4-digit positive integers are there that are even or contain no 0’s?
Solution: Let A be the set of 4-digit even positive integers, and let B be the set of
4-digit positive integers that contain no 0’s. We seek |A∪B|. By the multiplication
principle |A| = 9 ·10 ·10 ·5 = 4500. (Note the first digit cannot be 0 and the last
digit must be even.) Also |B| = 9 ·9 ·9 ·9= 6561. Further, A∩B consists of all even
4-digit integers that have no 0’s. It follows that |A∩B| = 9 ·9 ·9 ·4= 2916. Then the
answer to our question is |A∪B| = |A|+ |B|− |A∩B| = 4500+6561−2916= 8145.

5. How many 7-digit binary strings begin in 1 or end in 1 or have exactly four 1’s?
Solution: Let A be the set of such strings that begin in 1. Let B be the set of such
strings that end in 1. Let C be the set of such strings that have exactly four 1’s.
Then the answer to our question is |A∪B∪C|. Using Equation (3.5) to compute
this number, we have |A∪B∪C| = |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|+|A∩B∩C| =
26 +26 + (7

4
)−25 − (6

3
)− (6

3
)+ (5

2
)= 64+64+35−32−20−20+10= 101.

7. This problem concerns 4-card hands dealt off of a standard 52-card deck. How
many 4-card hands are there for which all four cards are of the same suit or all
four cards are red?
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Solution: Let A be the set of 4-card hands for which all four cards are of the
same suit. Let B be the set of 4-card hands for which all four cards are red.
Then A ∩B is the set of 4-card hands for which the four cards are either all
hearts or all diamonds. The answer to our question is |A∪B| = |A|+|B|−|A∩B| =
4

(13
4

)+ (26
4

)−2
(13

4
)= 2

(13
4

)+ (26
4

)= 1430+14,950= 16,380.
9. A 4-letter list is made from the letters L,I,S,T,E,D according to the following

rule: Repetition is allowed, and the first two letters on the list are vowels or the
list ends in D. How many such lists are possible?
Solution: Let A be the set of such lists for which the first two letters are vowels, so
|A| = 2·2·6·6= 144. Let B be the set of such lists that end in D, so |B| = 6·6·6·1= 216.
Then A∩B is the set of such lists for which the first two entries are vowels and
the list ends in D. Thus |A∩B| = 2 ·2 ·6 ·1 = 24. The answer to our question is
|A∪B| = |A|+ |B|− |A∩B| = 144+216−24= 336.

11. How many 7-digit numbers are even or have exactly three digits equal to 0?
Solution: Let A be the set of 7-digit numbers that are even. By the multiplication
principle, |A| = 9·10·10·10·10·10·5= 4,500,000. Let B be the set of 7-digit numbers
that have exactly three digits equal to 0. Then |B| = 9 · (6

3
) ·9 ·9 ·9. (First digit is

anything but 0. Then choose 3 of 6 of the remaining places in the number for
the 0’s. Finally the remaining 3 places can be anything but 0.)
Note A∩B is the set of 7-digit numbers that are even and contain exactly three
0’s. We can compute |A∩B| with the addition principle, by dividing A∩B into
two parts: the even 7-digit numbers with three digits 0 and the last digit is not
0, and the even 7-digit numbers with three digits 0 and the last digit is 0. The
first part has 9 · (5

3
) ·9 ·9 ·4 elements. The second part has 9 · (5

2
) ·9 ·9 ·9 ·1 elements.

Thus |A∩B| = 9 · (5
3
) ·9 ·9 ·4+9 · (5

2
) ·9 ·9 ·9.

By the inclusion-exclusion formula, the answer to our question is |A∪B| = |A|+
|B|− |A∩B| = 4,500,000+94(6

3
)−93(5

3
) ·4−94(5

2
)= 4,405,230.

13. How many 8-digit binary strings end in 1 or have exactly four 1’s?
Solution: Let A be the set of strings that end in 1. By the multiplication principle
|A| = 27. Let B be the number of strings with exactly four 1’s. Then |B| = (8

4
)

because we can make such a string by choosing 4 of 8 spots for the 1’s and
filling the remaining spots with 0’s. Then A∩B is the set of strings that end
with 1 and have exactly four 1’s. Note that |A ∩B| = (7

4
)
(make the last entry

a 1 and choose 3 of the remaining 7 spots for 1’s). By the inclusion-exclusion
formula, the number 8-digit binary strings that end in 1 or have exactly four 1’s
is |A∪B| = |A|+ |B|− |A∩B| = 27 + (8

4
)− (7

3
)= 163.

15. How many 10-digit binary strings begin in 1 or end in 1?
Solution: Let A be the set of strings that begin with 1. By the multiplication
principle |A| = 29. Let B be the number of strings that end with 1. By the
multiplication principle |B| = 29. Then A ∩B is the set of strings that begin
and end with 1. By the multiplication principle |A∩B| = 28. By the inclusion-
exclusion formula, the number 10-digit binary strings begin in 1 or end in 1 is
|A∪B| = |A|+ |B|− |A∩B| = 29 +29 −28 = 768.
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Section 3.8

1. How many 10-element multisets can be made from the symbols {1,2,3,4}?
Answer:

(10+4−1
10

)= (13
10

)= 286.
3. You have a dollar in pennies, a dollar in nickels, a dollar in dimes and a dollar

in quarters. You give four coins to a friend. In how many ways can this be done?
Solution: In giving your friend four coins, you are giving her a 4-element multiset
made from elements in {1,5,10,25}. There are

(4+4−1
4

)= (7
4
)= 35 such multisets.

5. A bag contains 20 identical red balls, 20 identical blue balls, 20 identical green
balls, and one white ball. You reach in and grab 15 balls. How many different
outcomes are possible?
Solution: First we count the number of outcomes that don’t have a white ball.
Modeling this with stars and bars, we are looking at length-17 lists of the form

red︷ ︸︸ ︷∗∗∗·· ·∗ ∣∣ blue︷ ︸︸ ︷∗∗∗·· ·∗ ∣∣ green︷ ︸︸ ︷∗∗∗·· ·∗,

where there are 15 stars and two bars. Therefore there are
(17
15

)
outcomes without

the white ball. Next we count the outcomes that do have the white ball. Then
there are 14 remaining balls in the grab. In counting the ways that they can
be selected we can use the same stars-and-bars model above, but this time the
list is of length 16 and has 14 stars. There are

(16
14

)
outcomes. Finally, by the

addition principle, the answer to the question is
(17
15

)+ (16
14

)= 256.
7. In how many ways can you place 20 identical balls into five different boxes?

Solution: Let’s model this with stars and bars. Doing this we get a list of length
24 with 20 stars and 4 bars, where the first grouping of stars has as many stars
as balls in Box 1, the second grouping has as many stars as balls in Box 2, and
so on.

Box 1︷ ︸︸ ︷∗∗∗·· ·∗ ∣∣ Box 2︷ ︸︸ ︷∗∗∗·· ·∗ ∣∣ Box 3︷ ︸︸ ︷∗∗∗·· ·∗ ∣∣ Box 4︷ ︸︸ ︷∗∗∗·· ·∗ ∣∣ Box 5︷ ︸︸ ︷∗∗∗·· ·∗,

The number of ways to place 20 balls in the five boxes equals the number of such
lists, which is

(24
20

)= 10,626.
9. A bag contains 50 pennies, 50 nickels, 50 dimes and 50 quarters. You reach in

and grab 30 coins. How many different outcomes are possible?
Solution: The stars-and-bars model is

pennies︷ ︸︸ ︷∗∗∗·· ·∗ ∣∣ nickels︷ ︸︸ ︷∗∗∗·· ·∗ ∣∣ dimes︷ ︸︸ ︷∗∗∗·· ·∗ ∣∣ quarters︷ ︸︸ ︷∗∗∗·· ·∗,

so there are
(33
30

)= 5456 outcomes.
11. How many integer solutions does the equation w+ x+ y+ z = 100 have if w ≥ 4,

x ≥ 2, y≥ 0 and z ≥ 0?
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Solution: Imagine a bag containing 100 red balls, 100 blue balls, 100 green balls
and 100 white balls. Each solution of the equation corresponds to an outcome in
selecting 100 balls from the bag, where the selection includes w ≥ 4 red balls,
x ≥ 2 blue balls, y≥ 0 green balls and z ≥ 0 white balls.
Now let’s consider making such a selection. Pre-select 4 red balls and 2 blue
balls, so 94 balls remain in the bag. Next the remaining 94 balls are selected.
We can calculate the number of ways that this selection can be made with stars
and bars, where there are 94 stars and 3 bars.

red︷ ︸︸ ︷∗∗∗·· ·∗ ∣∣ blue︷ ︸︸ ︷∗∗∗·· ·∗ ∣∣ green︷ ︸︸ ︷∗∗∗·· ·∗ ∣∣ white︷ ︸︸ ︷∗∗∗·· ·∗,

The number of outcomes is thus
(94

3
)= 134,044.

13. How many length-6 lists can be made from the symbols {a, b, c, d, e, f, g}, if
repetition is allowed and the list is in alphabetical order?
Solution: Any such list corresponds to a 6-element multiset made from the
symbols {a, b, c, d, e, f, g}. For example, the list aacddg corresponds to the
multiset [a,a,c,d,d,g]. Thus the number of lists equals the number of multisets,
which is

(6+7−1
6

)= (12
6
)= 924.

15. How many permutations are there of the letters in the word “TENNESSEE”?
Solution: By Fact 3.8, the answer is 9!

4!2!2! = 3,780.
17. You roll a dice six times in a row. How many possible outcomes are there that

have two 1’s three 5’s and one 6?
Solution: This is the number of permutations of the “word” . By
Fact 3.8, the answer is 6!

2!3!1! = 60.
19. In how many ways can you place 15 identical balls into 20 different boxes if each

box can hold at most one ball?
Solution: Regard each such distribution as a binary string of length 20, where
there is a 1 in the ith position precisely if the ith box contains a ball (and zeros
elsewhere). The answer is the number of permutations of such a string, which
by Fact 3.8 is 20!

15!5! =15,504. Alternatively, the answer is the number of ways to
choose 15 positions out of 20, which is

(20
15

)= 15,504.
21. How many numbers between 10,000 and 99,999 contain one or more of the digits

3, 4 and 8, but no others?
Solution: First count the numbers that have three 3’s, one 4, and one 8, like
33,348. By Fact 3.8, the number of permutations of this is 5!

3!1!1! = 20.
By the same reasoning there are 20 numbers that contain three 4’s, one 3, and
one 8, and 20 numbers that contain three 8’s, one 3, and one 4.
Next, consider the numbers that have two 3’s, two 4’s and one 8, like 33,448. By
Fact 3.8, the number of permutations of this is 5!

2!2!1! = 30.
By the same reasoning there are 30 numbers that contain two 3’s, two 8’s and
one 4, and 30 numbers that contain two 4’s, two 8’s and one 3. This exhausts all
possibilities. By the addition principle the answer is 20+20+20+30+30+30= 150.
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Section 3.9

1. Show that if 6 integers are chosen at random, at least two will have the same
remainder when divided by 5.
Solution: Pick six integers n1,n2,n3,n4,n5 and n6 at random. Imagine five boxes,
labeled Box 0, Box 1, Box 2, Box 3, Box 4. Each of the picked integers has a
remainder when divided by 5, and that remainder is 0, 1, 2, 3 or 4. For each ni,
let r i be its remainder when divided by 5. Put ni in Box r i. We have now put six
numbers in five boxes, so by the pigeonhole principle one of the boxes has two or
more of the picked numbers in it. Those two numbers have the same remainder
when divided by 5.

3. What is the fewest number of times you must roll a six-sided dice before you can
be assured that 10 or more of the rolls resulted in the same number?
Solution: Imagine six boxes, labeled 1 through 6. Every time you roll a , put
an object in Box 1. Every time you roll a , put an object in Box 2, etc. After
n rolls, the division principle says that one box contains d n

6 e objects, and this
means you rolled the same number d n

6 e times. We seek the smallest n for which
d n

6 e ≥ 10. This is the smallest n for which n
6 > 9, that is n > 9 ·6 = 36. Thus the

answer is n = 37. You need to roll the dice 37 times.
5. Prove that any set of 7 distinct natural numbers contains a pair of numbers

whose sum or difference is divisible by 10.
Solution: Let S = {a1,a2,a3,a4,a5,a6,a7} be any set of 7 natural numbers. Let’s
say that a1 < a2 < a3 < ·· · < a7. Consider the set

A = {a1 −a2, a1 −a3, a1 −a4, a1 −a5, a1 −a6, a1 −a7,
a1 +a2, a1 +a3, a1 +a4, a1 +a5, a1 +a6, a1 +a7}

Thus |A| = 12. Now imagine 10 boxes numbered 0,1,2, . . . ,9. For each number
a1 ± ai ∈ A, put it in the box whose number is the one’s digit of a1 ± ai. (For
example, if a1 ±ai = 4, put it in Box 4. If a1 ±ai = 8, put it in Box 8, etc.) Now we
have placed the 12 numbers in A into 10 boxes, so the pigeonhole principle says
at least one box contains two elements a1 ±ai and a1 ±a j from A. This means
the last digit of a1 ±ai is the same as the last digit of a1 ±a j. Thus the last digit
of the difference (a1 ± ai)− (a1 ± a j) = ±ai ± a j is 0. Hence ±ai ± a j is a sum or
difference of elements of S that is divisible by 10.

Section 3.10

1. Show that 1(n−0)+2(n−1)+3(n−2)+4(n−3)+·· ·+ (n−1)2+ (n−0)1= (n+2
3

)
.

Solution: Let S = {0,1,2,3, . . . ,n,n+1}, which is a set with n+2 elements. The
right-hand side

(n+2
3

)
of our equations is the number of 3-element subsets of S.

Let’s now count these 3-element subsets in a different way. Any such subset X
can be written as X = { j,k,`}, where 0≤ j < k < `≤ n+1. Note that this forces the
middle element k to be in the range 1≤ k ≤ n. Given a fixed middle element k,
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there are k choices for the smallest element j and n+1−k choices for the largest
element `.

0 1 2 · · · k−1︸ ︷︷ ︸
k choices for j

k
↑

middle

k+1 k+2 k+3 · · · n n+1︸ ︷︷ ︸
n+1−k choices for `

By the multiplication principle, there are k(n+1− k) possible 3-element sets
X with middle element k. For example, if k = 1, there are 1(n−0) sets X with
middle element 1. If k = 2, there are 2(n−1) sets X with middle element 2. If
k = 3, there are 3(n−2) sets X with middle element 3. Thus the left-hand side of
our equation counts up the number of 3-element subsets of S, so it is equal to
the right-hand side.

3. Show that
(n
2
)(n−2

k−2
)= (n

k
)(k

2
)
.

Solution: Consider the following problem. From a group of n people, you need to
select k people to serve on a committee, and you also need to select 2 of these k
people to lead the committee’s discussion. In how many ways can this be done?

One approach is to first select k people from n, and then select 2 of these k people
to lead the discussion. By the multiplication principle, there are

(n
k
)(k

2
)
ways to

make this selection.

Another approach is to first select 2 of the n people to be the discussion leaders,
and there are

(n
2
)
ways to do this. Next we need to fill out the committee by

selecting k−2 people from the remaining n−2 people, and there are
(n−2

k−2
)
ways

to do this. By the multiplication principle, there are
(n
2
)(n−2

k−2
)
ways to make the

selection.

By the previous two paragraphs,
(n
2
)(n−2

k−2
)
and

(n
k
)(k

2
)
are both answers to the same

counting problem, so they are equal.
5. Show that

(2n
2

)= 2
(n
2
)+n2.

Solution: Let S be a set with 2n elements. Then the left-hand side counts the
number of 2-element subsets of S.

Let’s now count this in a different way. Split S as S = A∪B, where |A| = n = |B|. We
can choose a 2-element subset of S in three ways: We could choose both elements
from A, and there are

(n
2
)
ways to do this. We could choose both elements from

B, and there are
(n
2
)
ways to do this. Or we could choose one element from A

and then another element from B, and by the multiplication principle there
are n · n = n2 ways to do this. Thus the number of 2-element subsets of S is(n
2
)+ (n

2
)+n2 = 2

(n
2
)+n2, and this is the right-hand side. Therefore the equation

holds because both sides count the same thing.

7. Show that
p∑

k=0

(m
k
)( n

p−k
)= (m+n

p
)
.

Solution: Take three non-negative integers m,n and p. Let S be a set with
|S| = m+n, so the right-hand side counts the number of p-element subsets of S.
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Now let’s count this in a different way. Split S as S = A∪B, where |A| = m and
|B| = n. We can make any p-element subset of S by choosing k of its elements
from A in and p−k of its elements from B, for any 0≤ k ≤ p. There are

(m
k
)
ways

to choose k elements from A, and
( n

p−k
)
ways to choose p− k elements from B,

so there are
(m

k
)( n

p−k
)
ways to make a p-element subset of S that has k elements

from A. As k could be any number between 0 and p, the left-hand side of our
equation counts up the p-element subsets of S. Thus the left- and right-hand
sides count the same thing, so they are equal.

9. Show that
n∑

k=m

( k
m

)= (n+1
m+1

)
.

Solution: Let S = {0,1,2, . . . ,n}, so |S| = n+1. The right-hand side of our equation
is the number of subsets X of S with m+1 elements.
Now let’s think of a way to make such an X ⊆ S with |X | = m+1. We could begin
by selecting a largest element k for X . Now, once we have chosen k, there are
k elements in S to the left of k, and we need to choose m of them to go in X (so
these, along with k, form the set X ).

S = {
0, 1, 2, 3, 4, 5, · · · , k−1,︸ ︷︷ ︸

choose m of these k numbers for X

k,
↑

largest
number
in X

k+1, k+2, k+3, · · · , n
}

There are
( k
m

)
ways to choose these m numbers, so there are

( k
m

)
subsets of S

whose largest element is k. Notice that we must have m ≤ k ≤ n. (The largest
element k of X cannot be smaller than m because we need at least m elements
on its left.) Summing over all possible largest values in X , we see that

n∑
k=m

( k
m

)
equals the number of subsets of S with m+1 elements.

The previous two paragraphs show that
n∑

k=m

( k
m

)
and

(n+1
m+1

)
are answers to the

same counting question, so they are equal.

11. Show that
n∑

k=0
2k(n

k
)= 3n.

Solution: Consider the problem of counting the number of length-n lists made
from the symbols {a,b, c}, with repetition allowed. There are 3n such lists, so the
right-hand side counts the number of such lists.
On the other hand, given k with 0≤ k ≤ n, let’s count the lists that have exactly k
entries unequal to a. There are 2k(n

k
)
such lists. (First choose k of n list positions

to be filled with b or c, in
(n

k
)
ways. Then fill these k positions with b’s and c’s

in 2k ways. Fill any remaining positions with a’s.) As k could be any number
between 0 and n, the left-had side of our equation counts up the number of
length-n lists made from the symbols {a,b, c}. Thus the right- and left-hand sides
count the same thing, so they are equal.
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Chapter 4 Exercises
1. If x is an even integer, then x2 is even.

Proof. Suppose x is even. Thus x = 2a for some a ∈Z.
Consequently x2 = (2a)2 = 4a2 = 2(2a2).
Therefore x2 = 2b, where b is the integer 2a2.
Thus x2 is even by definition of an even number. ■

3. If a is an odd integer, then a2 +3a+5 is odd.

Proof. Suppose a is odd.
Thus a = 2c+1 for some integer c, by definition of an odd number.
Then a2 +3a+5= (2c+1)2 +3(2c+1)+5= 4c2 +4c+1+6c+3+5= 4c2 +10c+9
= 4c2 +10c+8+1= 2(2c2 +5c+4)+1.
This shows a2 +3a+5= 2b+1, where b = 2c2 +5c+4 ∈Z.
Therefore a2 +3a+5 is odd. ■

5. Suppose x, y ∈Z. If x is even, then xy is even.

Proof. Suppose x, y ∈Z and x is even.
Then x = 2a for some integer a, by definition of an even number.
Thus xy= (2a)(y)= 2(ay).
Therefore xy= 2b where b is the integer ay, so xy is even. ■

7. Suppose a,b ∈Z. If a | b, then a2 | b2.

Proof. Suppose a | b.
By definition of divisibility, this means b = ac for some integer c.
Squaring both sides of this equation produces b2 = a2c2.
Then b2 = a2d, where d = c2 ∈Z.
By definition of divisibility, this means a2 | b2. ■

9. Suppose a is an integer. If 7 | 4a, then 7 | a.

Proof. Suppose 7 | 4a.
By definition of divisibility, this means 4a = 7c for some integer c.
Since 4a = 2(2a) it follows that 4a is even, and since 4a = 7c, we know 7c is even.
But then c can’t be odd, because that would make 7c odd, not even.
Thus c is even, so c = 2d for some integer d.
Now go back to the equation 4a = 7c and plug in c = 2d. We get 4a = 14d.
Dividing both sides by 2 gives 2a = 7d.
Now, since 2a = 7d, it follows that 7d is even, and thus d cannot be odd.
Then d is even, so d = 2e for some integer e.
Plugging d = 2e back into 2a = 7d gives 2a = 14e.
Dividing both sides of 2a = 14e by 2 produces a = 7e.
Finally, the equation a = 7e means that 7 | a, by definition of divisibility. ■
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11. Suppose a,b, c,d ∈Z. If a | b and c | d, then ac | bd.

Proof. Suppose a | b and c | d.
As a | b, the definition of divisibility means there is an integer x for which b = ax.
As c | d, the definition of divisibility means there is an integer y for which d = cy.
Since b = ax, we can multiply one side of d = cy by b and the other by ax.
This gives bd = axcy, or bd = (ac)(xy).
Since xy ∈Z, the definition of divisibility applied to bd = (ac)(xy) gives ac | bd. ■

13. Suppose x, y ∈R. If x2 +5y= y2 +5x, then x = y or x+ y= 5.

Proof. Suppose x2 +5y= y2 +5x.
Then x2 − y2 = 5x−5y, and factoring gives (x− y)(x+ y)= 5(x− y).
Now consider two cases.
Case 1. If x−y 6= 0 we can divide both sides of (x−y)(x+y)= 5(x−y) by the non-zero
quantity x− y to get x+ y= 5.
Case 2. If x− y= 0, then x = y. (By adding y to both sides.)
Thus x = y or x+ y= 5. ■

15. If n ∈Z, then n2 +3n+4 is even.

Proof. Suppose n ∈Z. We consider two cases.
Case 1. Suppose n is even. Then n = 2a for some a ∈Z.
Therefore n2 +3n+4= (2a)2 +3(2a)+4= 4a2 +6a+4= 2(2a2 +3a+2).
So n2 +3n+4= 2b where b = 2a2 +3a+2 ∈Z, so n2 +3n+4 is even.
Case 2. Suppose n is odd. Then n = 2a+1 for some a ∈Z.
Therefore n2+3n+4= (2a+1)2+3(2a+1)+4= 4a2+4a+1+6a+3+4= 4a2+10a+8
= 2(2a2+5a+4). So n2+3n+4= 2b where b = 2a2+5a+4 ∈Z, so n2+3n+4 is even.

In either case n2 +3n+4 is even. ■

17. If two integers have opposite parity, then their product is even.

Proof. Suppose a and b are two integers with opposite parity. Thus one is even
and the other is odd. Without loss of generality, suppose a is even and b is
odd. Therefore there are integers c and d for which a = 2c and b = 2d+1. Then
the product of a and b is ab = 2c(2d +1) = 2(2cd + c). Therefore ab = 2k where
k = 2cd+ c ∈Z. Therefore the product ab is even. ■

19. Suppose a,b, c ∈Z. If a2 | b and b3 | c then a6 | c.

Proof. Since a2 | b we have b = ka2 for some k ∈Z. Since b3 | c we have c = hb3 for
some h ∈Z. Thus c = h(ka2)3 = hk3a6. Hence a6 | c. ■

21. If p is prime and 0< k < p then p | (p
k
)
.

Proof. From the formula
(p

k
) = p!

(p−k)!k! , we get p! = (p
k
)
(p− k)!k!. Now, since the

prime number p is a factor of p! on the left, it must also be a factor of
(p

k
)
(p−k)!k!
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on the right. Thus the prime number p appears in the prime factorization of(p
k
)
(p−k)!k!.

As k! is a product of numbers smaller than p, its prime factorization contains no
p’s. Similarly the prime factorization of (p−k)! contains no p’s. But we noted that
the prime factorization of

(p
k
)
(p−k)!k! must contain a p, so the prime factorization

of
(p

k
)
contains a p. Thus

(p
k
)
is a multiple of p, so p divides

(p
k
)
. ■

23. If n ∈N then
(2n

n
)
is even.

Proof. By definition,
(2n

n
)
is the number of n-element subsets of a set A with 2n

elements. For each subset X ⊆ A with |X | = n, the complement X is a different
set, but it also has 2n−n = n elements. Imagine listing out all the n-elements
subset of a set A. It could be done in such a way that the list has form

X1, X1, X2, X2, X3, X3, X4, X4, X5, X5 . . .

This list has an even number of items, for they are grouped in pairs. Thus
(2n

n
)

is even. ■

25. If a,b, c ∈N and c ≤ b ≤ a then
(a
b
)(b

c
)= ( a

b−c
)(a−b+c

c
)
.

Proof. Assume a,b, c ∈ N with c ≤ b ≤ a. Then we have
(a
b
)(b

c
) = a!

(a−b)!b!
b!

(b−c)!c! =
a!

(a−b+c)!(a−b)!
(a−b+c)!
(b−c)!c! = a!

(b−c)!(a−b+c)!
(a−b+c)!
(a−b)!c! = ( a

b−c
)(a−b+c

c
)
. ■

27. Suppose a,b ∈N. If gcd(a,b)> 1, then b | a or b is not prime.

Proof. Suppose gcd(a,b)> 1. Let c = gcd(a,b)> 1. Then since c is a divisor of both
a and b, we have a = cx and b = cy for integers x and y. We divide into two cases
according to whether or not b is prime.
Case I. Suppose b is prime. Then the above equation b = cy with c > 1 forces
c = b and y= 1. Then a = cx becomes a = bx, which means b | a. We conclude that
the statement “b | a or b is not prime,” is true.
Case II. Suppose b is not prime. Then the statement “b | a or b is not prime,” is
automatically true. ■

Chapter 5 Exercises
1. Suppose n ∈Z. If n2 is even, then n is even.

Proof. (Contrapositive) Suppose n is not even. Then n is odd, so n = 2a+1 for
some integer a, by definition of an odd number. Thus n2 = (2a+1)2 = 4a2+4a+1=
2(2a2 +2a)+1. Consequently n2 = 2b+1, where b is the integer 2a2 +2a, so n2 is
odd. Therefore n2 is not even. ■
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3. Suppose a,b ∈Z. If a2(b2 −2b) is odd, then a and b are odd.

Proof. (Contrapositive) Suppose it is not the case that a and b are odd. Then,
by DeMorgan’s law, at least one of a and b is even. Let us look at these cases
separately.
Case 1. Suppose a is even. Then a = 2c for some integer c. Thus a2(b2 −2b)
= (2c)2(b2 −2b)= 2(2c2(b2 −2b)), which is even.
Case 2. Suppose b is even. Then b = 2c for some integer c. Thus a2(b2 −2b)
= a2((2c)2 −2(2c))= 2(a2(2c2 −2c)), which is even.
(A third case involving a and b both even is unnecessary, for either of the two
cases above cover this case.) Thus in either case a2(b2 −2b) is even, so it is not
odd. ■

5. Suppose x ∈R. If x2 +5x < 0 then x < 0.

Proof. (Contrapositive) Suppose it is not the case that x < 0, so x ≥ 0. Then
neither x2 nor 5x is negative, so x2+5x ≥ 0. Thus it is not true that x2+5x < 0. ■

7. Suppose a,b ∈Z. If both ab and a+b are even, then both a and b are even.

Proof. (Contrapositive) Suppose it is not the case that both a and b are even.
Then at least one of them is odd. There are three cases to consider.
Case 1. Suppose a is even and b is odd. Then there are integers c and d for which
a = 2c and b = 2d+1. Then ab = 2c(2d+1), which is even; and a+b = 2c+2d+1=
2(c+d)+1, which is odd. Thus it is not the case that both ab and a+b are even.
Case 2. Suppose a is odd and b is even. Then there are integers c and d for
which a = 2c+1 and b = 2d. Then ab = (2c+1)(2d) = 2(d(2c+1)), which is even;
and a+b = 2c+1+2d = 2(c+d)+1, which is odd. Thus it is not the case that both
ab and a+b are even.
Case 3. Suppose a is odd and b is odd. Then there are integers c and d for
which a = 2c+ 1 and b = 2d + 1. Then ab = (2c+ 1)(2d + 1) = 4cd + 2c+ 2d + 1 =
2(2cd+ c+d)+1, which is odd; and a+b = 2c+1+2d+1= 2(c+d+1), which is even.
Thus it is not the case that both ab and a+b are even.
These cases show that it is not the case that ab and a+b are both even. (Note
that unlike Exercise 3 above, we really did need all three cases here, for each
case involved specific parities for both a and b.) ■

9. Suppose n ∈Z. If 3 - n2, then 3 - n.

Proof. (Contrapositive) Suppose it is not the case that 3 - n, so 3 | n. This means
that n = 3a for some integer a. Consequently n2 = 9a2, from which we get n2 =
3(3a2). This shows that there in an integer b = 3a2 for which n2 = 3b, which
means 3 | n2. Therefore it is not the case that 3 - n2. ■

11. Suppose x, y ∈Z. If x2(y+3) is even, then x is even or y is odd.

Proof. (Contrapositive) Suppose it is not the case that x is even or y is odd.
Using DeMorgan’s law, this means x is not even and y is not odd, which is to
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say x is odd and y is even. Thus there are integers a and b for which x = 2a+1
and y = 2b. Consequently x2(y+ 3) = (2a + 1)2(2b + 3) = (4a2 + 4a + 1)(2b + 3) =
8a2b+8ab+2b+12a2 +12a+3= 8a2b+8ab+2b+12a2 +12a+2+1=
2(4a2b+4ab+b+6a2 +6a+1)+1. This shows x2(y+3)= 2c+1 for c = 4a2b+4ab+
b+6a2 +6a+1 ∈Z. Consequently, x2(y+3) is not even. ■

13. Suppose x ∈R. If x5 +7x3 +5x ≥ x4 + x2 +8, then x ≥ 0.

Proof. (Contrapositive) Suppose it is not true that x ≥ 0. Then x < 0, that is x is
negative. Consequently, the expressions x5, 7x3 and 5x are all negative (note the
odd powers) so x5 +7x3 +5x < 0. Similarly the terms x4, x2 and 8 are all positive
(note the even powers), so 0< x4+x2+8. From this we get x5+7x3+5x < x4+x2+8,
so it is not true that x5 +7x3 +5x ≥ x4 + x2 +8. ■

15. Suppose x ∈Z. If x3 −1 is even, then x is odd.

Proof. (Contrapositive) Suppose x is not odd. Thus x is even, so x = 2a for some
integer a. Then x3 −1 = (2a)3 −1 = 8a3 −1 = 8a3 −2+1 = 2(4a3 −1)+1. Therefore
x3 −1= 2b+1 where b = 4a3 −1 ∈Z, so x3 −1 is odd. Thus x3 −1 is not even. ■

17. If n is odd, then 8 | (n2 −1).

Proof. (Direct) Suppose n is odd, so n = 2a+1 for some integer a. Then n2 −1=
(2a+1)2 −1= 4a2 +4a = 4(a2 +a)= 4a(a+1). So far we have n2 −1= 4a(a+1), but
we want a factor of 8, not 4. But notice that one of a or a+1 must be even, so
a(a+1) is even and hence a(a+1)= 2c for some integer c. Now we have n2 −1=
4a(a+1)= 4(2c)= 8c. But n2 −1= 8c means 8 | (n2 −1). ■

19. Let a,b, c ∈Z and n ∈N. If a ≡ b (mod n) and a ≡ c (mod n), then c ≡ b (mod n).

Proof. (Direct) Suppose a ≡ b (mod n) and a ≡ c (mod n).
This means n | (a−b) and n | (a− c).
Thus there are integers d and e for which a−b = nd and a− c = ne.
Subtracting the second equation from the first gives c−b = nd−ne.
Thus c−b = n(d− e), so n | (c−b) by definition of divisibility.
Therefore c ≡ b (mod n) by definition of congruence modulo n. ■

21. Let a,b ∈Z and n ∈N. If a ≡ b (mod n), then a3 ≡ b3 (mod n).

Proof. (Direct) Suppose a ≡ b (mod n). This means n | (a− b), so there is an
integer c for which a−b = nc. Then:

a−b = nc

(a−b)(a2 +ab+b2) = nc(a2 +ab+b2)

a3 +a2b+ab2 −ba2 −ab2 −b3 = nc(a2 +ab+b2)

a3 −b3 = nc(a2 +ab+b2).

Since a2 +ab+ b2 ∈ Z, the equation a3 − b3 = nc(a2 +ab+ b2) implies n | (a3 − b3),
and therefore a3 ≡ b3 (mod n). ■
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23. Let a,b ∈Z and n ∈N. If a ≡ b (mod n), then a2 ≡ ab (mod n).

Proof. (Direct) Suppose a ≡ b (mod n). This means n | (a− b), so there is an
integer d for which a−b = nd. Multiply both sides of this by a to get a2−ab = and.
Consequently, there is an integer e = da for which a2−ab = ne, so n | (a2−ab) and
consequently a2 ≡ ab (mod n). ■

25. If n ∈N and 2n −1 is prime, then n is prime.

Proof. Assume n is not prime. Write n = ab for some a,b > 1. Then 2n − 1 =
2ab−1= (

2b−1
)(

2ab−b+2ab−2b+2ab−3b+·· ·+2ab−ab)
. Hence 2n−1 is composite. ■

27. If a ≡ 0 (mod 4) or a ≡ 1 (mod 4) then
(a
2
)
is even.

Proof. We prove this directly. Assume a ≡ 0 (mod 4). Then
(a
2
) = a(a−1)

2 . Since
a = 4k for some k ∈N, we have

(a
2
)= 4k(4k−1)

2 = 2k(4k−1). Hence
(a
2
)
is even.

Now assume a ≡ 1 (mod 4). Then a = 4k+1 for some k ∈N. Hence
(a
2
)= (4k+1)(4k)

2 =
2k(4k+1). Hence,

(a
2
)
is even. This proves the result. ■

29. If integers a and b are not both zero, then gcd(a,b)= gcd(a−b,b).

Proof. (Direct) Suppose integers a and b are not both zero. Let d = gcd(a,b).
Because d is a divisor of both a and b, we have a = dx and b = d y for some
integers x and y. Then a− b = dx− d y = d(x− y), so it follows that d is also a
common divisor of a−b and b. Therefore it can’t be greater than the greatest
common divisor of a−b and b, which is to say gcd(a,b)= d ≤ gcd(a−b,b).

Now let e = gcd(a− b,b). Then e divides both a− b and b, that is, a− b = ex and
b = ey for integers x and y. Then a = (a− b)+ b = ex+ ey = e(x+ y), so now we
see that e is a divisor of both a and b. Thus it is not more than their greatest
common divisor, that is, gcd(a−b,b)= e ≤ gcd(a,b).

The above two paragraphs have given gcd(a,b) ≤ gcd(a− b,b) and gcd(a− b,b) ≤
gcd(a,b). Thus gcd(a,b)= gcd(a−b,b). ■

31. Suppose the division algorithm applied to a and b yields a = qb + r. Then
gcd(a,b)= gcd(r,b).

Proof. Suppose a = qb+ r. Let d = gcd(a,b), so d is a common divisor of a and b;
thus a = dx and b = d y for some integers x and y. Then dx = a = qb+ r = qdy+ r,
hence dx = qdy+ r, and so r = dx− qdy= d(x− qy). Thus d is a divisor of r (and
also of b), so gcd(a,b)= d ≤ gcd(r,b).

On the other hand, let e = gcd(r,b), so r = ex and b = ey for some integers x and y.
Then a = qb+ r = qey+ ex = e(qy+ x). Hence e is a divisor of a (and of course also
of b) so gcd(r,b)= e ≤ gcd(a,b).

We’ve shown gcd(a,b)≤ gcd(r,b) and gcd(r,b)≤ gcd(a,b), so gcd(r,b)= gcd(a,b). ■
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Chapter 6 Exercises
1. Suppose n is an integer. If n is odd, then n2 is odd.

Proof. Suppose for the sake of contradiction that n is odd and n2 is not odd.
Then n2 is even. Now, since n is odd, we have n = 2a+1 for some integer a.
Thus n2 = (2a+1)2 = 4a2 +4a+1 = 2(2a2 +2a)+1. This shows n2 = 2b+1, where
b is the integer b = 2a2 + 2a. Therefore we have n2 is odd and n2 is even, a
contradiction. ■

3. Prove that 3p2 is irrational.

Proof. Suppose for the sake of contradiction that 3p2 is not irrational. Therefore
it is rational, so there exist integers a and b for which 3p2= a

b . Let us assume that
this fraction is reduced, so a and b are not both even. Now we have 3p2

3 = ( a
b
)3,

which gives 2= a3

b3 , or 2b3 = a3. From this we see that a3 is even, from which we
deduce that a is even. (For if a were odd, then a3 = (2c+1)3 = 8c3 +12c2 +6c+1=
2(4c3 +6c2 +3c)+1 would be odd, not even.) Since a is even, it follows that a = 2d
for some integer d. The equation 2b3 = a3 from above then becomes 2b3 = (2d)3,
or 2b3 = 8d3. Dividing by 2, we get b3 = 4d3, and it follows that b3 is even. Thus b
is even also. (Using the same argument we used when a3 was even.) At this point
we have discovered that both a and b are even, contradicting the fact (observed
above) that the a and b are not both even. ■
Here is an alternative proof.

Proof. Suppose for the sake of contradiction that 3p2 is not irrational. Therefore
there exist integers a and b for which 3p2= a

b . Cubing both sides, we get 2= a3

b3 .
From this, a3 = b3 +b3, which contradicts Fermat’s last theorem. ■

5. Prove that
p

3 is irrational.

Proof. Suppose for the sake of contradiction that
p

3 is not irrational. Therefore
it is rational, so there exist integers a and b for which

p
3 = a

b . Let us assume
that this fraction is reduced, so a and b have no common factor. Notice thatp

3
2 = ( a

b
)2, so 3= a2

b2 , or 3b2 = a2. This means 3 | a2.

Now we are going to show that if a ∈Z and 3 | a2, then 3 | a. (This is a proof-within-
a-proof.) We will use contrapositive proof to prove this conditional statement.
Suppose 3 - a. Then there is a remainder of either 1 or 2 when 3 is divided into a.
Case 1. There is a remainder of 1 when 3 is divided into a. Then a = 3m+1
for some integer m. Consequently, a2 = 9m2 +6m+1= 3(3m2 +2m)+1, and this
means 3 divides into a2 with a remainder of 1. Thus 3 - a2.
Case 2. There is a remainder of 2 when 3 is divided into a. Then a = 3m+2 for
some integer m. Consequently, a2 = 9m2 +12m+4 = 9m2 +12m+3+1 = 3(3m2 +
4m+1)+1, and this means 3 divides into a2 with a remainder of 1. Thus 3 - a2.
In either case we have 3 - a2, so we’ve shown 3 - a implies 3 - a2. Therefore, if 3 | a2,
then 3 | a.
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Now go back to 3 | a2 in the first paragraph. This combined with the result of
the second paragraph implies 3 | a, so a = 3d for some integer d. Now also in the
first paragraph we had 3b2 = a2, which now becomes 3b2 = (3d)2 or 3b2 = 9d2, so
b2 = 3d2. But this means 3 | b2, and the second paragraph implies 3 | b. Thus we
have concluded that 3 | a and 3 | b, but this contradicts the fact that the fraction
a
b is reduced. ■

7. If a,b ∈Z, then a2 −4b−3 6= 0.

Proof. Suppose for the sake of contradiction that a,b ∈Z but a2−4b−3= 0. Then
we have a2 = 4b+3= 2(2b+1)+1, which means a2 is odd. Therefore a is odd also,
so a = 2c+1 for some integer c. Plugging this back into a2 −4b−3= 0 gives us

(2c+1)2 −4b−3 = 0

4c2 +4c+1−4b−3 = 0

4c2 +4c−4b = 2

2c2 +2c−2b = 1

2(c2 + c−b) = 1.

From this last equation, we see that 1 is an even number, a contradiction. ■

9. Suppose a,b ∈R and a 6= 0. If a is rational and ab is irrational, then b is irrational.

Proof. Suppose for the sake of contradiction that a is rational and ab is irrational
and b is not irrational. Thus we have a and b rational, and ab irrational. Since a
and b are rational, we know there are integers c,d, e, f for which a = c

d and b = e
f .

Then ab = ce
d f , and since both ce and d f are integers, it follows that ab is rational.

But this is a contradiction because we started out with ab irrational. ■

11. There exist no integers a and b for which 18a+6b = 1.

Proof. Suppose for the sake of contradiction that there do exist integers a and b
with 18a+6b = 1. Then 1= 2(9a+3b), which means 1 is even, a contradiction. ■

13. For every x ∈ [π/2,π], sin x−cos x ≥ 1.

Proof. Suppose for the sake of contradiction that x ∈ [π/2,π], but sin x−cos x < 1.
Since x ∈ [π/2,π], we know sin x ≥ 0 and cos x ≤ 0, so sin x− cos x ≥ 0. Therefore
we have 0 ≤ sin x − cos x < 1. Now the square of any number between 0 and
1 is still a number between 0 and 1, so we have 0 ≤ (sin x− cos x)2 < 1, or 0 ≤
sin2 x−2sin xcos x+cos2 x < 1. Using the fact that sin2 x+cos2 x = 1, this becomes
0 ≤−2sin xcos x+1 < 1. Subtracting 1, we obtain −2sin xcos x < 0. But above we
remarked that sin x ≥ 0 and cos x ≤ 0, and hence −2sin xcos x ≥ 0. We now have the
contradiction −2sin xcos x < 0 and −2sin xcos x ≥ 0. ■
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15. If b ∈Z and b - k for every k ∈N, then b = 0.

Proof. Suppose for the sake of contradiction that b ∈Z and b - k for every k ∈N,
but b 6= 0.
Case 1. Suppose b > 0. Then b ∈N, so b|b, contradicting b - k for every k ∈N.
Case 2. Suppose b < 0. Then −b ∈N, so b|(−b), again a contradiction ■

17. For every n ∈Z, 4 - (n2 +2).

Proof. Assume there exists n ∈Z with 4 | (n2 +2). Then for some k ∈Z, 4k = n2 +2
or 2k = n2 + 2(1− k). If n is odd, this means 2k is odd, and we’ve reached a
contradiction. If n is even then n = 2 j and we get k = 2 j2 +1− k for some j ∈ Z.
Hence 2(k− j2)= 1, so 1 is even, a contradiction. ■
Remark. It is fairly easy to see that two more than a perfect square is always
either 2 (mod 4) or 3 (mod 4). This would end the proof immediately.

19. The product of 5 consecutive integers is a multiple of 120.

Proof. Starting from 0, every fifth integer is a multiple of 5, every fourth integer
is a multiple of 4, every third integer is a multiple of 3, and every other integer
is a multiple of 2. It follows that any set of 5 consecutive integers must contain a
multiple of 5, a multiple of 4, at least one multiple of 3, and at least two multiples
of 2 (possibly one of which is a multiple of 4). It follows that the product of five
consecutive integers is a multiple of 5 ·4 ·3 ·2= 120. ■
For another approach, consider a product n(n−1)(n−2)(n−3)(n−4) of five con-
secutive integers (the largest of which is n). Now, we know that

(n
5
)
is an integer,

and
(n
5
)= n!

5!(n−5)! = n!
120(n−5)! = n(n−1)(n−2)(n−3)(n−4)

120 , so 120 divides the product.

21. Hints for Exercises 20–23. For Exercises 20, first show that the equation a2+b2 =
3c2 has no solutions (other than the trivial solution (a,b, c) = (0,0,0)) in the
integers. To do this, investigate the remainders of a sum of squares (mod 4).
After you’ve done this, prove that the only solution is indeed the trivial solution.
Next assume that the equation x2 + y2 −3 = 0 has a rational solution. Use the
definition of rational numbers to yield a contradiction.

Chapter 7 Exercises
1. Suppose x ∈Z. Then x is even if and only if 3x+5 is odd.

Proof. We first use direct proof to show that if x is even, then 3x+5 is odd. If x
is even, then x = 2n for some integer n, so 3x+5= 3(2n)+5= 6n+5= 6n+4+1=
2(3n+2)+1. Thus 3x+5 is odd because it has form 2k+1, where k = 3n+2 ∈Z.
Conversely, we need to show that if 3x+5 is odd, then x is even. We will prove
this using contrapositive proof. Suppose x is not even. Then x is odd, so x = 2n+1
for some integer n. Thus 3x+5= 3(2n+1)+5= 6n+8= 2(3n+4). This means says
3x+5 is twice the integer 3n+4, so 3x+5 is even, not odd. ■
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3. Given an integer a, then a3 +a2 +a is even if and only if a is even.

Proof. First we will prove that if a3 +a2 +a is even then a is even. This is done
with contrapositive proof. Suppose a is not even. Then a is odd, so there is an
integer n for which a = 2n+1. Then

a3 +a2 +a = (2n+1)3 + (2n+1)2 + (2n+1)

= 8n3 +12n2 +6n+1+4n2 +4n+1+2n+1

= 8n3 +16n2 +12n+2+1

= 2(4n3 +8n2 +6n+1)+1.

This expresses a3+a2+a as twice an integer plus 1, so a3+a2+a is odd, not even.
We have now shown that if a3 +a2 +a is even then a is even.

Conversely, we need to show that if a is even, then a3+a2+a is even. We will use
direct proof. Suppose a is even, so a = 2n for some integer n. Then a3 +a2 +a =
(2n)3 + (2n)2 +2n = 8n3 +4n2 +2n = 2(4n3 +2n2 +n). Therefore, a3 +a2 +a is even
because it’s twice an integer. ■

5. An integer a is odd if and only if a3 is odd.

Proof. Suppose that a is odd. Then a = 2n+ 1 for some integer n, and a3 =
(2n+1)3 = 8n3+12n2+6n+1= 2(4n3+6n2+3n)+1. This shows that a3 is twice an
integer, plus 1, so a3 is odd. Thus we’ve proved that if a is odd then a3 is odd.

Conversely we need to show that if a3 is odd, then a is odd. For this we employ
contrapositive proof. Suppose a is not odd. Thus a is even, so a = 2n for some
integer n. Then a3 = (2n)3 = 8n3 = 2(4n3) is even (not odd). ■

7. Suppose x, y ∈R. Then (x+ y)2 = x2 + y2 if and only if x = 0 or y= 0.

Proof. First we prove with direct proof that if (x+ y)2 = x2+ y2, then x = 0 or y= 0.
Suppose (x+ y)2 = x2 + y2. From this we get x2 +2xy+ y2 = x2 + y2, so 2xy= 0, and
hence xy= 0. Thus x = 0 or y= 0.

Conversely, we need to show that if x = 0 or y= 0, then (x+ y)2 = x2 + y2. This will
be done with cases.
Case 1. If x = 0 then (x+ y)2 = (0+ y)2 = y2 = 02 + y2 = x2 + y2.
Case 2. If y= 0 then (x+ y)2 = (x+0)2 = x2 = x2 +02 = x2 + y2.
Either way, we have (x+ y)2 = x2 + y2. ■

9. Suppose a ∈Z. Prove that 14 | a if and only if 7 | a and 2 | a.

Proof. First we prove that if 14 | a, then 7 | a and 2 | a. Direct proof is used.
Suppose 14 | a. This means a = 14m for some integer m. Therefore a = 7(2m),
which means 7 | a, and also a = 2(7m), which means 2 | a. Thus 7 | a and 2 | a.

Conversely, we need to prove that if 7 | a and 2 | a, then 14 | a. Once again direct
proof if used. Suppose 7 | a and 2 | a. Since 2 | a it follows that a = 2m for some
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integer m, and that in turn implies that a is even. Since 7 | a it follows that
a = 7n for some integer n. Now, since a is known to be even, and a = 7n, it follows
that n is even (if it were odd, then a = 7n would be odd). Thus n = 2p for an
appropriate integer p, and plugging n = 2p back into a = 7n gives a = 7(2p), so
a = 14p. Therefore 14 | a. ■

11. Suppose a,b ∈Z. Prove that (a−3)b2 is even if and only if a is odd or b is even.

Proof. First we will prove that if (a−3)b2 is even, then a is odd or b is even. For
this we use contrapositive proof. Suppose it is not the case that a is odd or b is
even. Then by DeMorgan’s law, a is even and b is odd. Thus there are integers m
and n for which a = 2m and b = 2n+1. Now observe (a−3)b2 = (2m−3)(2n+1)2 =
(2m−3)(4n2+4n+1)= 8mn2+8mn+2m−12n2−12n−3= 8mn2+8mn+2m−12n2−
12n−4+1= 2(4mn2+4mn+m−6n2−6n−2)+1. This shows (a−3)b2 is odd, so it’s
not even.

Conversely, we need to show that if a is odd or b is even, then (a−3)b2 is even.
For this we use direct proof, with cases.
Case 1. Suppose a is odd. Then a = 2m+1 for some integer m. Thus (a−3)b2 =
(2m+1−3)b2 = (2m−2)b2 = 2(m−1)b2. Thus in this case (a−3)b2 is even.
Case 2. Suppose b is even. Then b = 2n for some integer n. Thus (a−3)b2 =
(a−3)(2n)2 = (a−3)4n2 = 2(a−3)2n2 =. Thus in this case (a−3)b2 is even.
Therefore, in any event, (a−3)b2 is even. ■

13. Suppose a,b ∈Z. If a+b is odd, then a2 +b2 is odd.
Hint: Use direct proof. Suppose a+b is odd. Argue that this means a and b have
opposite parity. Then use cases.

15. Suppose a,b ∈ Z. Prove that a+ b is even if and only if a and b have the same
parity.

Proof. First we will show that if a+b is even, then a and b have the same parity.
For this we use contrapositive proof. Suppose it is not the case that a and b have
the same parity. Then one of a and b is even and the other is odd. Without loss
of generality, let’s say that a is even and b is odd. Thus there are integers m and
n for which a = 2m and b = 2n+1. Then a+b = 2m+2n+1= 2(m+n)+1, so a+b
is odd, not even.

Conversely, we need to show that if a and b have the same parity, then a+b is
even. For this, we use direct proof with cases. Suppose a and b have the same
parity.
Case 1. Both a and b are even. Then there are integers m and n for which
a = 2m and b = 2n, so a+b = 2m+2n = 2(m+n) is clearly even.
Case 2. Both a and b are odd. Then there are integers m and n for which
a = 2m+1 and b = 2n+1, so a+b = 2m+1+2n+1= 2(m+n+1) is clearly even.
Either way, a+b is even. This completes the proof. ■
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17. There is a prime number between 90 and 100.

Proof. Simply observe that 97 is prime. ■
19. If n ∈N, then 20 +21 +22 +23 +24 +·· ·+2n = 2n+1 −1.

Proof. We use direct proof. Suppose n ∈N. Let S be the number
S = 20 +21 +22 +23 +24 +·· ·+2n−1 +2n. (1)

In what follows, we will solve for S and show S = 2n+1−1. Multiplying both sides
of (1) by 2 gives

2S = 21 +22 +23 +24 +25 +·· ·+2n +2n+1. (2)
Now subtract Equation (1) from Equation (2) to obtain 2S−S =−20+2n+1, which
simplifies to S = 2n+1 −1. Combining this with Equation (1) produces 20 +21 +
22 +23 +24 +·· ·+2n = 2n+1 −1, so the proof is complete. ■

21. Every real solution of x3 + x+3= 0 is irrational.

Proof. Suppose for the sake of contradiction that this polynomial has a rational
solution a

b . We may assume that this fraction is fully reduced, so a and b are not
both even. We have

( a
b
)3 + a

b +3= 0. Clearing the denominator gives

a3 +ab2 +3b3 = 0.

Consider two cases: First, if both a and b are odd, the left-hand side is a sum
of three odds, which is odd, meaning 0 is odd, a contradiction. Second, if one of
a and b is odd and the other is even, then the middle term of a3 +ab2 +3b3 is
even, while a3 and 3b2 have opposite parity. Then a3+ab2+3b3 is the sum of two
evens and an odd, which is odd, again contradicting the fact that 0 is even. ■

23. Suppose a,b and c are integers. If a | b and a | (b2 − c), then a | c.

Proof. (Direct) Suppose a | b and a | (b2−c). This means that b = ad and b2−c = ae
for some integers d and e. Squaring the first equation produces b2 = a2d2.
Subtracting b2−c = ae from b2 = a2d2 gives c = a2d2−ae = a(ad2−e). As ad2−e ∈Z,
it follows that a | c. ■

25. If p > 1 is an integer and n - p for each integer n for which 2≤ n ≤pp, then p is
prime.

Proof. (Contrapositive) Suppose that p is not prime, so it factors as p = mn for
1< m,n < p.
Observe that it is not the case that both m >pp and n >pp, because if this were
true the inequalities would multiply to give mn >pppp = p, which contradicts
p = mn.
Therefore m ≤pp or n ≤pp. Without loss of generality, say n ≤pp. Then the
equation p = mn gives n | p, with 1< n ≤pp. Therefore it is not true that n - p for
each integer n for which 2≤ n ≤pp. ■
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27. Suppose a,b ∈Z. If a2 +b2 is a perfect square, then a and b are not both odd.

Proof. (Contradiction) Suppose a2 +b2 is a perfect square, and a and b are both
odd. As a2 +b2 is a perfect square, say c is the integer for which c2 = a2 +b2. As
a and b are odd, we have a = 2m+1 and b = 2n+1 for integers m and n. Then

c2 = a2 +b2 = (2m+1)2 + (2n+1)2 = 4(m2 +n2 +m+n)+2.

This is even, so c is even also; let c = 2k. Now the above equation results in
(2k)2 = 4(m2 +n2 +m+n)+2, which simplifies to 2k2 = 2(m2 +n2 +m+n)+1. Thus
2k2 is both even and odd, a contradiction. ■

29. If a | bc and gcd(a,b)= 1, then a | c.

Proof. (Direct) Suppose a | bc and gcd(a,b)= 1. The fact that a | bc means bc = az
for some integer z. The fact that gcd(a,b) = 1 means that ax+ by = 1 for some
integers x and y (by Proposition 7.1 on page 152). From this we get acx+bcy= c;
substituting bc = az yields acx+azy= c, that is, a(cx+ zy)= c. Therefore a | c. ■

31. If n ∈Z, then gcd(n,n+1)= 1.

Proof. Suppose d is a positive integer that is a common divisor of n and n+1.
Then n = dx and n+1 = dy for integers x and y. Then 1 = (n+1)−n = d y−dx =
d(y− x). Now, 1 = d(y− x) is only possible if d = ±1 and y− x = ±1. Thus the
greatest common divisor of n and n+1 can be no greater than 1. But 1 does
divide both n and n+1, so gcd(n,n+1)= 1. ■

33. If n ∈Z, then gcd(2n+1,4n2 +1)= 1.

Proof. Note that 4n2 +1= (2n+1)(2n−1)+2. Therefore, it suffices to show that
gcd(2n+1, (2n+1)(2n−1)+2)= 1. Let d be a common positive divisor of both 2n+1
and (2n+1)(2n−1)+2, so 2n+1 = dx and (2n+1)(2n−1)+2 = d y for integers x
and y. Substituting the first equation into the second gives dx(2n−1)+2 = d y,
so 2 = d y−dx(2n−1) = d(y−2nx+ x). This means d divides 2, so d equals 1 or
2. But the equation 2n+1 = dx means d must be odd. Therefore d = 1, that is,
gcd(2n+1, (2n+1)(2n−1)+2)= 1. ■

35. Suppose a,b ∈N. Then a = gcd(a,b) if and only if a | b.

Proof. Suppose a = gcd(a,b). This means a is a divisor of both a and b. In
particular a | b.

Conversely, suppose a | b. Then a divides both a and b, so a ≤ gcd(a,b). On the
other hand, since gcd(a,b) divides a, we have a = gcd(a,b) · x for some integer x.
As all integers involved are positive, it follows that a ≥ gcd(a,b).

It has been established that a ≤ gcd(a,b) and a ≥ gcd(a,b). Thus a = gcd(a,b). ■
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Chapter 8 Exercises
1. Prove that {12n : n ∈Z}⊆ {2n : n ∈Z}∩ {3n : n ∈Z}.

Proof. Suppose a ∈ {12n : n ∈Z}. This means a = 12n for some n ∈ Z. Therefore
a = 2(6n) and a = 3(4n). From a = 2(6n), it follows that a is multiple of 2, so a ∈
{2n : n ∈Z}. From a = 3(4n), it follows that a is multiple of 3, so a ∈ {3n : n ∈Z}. Thus
by definition of the intersection of two sets, we have a ∈ {2n : n ∈Z}∩ {3n : n ∈Z}.
Thus {12n : n ∈Z}⊆ {2n : n ∈Z}∩ {3n : n ∈Z}. ■

3. If k ∈Z, then {n ∈Z : n | k}⊆ {
n ∈Z : n | k2}

.

Proof. Suppose k ∈Z. We now need to show {n ∈Z : n | k} ⊆ {
n ∈Z : n | k2}

.
Suppose a ∈ {n ∈Z : n | k}. Then it follows that a | k, so there is an integer c for
which k = ac. Then k2 = a2c2. Therefore k2 = a(ac2), and from this the definition
of divisibility gives a | k2. But a | k2 means that a ∈ {

n ∈Z : n | k2}
. We have now

shown {n ∈Z : n | k} ⊆ {
n ∈Z : n | k2}

. ■

5. If p and q are integers, then {pn : n ∈N}∩ {qn : n ∈N} 6= ;.

Proof. Suppose p and q are integers. Consider the integer pq. Observe that
pq ∈ {pn : n ∈N} and pq ∈ {qn : n ∈N}, so pq ∈ {pn : n ∈N}∩ {qn : n ∈N}. Therefore
{pn : n ∈N}∩ {qn : n ∈N} 6= ;. ■

7. Suppose A,B and C are sets. If B ⊆ C, then A×B ⊆ A×C.

Proof. This is a conditional statement, and we’ll prove it with direct proof.
Suppose B ⊆ C. (Now we need to prove A×B ⊆ A×C.)

Suppose (a,b) ∈ A×B. Then by definition of the Cartesian product we have a ∈ A
and b ∈ B. But since b ∈ B and B ⊆ C, we have b ∈ C. Since a ∈ A and b ∈ C, it
follows that (a,b) ∈ A×C. Now we’ve shown (a,b) ∈ A×B implies (a,b) ∈ A×C, so
A×B ⊆ A×C.

In summary, we’ve shown that if B ⊆ C, then A×B ⊆ A×C. This completes the
proof. ■

9. If A,B and C are sets then A∩ (B∪C)= (A∩B)∪ (A∩C).

Proof. We use the distributive law P ∧ (Q∨R) = (P ∧Q)∨ (P ∧R) from page 52.

A∩ (B∪C) = {x : x ∈ A ∧ x ∈ B∪C} (def. of intersection)
= {x : x ∈ A ∧ (x ∈ B ∨ x ∈ C)} (def. of union)
= {

x :
(
x ∈ A ∧ x ∈ B

) ∨ (
x ∈ A ∧ x ∈ C

)}
(distributive law)

= {x : (x ∈ A∩B) ∨ (x ∈ A∩C)} (def. of intersection)
= (A∩B)∪ (A∩C) (def. of union)

The proof is complete. ■
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11. If A and B are sets in a universal set U, then A∪B = A∩B.

Proof. Just observe the following sequence of equalities.
A∪B =U − (A∪B) (def. of complement)

= {x : (x ∈U)∧ (x ∉ A∪B)} (def. of −)
= {x : (x ∈U)∧∼ (x ∈ A∪B)}
= {x : (x ∈U)∧∼ ((x ∈ A)∨ (x ∈ B))} (def. of ∪)
= {x : (x ∈U)∧ (∼ (x ∈ A)∧∼ (x ∈ B))} (DeMorgan)
= {x : (x ∈U)∧ (x ∉ A)∧ (x ∉ B)}
= {x : (x ∈U)∧ (x ∈U)∧ (x ∉ A)∧ (x ∉ B)} (x ∈U)= (x ∈U)∧ (x ∈U)
= {x : ((x ∈U)∧ (x ∉ A))∧ ((x ∈U)∧ (x ∉ B))} (regroup)
= {x : (x ∈U)∧ (x ∉ A)}∩ {x : (x ∈U)∧ (x ∉ B)} (def. of ∩)
= (U − A)∩ (U −B) (def. of −)
= A∩B (def. of complement)

The proof is complete. ■

13. If A,B and C are sets, then A− (B∪C)= (A−B)∩ (A−C).

Proof. Just observe the following sequence of equalities.
A− (B∪C) = {x : (x ∈ A)∧ (x ∉ B∪C)} (def. of −)

= {x : (x ∈ A)∧∼ (x ∈ B∪C)}
= {x : (x ∈ A)∧∼ ((x ∈ B)∨ (x ∈ C))} (def. of ∪)
= {x : (x ∈ A)∧ (∼ (x ∈ B)∧∼ (x ∈ C))} (DeMorgan)
= {x : (x ∈ A)∧ (x ∉ B)∧ (x ∉ C)}
= {x : (x ∈ A)∧ (x ∈ A)∧ (x ∉ B)∧ (x ∉ C)} (x ∈ A)= (x ∈ A)∧ (x ∈ A)
= {x : ((x ∈ A)∧ (x ∉ B))∧ ((x ∈ A)∧ (x ∉ C))} (regroup)
= {x : (x ∈ A)∧ (x ∉ B)}∩ {x : (x ∈ A)∧ (x ∉ C)} (def. of ∩)
= (A−B)∩ (A−C) (def. of −)

The proof is complete. ■

15. If A,B and C are sets, then (A∩B)−C = (A−C)∩ (B−C).

Proof. Just observe the following sequence of equalities.
(A∩B)−C = {x : (x ∈ A∩B)∧ (x ∉ C)} (def. of −)

= {x : (x ∈ A)∧ (x ∈ B)∧ (x ∉ C)} (def. of ∩)
= {x : (x ∈ A)∧ (x ∉ C)∧ (x ∈ B)∧ (x ∉ C)} (regroup)
= {x : ((x ∈ A)∧ (x ∉ C))∧ ((x ∈ B)∧ (x ∉ C))} (regroup)
= {x : (x ∈ A)∧ (x ∉ C)}∩ {x : (x ∈ B)∧ (x ∉ C)} (def. of ∩)
= (A−C)∩ (B−C) (def. of ∩)

The proof is complete. ■

17. If A,B and C are sets, then A× (B∩C)= (A×B)∩ (A×C).

Proof. See Example 8.12. ■
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19. Prove that {9n : n ∈Z}⊆ {3n : n ∈Z}, but {9n : n ∈Z} 6= {3n : n ∈Z}.

Proof. Suppose a ∈ {9n : n ∈Z}. This means a = 9n for some integer n ∈ Z. Thus
a = 9n = (32)n = 32n. This shows a is an integer power of 3, so a ∈ {3n : n ∈Z}.
Therefore a ∈ {9n : n ∈Z} implies a ∈ {3n : n ∈Z}, so {9n : n ∈Z}⊆ {3n : n ∈Z}.
But notice {9n : n ∈Z} 6= {3n : n ∈Z} as 3 ∈ {3n : n ∈Z}, but 3 ∉ {9n : n ∈Z}. ■

21. Suppose A and B are sets. Prove A ⊆ B if and only if A−B =;.

Proof. First we will prove that if A ⊆ B, then A−B =;. Contrapositive proof is
used. Suppose that A−B 6= ;. Thus there is an element a ∈ A−B, which means
a ∈ A but a ∉ B. Since not every element of A is in B, we have A 6⊆ B.

Conversely, we will prove that if A−B =;, then A ⊆ B. Again, contrapositive proof
is used. Suppose A 6⊆ B. This means that it is not the case that every element of
A is an element of B, so there is an element a ∈ A with a ∉ B. Therefore we have
a ∈ A−B, so A−B 6= ;. ■

23. For each a ∈R, let Aa = {
(x,a(x2 −1)) ∈R2 : x ∈R}

. Prove that
⋂
a∈R

Aa = {(−1,0), (1,0)}.

Proof. First we will show that {(−1,0), (1,0)}⊆ ⋂
a∈R

Aa. Notice that for any a ∈R, we
have (−1,0) ∈ Aa because Aa contains the ordered pair (−1,a((−1)2 −1)) = (−1,0).
Similarly (1,0) ∈ Aa. Thus each element of {(−1,0), (1,0)} belongs to every set Aa,
so {(−1,0), (1,0)}⊆ ⋂

a∈R
Aa.

Now we will show
⋂
a∈R

Aa ⊆ {(−1,0), (1,0)}. Suppose (c,d) ∈ ⋂
a∈R

Aa. This means (c,d)

is in every set Aa. In particular (c,d) ∈ A0 =
{
(x,0(x2 −1)) : x ∈R}= {(x,0) : x ∈R}. It

follows that d = 0. Then also we have (c,d) = (c,0) ∈ A1 = {
(x,1(x2 −1)) : x ∈R} ={

(x, x2 −1) : x ∈R}
. Therefore (c,0) has the form (c, c2 −1), that is (c,0) = (c, c2 −1).

From this we get c2 −1= 0, so c =±1. Therefore (c,d)= (1,0) or (c,d)= (−1,0), so
(c,d) ∈ {(−1,0), (1,0)}. This completes the demonstration that (c,d) ∈ ⋂

a∈R
Aa implies

(c,d) ∈ {(−1,0), (1,0)}, so it follows that
⋂
a∈R

Aa ⊆ {(−1,0), (1,0)}.

Now it’s been shown that {(−1,0), (1,0)} ⊆ ⋂
a∈R

Aa and
⋂
a∈R

Aa ⊆ {(−1,0), (1,0)}, so it

follows that
⋂
a∈R

Aa = {(−1,0), (1,0)}. ■

25. Suppose A,B,C and D are sets. Prove that (A×B)∪ (C×D)⊆ (A∪C)× (B∪D).

Proof. Suppose (a,b) ∈ (A×B)∪ (C×D).
By definition of union, this means (a,b) ∈ (A×B) or (a,b) ∈ (C×D).
We examine these two cases individually.
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Case 1. Suppose (a,b) ∈ (A×B). By definition of ×, it follows that a ∈ A and b ∈ B.
From this, it follows from the definition of ∪ that a ∈ A∪C and b ∈ B∪D.
Again from the definition of ×, we get (a,b) ∈ (A∪C)× (B∪D).

Case 2. Suppose (a,b) ∈ (C×D). By definition of ×, it follows that a ∈ C and b ∈ D.
From this, it follows from the definition of ∪ that a ∈ A∪C and b ∈ B∪D.
Again from the definition of ×, we get (a,b) ∈ (A∪C)× (B∪D).

In either case, we obtained (a,b) ∈ (A∪C)× (B∪D),
so we’ve proved that (a,b) ∈ (A×B)∪ (C×D) implies (a,b) ∈ (A∪C)× (B∪D).
Therefore (A×B)∪ (C×D)⊆ (A∪C)× (B∪D). ■

27. Prove {12a+4b : a,b ∈Z}= {4c : c ∈Z}.

Proof. First we show {12a+4b : a,b ∈Z}⊆ {4c : c ∈Z}. Suppose x ∈ {12a+4b : a,b ∈Z}.
Then x = 12a+4b for some integers a and b. From this we get x = 4(3a+ b), so
x = 4c where c is the integer 3a+b. Consequently x ∈ {4c : c ∈Z}. This establishes
that {12a+4b : a,b ∈Z}⊆ {4c : c ∈Z}.

Next we show {4c : c ∈Z}⊆ {12a+4b : a,b ∈Z}. Suppose x ∈ {4c : c ∈Z}. Then x = 4c
for some c ∈ Z. Thus x = (12+ 4(−2))c = 12c+ 4(−2c), and since c and −2c are
integers we have x ∈ {12a+4b : a,b ∈Z}.

This proves that {12a+4b : a,b ∈Z}= {4c : c ∈Z}. ■

29. Suppose A 6= ;. Prove that A×B ⊆ A×C, if and only if B ⊆ C.

Proof. First we will prove that if A×B ⊆ A×C, then B ⊆ C. Using contrapositive,
suppose that B 6⊆ C. This means there is an element b ∈ B with b ∉ C. Since A 6= ;,
there exists an element a ∈ A. Now consider the ordered pair (a,b). Note that
(a,b) ∈ A×B, but (a,b) 6∈ A×C. This means A×B 6⊆ A×C.

Conversely, we will now show that if B ⊆ C, then A×B ⊆ A×C. We use direct
proof. Suppose B ⊆ C. Assume that (a,b) ∈ A×B. This means a ∈ A and b ∈ B.
But, as B ⊆ C, we also have b ∈ C. From a ∈ A and b ∈ C, we get (a,b) ∈ A ×C.
We’ve now shown (a,b) ∈ A×B implies (a,b) ∈ A×C, so A×B ⊆ A×C. ■

31. Suppose B 6= ; and A×B ⊆ B×C. Prove A ⊆ C.

Proof. Suppose B 6= ; and A×B ⊆ B×C. In what follows, we show that A ⊆ C.

Let x ∈ A. Because B is not empty, it contains some element b. Observe that
(x,b) ∈ A×B. But as A×B ⊆ B×C, we also have (x,b) ∈ B×C, so, in particular,
x ∈ B. As x ∈ A and x ∈ B, we have (x, x) ∈ A×B. But as A×B ⊆ B×C, it follows that
(x, x) ∈ B×C. This implies x ∈ C. We’ve shown x ∈ A implies x ∈ C, so A ⊆ C. ■
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Chapter 9 Exercises
1. If x, y ∈R, then |x+ y| = |x|+ |y|.

This is false.
Disproof: Here is a counterexample: Let x = 1 and y =−1. Then |x+ y| = 0 and
|x|+ |y| = 2, so it’s not true that |x+ y| = |x|+ |y|.

3. If n ∈Z and n5 −n is even, then n is even.
This is false.
Disproof: Here is a counterexample: Let n = 3. Then n5−n = 35−3= 240, but n is
not even.

5. If A, B,C and D are sets, then (A×B)∪ (C×D)= (A∪C)× (B∪D).
This is false.
Disproof: Here is a counterexample: Let A = {1,2}, B = {1,2}, C = {2,3} and
D = {2,3}. Then (A×B)∪ (C×D)= {(1,1), (1,2), (2,1), (2,2)}∪ {(2,2), (2,3), (3,2), (3,3)}=
{(1,1), (1,2), (2,1), (2,2), (2,3), (3,2), (3,3)} . Also (A ∪ C)× (B ∪ D) = {1,2,3}× {1,2,3}=
{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)}, so you can see that (A×B)∪(C×
D) 6= (A∪C)× (B∪D).

7. If A, B and C are sets, and A×C = B×C, then A = B.
This is false.
Disproof: Here is a counterexample: Let A = {1}, B = {2} and C =;. Then A×C =
B×C =;, but A 6= B.

9. If A and B are sets, then P(A)−P(B)⊆P(A−B).
This is false.
Disproof: Here is a counterexample: Let A = {1,2} and B = {1}. Then P(A)−
P(B) = {;, {1} , {2} , {1,2}}− {;, {1}} = {{2} , {1,2}}. Also P(A−B) = P({2}) = {;, {2}}. In
this example we have P(A)−P(B) 6⊆P(A−B).

11. If a,b ∈N, then a+b < ab.
This is false.
Disproof: Here is a counterexample: Let a = 1 and b = 1. Then a+b = 2 and ab = 1,
so it’s not true that a+b < ab.

13. There exists a set X for which R⊆ X and ;∈ X .
This is true.
Proof. Simply let X = R∪ {;}. If x ∈ R, then x ∈ R∪ {;} = X , so R ⊆ X . Likewise,
;∈R∪ {;}= X because ;∈ {;}. ■

15. Every odd integer is the sum of three odd integers.
This is true.
Proof. If n is odd, then n = n+1+(−1). Thus n is the sum of three odd integers. ■

17. For all sets A and B, if A−B =;, then B 6= ;.
This is false.
Disproof: Here is a counterexample: Just let A =; and B =;. Then A−B =;,
but it’s not true that B 6= ;.
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19. For every r, s ∈Q with r < s, there is an irrational number u for which r < u < s.
This is true.

Proof. (Direct) Suppose r, s ∈Q with r < s. Consider the number u = r+p
2 s−r

2 . In
what follows we will show that u is irrational and r < u < s. Certainly since s− r
is positive, it follows that r < r+p

2 s−r
2 = u. Also, since

p
2< 2 we have

u = r+
p

2
s− r

2
< r+2

s− r
2

= s,

and therefore u < s. Thus we can conclude r < u < s.

Now we just need to show that u is irrational. Suppose for the sake of contradic-
tion that u is rational. Then u = a

b for some integers a and b. Since r and s are
rational, we have r = c

d and s = e
f for some c,d, e, f ∈Z. Now we have

u = r+
p

2
s− r

2
a
b

= c
d
+
p

2
e
f − c

d

2
ad−bc

bd
=

p
2

ed− c f
2d f

(ad−bc)2d f
bd(ed− c f )

=
p

2

This expresses
p

2 as a quotient of two integers, so
p

2 is rational, a contradiction.
Thus u is irrational.

In summary, we have produced an irrational number u with r < u < s, so the
proof is complete. ■

21. There exist two prime numbers p and q for which p− q = 97.
This statement is false.
Disproof: Suppose for the sake of contradiction that this is true. Let p and q be
prime numbers for which p− q = 97. Now, since their difference is odd, p and q
must have opposite parity, so one of p and q is even and the other is odd. But
there exists only one even prime number (namely 2), so either p = 2 or q = 2. If
p = 2, then p− q = 97 implies q = 2−97 =−95, which is not prime. On the other
hand if q = 2, then p−q = 97 implies p = 99, but that’s not prime either. Thus one
of p or q is not prime, a contradiction.

23. If x, y ∈R and x3 < y3, then x < y. This is true.

Proof. (Contrapositive) Suppose x ≥ y. We need to show x3 ≥ y3.
Case 1. Suppose x and y have opposite signs, that is one of x and y is positive
and the other is negative. Then since x ≥ y, x is positive and y is negative. Then,
since the powers are odd, x3 is positive and y3 is negative, so x3 ≥ y3.
Case 2. Suppose x and y do not have opposite signs. Then x2 + xy+ y2 ≥ 0 and
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also x− y≥ 0 because x ≥ y. Thus we have x3 − y3 = (x− y)(x2 + xy+ y2)≥ 0. From
this we get x3 − y3 ≥ 0, so x3 ≥ y3.
In either case we have x3 ≥ y3. ■

25. For all a,b, c ∈Z, if a | bc, then a | b or a | c.
This is false.
Disproof: Let a = 6, b = 3 and c = 4. Note that a | bc, but a - b and a - c.

27. The equation x2 = 2x has three real solutions.

Proof. By inspection, the numbers x = 2 and x = 4 are two solutions of this
equation. But there is a third solution. Let m be a positive real number for
which m2m = 1

2 . (The existence of such an m is guaranteed by the intermediate
value theorem of calculus.) Then negative number x = −2m is a solution, as
follows.

x2 = (−2m)2 = 4m2 = 4
(

m2m

2m

)2
= 4

( 1
2

2m

)2

= 1
22m = 2−2m = 2x.

Therefore we have three solutions 2, 4 and m. ■
29. If x, y ∈R and |x+ y| = |x− y|, then y= 0.

This is false.
Disproof: Let x = 0 and y= 1. Then |x+ y| = |x− y|, but y= 1.

31. No number appears in Pascal’s triangle more than four times.
This is false.
Disproof: The number 120 appears six times. Check that

(10
3

) = (10
7

) = (16
2

) =(16
14

)= (120
1

)= (120
119

)= 120.
33. Suppose f (x)= a0 +a1x+a2x2 +·· ·+anxn is a polynomial of degree 1 or greater,

and for which each coefficient ai is in N. Then there is an n ∈N for which the
integer f (n) is not prime.

Proof. (Outline) Note that, because the coefficients are all positive and the degree
is greater than 1, we have f (1)> 1. Let b = f (1)> 1. Now, the polynomial f (x)−b
has a root 1, so f (x)−b = (x−1)g(x) for some polynomial g. Then f (x)= (x−1)g(x)+b.
Now note that f (b+1)= bg(b)+b = b(g(b)+1). If we can now show that g(b)+1 is
an integer, then we have a nontrivial factoring f (b+1)= b(g(b)+1), and f (b+1)
is not prime. To complete the proof, use the fact that f (x)− b = (x−1)g(x) has
integer coefficients, and deduce that g(x) must also have integer coefficients. ■

Chapter 10 Exercises

1. Prove that 1+2+3+4+·· ·+n = n2 +n
2

for every integer n ∈N.

Proof. We will prove this with mathematical induction.

(1) Observe that if n = 1, this statement is 1= 12 +1
2

, which is obviously true.
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(2) Consider any integer k ≥ 1. We must show that Sk implies Sk+1. In other
words, we must show that if 1+2+3+4+·· ·+k = k2+k

2 is true, then

1+2+3+4+·· ·+k+ (k+1)= (k+1)2 + (k+1)
2

is also true. We use direct proof.
Suppose k ≥ 1 and 1+2+3+4+·· ·+k = k2+k

2 . Observe that

1+2+3+4+·· ·+k+ (k+1) =
(1+2+3+4+·· ·+k)+ (k+1) =

k2 +k
2

+ (k+1) = k2 +k+2(k+1)
2

= k2 +2k+1 + k+1
2

= (k+1)2 + (k+1)
2

.

Therefore we have shown that 1+2+3+4+·· ·+k+ (k+1)= (k+1)2+(k+1)
2 . ■

3. Prove that 13 +23 +33 +43 +·· ·+n3 = n2(n+1)2
4 for every positive integer n.

Proof. We will prove this with mathematical induction.
(1) When n = 1 the statement is 13 = 12(1+1)2

4 = 4
4 = 1, and this is true.

(2) Now assume the statement is true for some integer n = k ≥ 1, that is assume
13 +23 +33 +43 +·· ·+k3 = k2(k+1)2

4 . Observe that this implies the statement
is true for n = k+1:

13 +23 +33 +43 +·· ·+k3 + (k+1)3 =
(13 +23 +33 +43 +·· ·+k3)+ (k+1)3 =

k2(k+1)2

4
+ (k+1)3 = k2(k+1)2

4
+ 4(k+1)3

4

= k2(k+1)2 +4(k+1)3

4

= (k+1)2(k2 +4(k+1)1)
4

= (k+1)2(k2 +4k+4)
4

= (k+1)2(k+2)2

4

= (k+1)2((k+1)+1)2

4
.

Therefore 13+23+33+43+·· ·+k3+ (k+1)3 = (k+1)2((k+1)+1)2
4 , which means the

statement is true for n = k+1. ■
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5. If n ∈N, then 21 +22 +23 +·· ·+2n = 2n+1 −2.

Proof. The proof is by mathematical induction.
(1) When n = 1, this statement is 21 = 21+1 −2, or 2= 4−2, which is true.
(2) Now assume the statement is true for some integer n = k ≥ 1, that is assume

21 +22 +23 +·· ·+2k = 2k+1 −2. Observe this implies that the statement is
true for n = k+1, as follows:

21 +22 +23 +·· ·+2k +2k+1 =
(21 +22 +23 +·· ·+2k)+2k+1 =

2k+1 −2+2k+1 = 2 ·2k+1 −2

= 2k+2 −2

= 2(k+1)+1 −2.

Thus we have 21+22+23+·· ·+2k+2k+1 = 2(k+1)+1−2, so the statement is true
for n = k+1.

Thus the result follows by mathematical induction. ■

7. If n ∈N, then 1 ·3+2 ·4+3 ·5+4 ·6+·· ·+n(n+2)= n(n+1)(2n+7)
6

.

Proof. The proof is by mathematical induction.
(1) When n = 1, we have 1 ·3= 1(1+1)(2+7)

6 , which is the true statement 3= 18
6 .

(2) Now assume the statement is true for some integer n = k ≥ 1, that is assume
1 ·3+2 ·4+3 ·5+4 ·6+·· ·+k(k+2)= k(k+1)(2k+7)

6 . Now observe that

1 ·3+2 ·4+3 ·5+4 ·6+·· ·+k(k+2)+ (k+1)((k+1)+2) =
(1 ·3+2 ·4+3 ·5+4 ·6+·· ·+k(k+2))+ (k+1)((k+1)+2) =

k(k+1)(2k+7)
6

+ (k+1)((k+1)+2) =
k(k+1)(2k+7)

6
+ 6(k+1)(k+3)

6
=

k(k+1)(2k+7)+6(k+1)(k+3)
6

=
(k+1)(k(2k+7)+6(k+3))

6
=

(k+1)(2k2 +13k+18)
6

=
(k+1)(k+2)(2k+9)

6
=

(k+1)((k+1)+1)(2(k+1)+7)
6

.

Thuswe have 1·3+2·4+3·5+4·6+·· ·+k(k+2)+(k+1)((k+1)+2)= (k+1)((k+1)+1)(2(k+1)+7)
6 ,

and this means the statement is true for n = k+1.
Thus the result follows by mathematical induction. ■
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9. Prove that 24 | (52n −1) for any integer n ≥ 0.

Proof. The proof is by mathematical induction.
(1) For n = 0, the statement is 24 | (52·0 −1). This is 24 | 0, which is true.
(2) Now assume the statement is true for some integer n = k ≥ 0, that is assume

24 | (52k −1). This means 52k −1= 24a for some integer a, and from this we
get 52k = 24a+1. Now observe that

52(k+1) −1 =
52k+2 −1 =
5252k −1 =

52(24a+1)−1 =
25(24a+1)−1 =

25 ·24a+25−1 = 24(25a+1).

This shows 52(k+1) −1= 24(25a+1), which means 24 | 52(k+1) −1.
This completes the proof by mathematical induction. ■

11. Prove that 3 | (n3 +5n+6) for any integer n ≥ 0.

Proof. The proof is by mathematical induction.
(1) When n = 0, the statement is 3 | (03 +5 ·0+6), or 3 | 6, which is true.
(2) Now assume the statement is true for some integer n = k ≥ 0, that is assume

3 | (k3 +5k+6). This means k3 +5k+6 = 3a for some integer a. We need to
show that 3 | ((k+1)3 +5(k+1)+6). Observe that

(k+1)3 +5(k+1)+6 = k3 +3k2 +3k+1+5k+5+6

= (k3 +5k+6)+3k2 +3k+6

= 3a+3k2 +3k+6

= 3(a+k2 +k+2).

Thus we have deduced (k+1)3− (k+1)= 3(a+k2+k+2). Since a+k2+k+2 is
an integer, it follows that 3 | ((k+1)3 +5(k+1)+6).

It follows by mathematical induction that 3 | (n3 +5n+6) for every n ≥ 0. ■

13. Prove that 6 | (n3 −n) for any integer n ≥ 0.

Proof. The proof is by mathematical induction.
(1) When n = 0, the statement is 6 | (03 −0), or 6 | 0, which is true.
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(2) Now assume the statement is true for some integer n = k ≥ 0, that is, assume
6 | (k3 −k). This means k3 −k = 6a for some integer a. We need to show that
6 | ((k+1)3 − (k+1)). Observe that

(k+1)3 − (k+1) = k3 +3k2 +3k+1−k−1

= (k3 −k)+3k2 +3k

= 6a+3k2 +3k

= 6a+3k(k+1).

Thus we have deduced (k+1)3−(k+1)= 6a+3k(k+1). Since one of k or (k+1)
must be even, it follows that k(k+1) is even, so k(k+1)= 2b for some integer
b. Consequently (k+1)3 − (k+1)= 6a+3k(k+1)= 6a+3(2b)= 6(a+b). Since
(k+1)3 − (k+1)= 6(a+b) it follows that 6 | ((k+1)3 − (k+1)).

Thus the result follows by mathematical induction. ■

15. If n ∈N, then 1
1·2 + 1

2·3 + 1
3·4 + 1

4·5 +·· ·+ 1
n(n+1) = 1− 1

n+1 .

Proof. The proof is by mathematical induction.
(1) When n = 1, the statement is 1

1(1+1) = 1− 1
1+1 , which simplifies to 1

2 = 1
2 .

(2) Now assume the statement is true for some integer n = k ≥ 1, that is assume
1

1·2 + 1
2·3 + 1

3·4 + 1
4·5 +·· ·+ 1

k(k+1) = 1− 1
k+1 . Next we show that the statement for

n = k+1 is true. Observe that
1

1 ·2 + 1
2 ·3 + 1

3 ·4 + 1
4 ·5 +·· ·+ 1

k(k+1)
+ 1

(k+1)((k+1)+1)
=(

1
1 ·2 + 1

2 ·3 + 1
3 ·4 + 1

4 ·5 +·· ·+ 1
k(k+1)

)
+ 1

(k+1)(k+2)
=(

1− 1
k+1

)
+ 1

(k+1)(k+2)
=

1− 1
k+1

+ 1
(k+1)(k+2)

=

1− k+2
(k+1)(k+2)

+ 1
(k+1)(k+2)

=

1− k+1
(k+1)(k+2)

=

1− 1
k+2

=

1− 1
(k+1)+1

.

This establishes 1
1·2 + 1

2·3 + 1
3·4 + 1

4·5 +·· ·+ 1
(k+1)((k+1)+1 = 1− 1

(k+1)+1 , which is to
say that the statement is true for n = k+1.

This completes the proof by mathematical induction. ■
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17. Suppose A1, A2, . . . An are sets in some universal set U, and n ≥ 2. Prove that
A1 ∩ A2 ∩·· ·∩ An = A1 ∪ A2 ∪·· ·∪ An.

Proof. The proof is by strong induction.
(1) When n = 2 the statement is A1 ∩ A2 = A1 ∪ A2. This is not an entirely

obvious statement, so we have to prove it. Observe that

A1 ∩ A2 = {x : (x ∈U)∧ (x ∉ A1 ∩ A2)} (definition of complement)
= {x : (x ∈U)∧∼ (x ∈ A1 ∩ A2)}

= {x : (x ∈U)∧∼ ((x ∈ A1)∧ (x ∈ A2))} (definition of ∩)
= {x : (x ∈U)∧ (∼ (x ∈ A1)∨∼ (x ∈ A2))} (DeMorgan)
= {x : (x ∈U)∧ ((x ∉ A1)∨ (x ∉ A2))}

= {x : (x ∈U)∧ (x ∉ A1)∨ (x ∈U)∧ (x ∉ A2)} (distributive prop.)
= {x : ((x ∈U)∧ (x ∉ A1))}∪ {x : ((x ∈U)∧ (x ∉ A2))} (def. of ∪)
= A1 ∪ A2 (definition of complement).

(2) Let k ≥ 2. Assume the statement is true if it involves k or fewer sets. Then

A1 ∩ A2 ∩·· ·∩ Ak−1 ∩ Ak ∩ Ak+1 =
A1 ∩ A2 ∩·· ·∩ Ak−1 ∩ (Ak ∩ Ak+1) = A1 ∪ A2 ∪·· ·∪ Ak−1 ∪ Ak ∩ Ak+1

= A1 ∪ A2 ∪·· ·∪ Ak−1 ∪ Ak ∪ Ak+1.

Thus the statement is true when it involves k+1 sets.
This completes the proof by strong induction. ■

19. Prove
n∑

k=1

1
k2 ≤ 2− 1

n for every n.

Proof. This clearly holds for n = 1. Assume it holds for some n ≥ 1. Then
n+1∑
k=1

1
k2 =

n∑
k=1

1
k2 + 1

(n+1)2 ≤ 2− 1
n + 1

(n+1)2 = 2− (n+1)2−n
n(n+1)2 = 2− n2+n+1

n(n+1)2 < 2− n2+n
n(n+1)2 = 2− 1

(n+1) . ■

21. If n ∈N, then 1
1 + 1

2 + 1
3 +·· ·+ 1

2n ≥ 1+ n
2 .

Proof. If n = 1, the result is obvious.
Assume the proposition holds for some n > 1. Then

1
1
+ 1

2
+ 1

3
+·· ·+ 1

2n+1 =
(

1
1
+ 1

2
+ 1

3
+·· ·+ 1

2n

)
+

(
1

2n +1
+ 1

2n +2
+ 1

2n +3
+·· ·+ 1

2n+1

)
≥

(
1+ n

2

)
+

(
1

2n +1
+ 1

2n +2
+ 1

2n +3
+·· ·+ 1

2n+1

)
.

Now, the sum
(

1
2n+1 + 1

2n+2 + 1
2n+3 +·· ·+ 1

2n+1

)
on the right has 2n+1−2n = 2n terms,

all greater than or equal to 1
2n+1 , so the sum is greater than 2n 1

2n+1 = 1
2 . Therefore

we get 1
1 + 1

2 + 1
3 + ·· ·+ 1

2n+1 ≥ (
1+ n

2
)+ (

1
2n+1 + 1

2n+2 + 1
2n+3 +·· ·+ 1

2n+1

)
≥ (

1+ n
2
)+ 1

2 =
1+ n+1

2 . This means the result is true for n+1, so the theorem is proved. ■
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23. Use induction to prove the binomial theorem (x+ y)n =∑n
i=0

(n
i
)
xn−i yi.

Proof. Notice that when n = 1, the formula is (x+ y)1 = (1
0
)
x1 y0 + (1

1
)
x0 y1 = x+ y,

which is true.

Now assume the theorem is true for some n > 1. We will show that this implies
that it is true for the power n+1. Just observe that

(x+ y)n+1 = (x+ y)(x+ y)n

= (x+ y)
n∑

i=0

(
n
i

)
xn−i yi

=
n∑

i=0

(
n
i

)
x(n+1)−i yi +

n∑
i=0

(
n
i

)
xn−i yi+1

=
n∑

i=0

[(
n
i

)
+

(
n

i−1

)]
x(n+1)−i yi + yn+1

=
n∑

i=0

(
n+1

i

)
x(n+1)−i yi +

(
n+1
n+1

)
yn+1

=
n+1∑
i=0

(
n+1

i

)
x(n+1)−i yi.

This shows that the formula is true for (x+ y)n+1, so the theorem is proved. ■

25. Concerning the Fibonacci sequence, prove that F1+F2+F3+F4+. . .+Fn = Fn+2−1.

Proof. The proof is by induction.
(1) When n = 1 the statement is F1 = F1+2 −1= F3 −1= 2−1= 1, which is true.

Also when n = 2 the statement is F1 +F2 = F2+2 −1= F4 −1= 3−1= 2, which
is true, as F1 +F2 = 1+1= 2.

(2) Now assume k ≥ 1 and F1 +F2 +F3 +F4 + . . .+Fk = Fk+2 −1. We need to show
F1 +F2 +F3 +F4 + . . .+Fk +Fk+1 = Fk+3 −1. Observe that

F1 +F2 +F3 +F4 + . . .+Fk +Fk+1 =
(F1 +F2 +F3 +F4 + . . .+Fk)+Fk+1 =

Fk+2 −1+Fk+1 = (Fk+1 +Fk+2)−1

= Fk+3 −1.

This completes the proof by induction. ■

27. Concerning the Fibonacci sequence, prove that F1 +F3 +·· ·+F2n−1 = F2n.

Proof. If n = 1, the result is clear. Assume for some n > 1 we have
n∑

i=1
F2i−1 = F2n.

Then
n+1∑
i=1

F2i−1 = F2n+1 +
n∑

i=1
F2i−1 = F2n+1 +F2n = F2n+2 = F2(n+1) as desired. ■
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29. Notice that the sum of elements on the nth diagonal has the form(n
0
)+ (n−1

1
)+ (n−2

2
)+ (n−3

3
)+·· ·+ ( 0

n
)
.

(For example,
(6

0
)+ (5

1
)+ (4

2
)+ (3

3
)+ (2

4
)+ (1

5
)+ (0

6
)= 1+5+6+1+0+0+0= 13= F6+1.)

Therefore, we need to prove that
(n
0
)+(n−1

1
)+(n−2

2
)+(n−3

3
)+·· ·+( 1

n−1
)+(0

n
)= Fn+1 for

each n ≥ 0.

Proof. (Strong Induction) For n = 1 this is
(1
0
)+ (0

1
) = 1+0 = 1 = F2 = F1+1. Thus

the assertion is true when n = 1.
Now fix n and assume that

(k
0
)+(k−1

1
)+(k−2

2
)+(k−3

3
)+·· ·+ ( 1

k−1
)+(0

k
)= Fk+1 whenever

k < n. In what follows we use the identity
(n

k
) = (n−1

k−1
)+ (n−1

k
)
. We also often use(a

b
)= 0 whenever it is untrue that 0≤ b ≤ a.(

n
0

)
+

(
n−1

1

)
+

(
n−2

2

)
+·· ·+

(
1

n−1

)
+

(
0
n

)

=
(
n
0

)
+

(
n−1

1

)
+

(
n−2

2

)
+·· ·+

(
1

n−1

)

=
(
n−1
−1

)
+

(
n−1

0

)
+

(
n−2

0

)
+

(
n−2

1

)
+

(
n−3

1

)
+

(
n−3

2

)
+·· ·+

(
0

n−1

)
+

(
0
n

)

=
(
n−1

0

)
+

(
n−2

0

)
+

(
n−2

1

)
+

(
n−3

1

)
+

(
n−3

2

)
+·· ·+

(
0

n−1

)
+

(
0
n

)

=
[(

n−1
0

)
+

(
n−2

1

)
+·· ·+

(
0

n−1

)]
+

[(
n−2

0

)
+

(
n−3

1

)
+·· ·+

(
0

n−2

)]
= Fn +Fn−1 = Fn

This completes the proof. ■

31. Prove that
n∑

k=0

(k
r
)= (n+1

r+1
)
, where r ∈N.

Hint: Use induction on n. If n = 0, the equation is
(0

r
) = (0+1

r+1
)
, which is 0 = 0.

For the inductive step, we must show that
n∑

k=0

(k
r
)= (n+1

r+1
)
implies

n+1∑
k=0

(k
r
)= ((n+1)+1

r+1
)
.

Thus assume
n∑

k=0

(k
r
)= (n+1

r+1
)
. By Pascal’s formula,

((n+1)+1
r+1

)= (n+1
r

)+ (n+1
r+1

)
. Now use

the inductive hypothesis and Pascal’s formula again to transform this to
n+1∑
k=0

(k
r
)
.

33. Suppose that n infinitely long straight lines lie on the plane in such a way that
no two are parallel, and no three intersect at a single point. Show that this
arrangement divides the plane into n2+n+2

2 regions.

Proof. The proof is by induction. For the basis step, suppose n = 1. Then there
is one line, and it clearly divides the plane into 2 regions, one on either side of
the line. As 2= 12+1+2

2 = n2+n+2
2 , the formula is correct when n = 1.
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Now suppose there are n+1 lines on the plane, and that the formula is correct
for when there are n lines on the plane. Single out one of the n+1 lines on the
plane, and call it `. Remove line `, so that there are now n lines on the plane.
By the induction hypothesis, these n lines di-
vide the plane into n2+n+2

2 regions. Now add
line ` back. Doing this adds an additional
n+ 1 regions. (The diagram illustrates the
case where n+ 1 = 5. Without `, there are
n = 4 lines. Adding ` back produces n+1 = 5
new regions.)

`

1

2
3
4

5

Thus, with n+1 lines there are all together (n+1)+ n2+n+2
2 regions. Observe

(n+1)+ n2 +n+2
2

= 2n+2+n2 +n+2
2

= (n+1)2 + (n+1)+2
2

.

Thus, with n+ 1 lines, we have (n+1)2+(n+1)+2
2 regions, which means that the

formula is true for when there are n+1 lines. We have shown that if the formula
is true for n lines, it is also true for n+1 lines. This completes the proof. ■

35. If n,k ∈N, and n is even and k is odd, then
(n

k
)
is even.

Proof. Notice that if k is not a value between 0 and n, then
(n

k
)= 0 is even; thus

from here on we can assume that 0< k < n. We will use strong induction.

For the basis case, notice that the assertion is true for the even values n = 2 and
n = 4:

(2
1
)= 2;

(4
1
)= 4;

(4
3
)= 4 (even in each case).

Now fix and even n assume that
(m

k
)
is even whenever m is even, k is odd, and

m < n. Using the identity
(n

k
)= (n−1

k−1
)+ (n−1

k
)
three times, we get(

n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)

=
(
n−2
k−2

)
+

(
n−2
k−1

)
+

(
n−2
k−1

)
+

(
n−2

k

)

=
(
n−2
k−2

)
+2

(
n−2
k−1

)
+

(
n−2

k

)
.

Now, n−2 is even, and k and k−2 are odd. By the inductive hypothesis, the
outer terms of the above expression are even, and the middle is clearly even;
thus we have expressed

(n
k
)
as the sum of three even integers, so it is even. ■

37. Prove that if m,n ∈N, then
n∑

k=0
k
(m+k

m
)= n

(m+n+1
m+1

)− (m+n+1
m+2

)
.

Proof. We will use induction on n. Let m be any integer.
(1) If n = 1, then the equation is

1∑
k=0

k
(m+k

m
) = 1

(m+1+1
m+1

)− (m+1+1
m+2

)
, and this is

0
(m
m

)+1
(m+1

m
)= 1

(m+2
m+1

)−(m+2
m+2

)
, which yields the true statement m+1= m+2−1.
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(2) Now let n > 1 and assume the equation holds for n. (This is the inductive
hypothesis.) Now we will confirm that it holds for n+1. Observe that

n+1∑
k=0

k

(
m+k

m

)
= (left-hand side for n+1)

n∑
k=0

k

(
m+k

m

)
+ (n+1)

(
m+ (n+1)

m

)
= (split off final term)

n

(
m+n+1

m+1

)
−

(
m+n+1

m+2

)
+ (n+1)

(
m+n+1

m

)
= (apply inductive hypothesis)

n

(
m+n+1

m+1

)
+

(
m+n+1

m+1

)
−

(
m+n+2

m+2

)
+ (n+1)

(
m+n+1

m

)
= (Pascal’s formula)

(n+1)

(
m+n+1

m+1

)
−

(
m+n+2

m+2

)
+ (n+1)

(
m+n+1

m

)
= (factor)

(n+1)

[(
m+n+1

m+1

)
+

(
m+n+1

m

)]
−

(
m+n+2

m+2

)
= (factor again)

(n+1)

(
m+n+2

m+1

)
−

(
m+n+2

m+2

)
= (Pascal’s formula)

(n+1)

(
m+ (n+1)+1

m+1

)
−

(
m+ (n+1)+1

m+2

)
. (right-hand side for n+1) ■

39. Prove that
m∑

k=0

(m
k
)( n

p+k
)= (m+n

m+p
)
for non-negative integers m,n and p.

Proof. We will use induction on n. Let m and p be any non-negative integers.
(1) If n = 0, then the equation is

m∑
k=0

(m
k
)( 0

p+k
)= (m+0

m+p
)
. This holds if p > 0, because

then
( 0

p+k
)= 0= ( m

m+p
)
, and both sides of the equation are zero. If p = 0, the

equation is
m∑

k=0

(m
k
)(0

k
)= (m

m
)
, and both sides equal 1.

(2) Now take n ≥ 1 and suppose the equation holds for n. (This is the inductive
hypothesis.) Next we confirm that the equation holds for n+1.(

m+ (n+1)
m+ p

)
(right-hand side for n+1)

=
(

m+n
m+ (p−1)

)
+

(
m+n
m+ p

)
(Pascal’s formula)

=
m∑

k=0

(
m
k

)(
n

(p−1)+k

)
+

m∑
k=0

(
m
k

)(
n

p+k

)
(apply inductive hypothesis)

=
m∑

k=0

(
m
k

)[(
n

(p−1)+k

)
+

(
n

p+k

)]
(combine)

=
m∑

k=0

(
m
k

)(
n+1
p+k

)
(Pascal’s formula)

This final expression is left-hand side for n+1, so the proof is finished. ■
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41. If n and k are non-negative integers, then
(n+0

0
)+ (n+1

1
)+ (n+2

2
)+·· ·+ (n+k

k
)= (n+k+1

k
)
.

Proof. We will use induction on k. Let n be any non-negative integer.
(1) If k = 0, then the equation is

(n+0
0

)= (n+0+1
0

)
, which reduces to 1= 1.

(2) Assume the equation holds for some k ≥ 1. (This is the inductive hypothesis.)
Now we will show that it holds for k+1. Note that(

n+0
0

)
+

(
n+1

1

)
+

(
n+2

2

)
+·· ·+

(
n+k

k

)
+

(
n+ (k+1)

k+1

)
(left side for k+1)

=
(
n+k+1

k

)
+

(
n+k+1

k+1

)
(apply inductive hypothesis)

=
(
n+k+2

k+1

)
(Pascal’s formula)

=
(
n+ (k+1)+1

k+1

)
. (right-hand side for k+1)

The proof is complete. ■

Chapter 11 Exercises
Section 11.1

1. Let A = {0,1,2,3,4,5}. Write out the relation R that expresses > on A. Then
illustrate it with a diagram.

R =
{

(5,4), (5,3), (5,2), (5,1), (5,0), (4,3), (4,2), (4,1),

(4,0), (3,2), (3,1), (3,0), (2,1), (2,0), (1,0)
} 0

12

3

4 5
3. Let A = {0,1,2,3,4,5}. Write out the relation R that expresses ≥ on A. Then

illustrate it with a diagram.

R =
{

(5,5), (5,4), (5,3), (5,2), (5,1), (5,0),

(4,4), (4,3), (4,2), (4,1), (4,0),
(3,3), (3,2), (3,1), (3,0),

(2,2), (2,1), (2,0), (1,1), (1,0), (0,0)
} 0

12

3

4 5

5. The following diagram represents a relation R on a set A. Write the sets A and
R. Answer: A = {0,1,2,3,4,5}; R = {(3,3), (4,3), (4,2), (1,2), (2,5), (5,0)}

7. Write the relation < on the set A =Z as a subset R of Z×Z. This is an infinite
set, so you will have to use set-builder notation.
Answer: R = {(x, y) ∈Z×Z : y− x ∈N}
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9. How many different relations are there on the set A = {
1,2,3,4,5,6

}
?

Consider forming a relation R ⊆ A× A on A. For each ordered pair (x, y) ∈ A× A,
we have two choices: we can either include (x, y) in R or not include it. There are
6 ·6= 36 ordered pairs in A× A. By the multiplication principle, there are thus
236 different subsets R and hence also this many relations on A.

11. Answer: 2(|A|2) 13. Answer: 6= 15. Answer: ≡ (mod 3)

Section 11.2

1. Consider the relation R = {(a,a), (b,b), (c, c), (d,d), (a,b), (b,a)} on the set A = {a,b, c,d}.
Which of the properties reflexive, symmetric and transitive does R possess and
why? If a property does not hold, say why.
This is reflexive because (x, x) ∈ R (i.e., xRx )for every x ∈ A.
It is symmetric because it is impossible to find an (x, y) ∈ R for which (y, x) ∉ R.
It is transitive because (xR y∧ yRz)⇒ xRz always holds.

3. Consider the relation R = {(a,b), (a, c), (c,b), (b, c)} on the set A = {a,b, c}. Which of
the properties reflexive, symmetric and transitive does R possess and why? If a
property does not hold, say why.
This is not reflexive because (a,a) ∉ R (for example).
It is not symmetric because (a,b) ∈ R but (b,a) ∉ R.
It is not transitive because cRb and bRc are true, but cRc is false.

5. Consider the relation R = {
(0,0), (

p
2,0), (0,

p
2), (

p
2,
p

2)
}
on R. Say whether this

relation is reflexive, symmetric and transitive. If a property does not hold, say
why.
This is not reflexive because (1,1) ∉ R (for example).
It is symmetric because it is impossible to find an (x, y) ∈ R for which (y, x) ∉ R.
It is transitive because (xR y∧ yRz)⇒ xRz always holds.

7. There are 16 possible different relations R on the set A = {a,b}. Describe all of
them. (A picture for each one will suffice, but don’t forget to label the nodes.)
Which ones are reflexive? Symmetric? Transitive?

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Only the four in the right column are reflexive. Only the eight in the first and
fourth rows are symmetric. All of them are transitive except the first three on
the fourth row.
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9. Define a relation on Z by declaring xR y if and only if x and y have the same
parity. Say whether this relation is reflexive, symmetric and transitive. If a
property does not hold, say why. What familiar relation is this?
This is reflexive because xRx since x always has the same parity as x.
It is symmetric because if x and y have the same parity, then y and x must
have the same parity (that is, xR y⇒ yRx).
It is transitive because if x and y have the same parity and y and z have the
same parity, then x and z must have the same parity. (That is (xR y∧ yRz)⇒ xRz
always holds.)
The relation is congruence modulo 2.

11. Suppose A = {a,b, c,d} and R = {(a,a), (b,b), (c, c), (d,d)}. Say whether this relation
is reflexive, symmetric and transitive. If a property does not hold, say why.
This is reflexive because (x, x) ∈ R for every x ∈ A.
It is symmetric because it is impossible to find an (x, y) ∈ R for which (y, x) ∉ R.
It is transitive because (xR y∧ yRz)⇒ xRz always holds.
(For example (aRa∧aRa)⇒ aRa is true, etc.)

13. Consider the relation R = {(x, y) ∈R×R : x− y ∈Z} on R. Prove that this relation is
reflexive and symmetric, and transitive.

Proof. In this relation, xR y means x− y ∈Z.
To see that R is reflexive, take any x ∈ R and observe that x− x = 0 ∈ Z, so xRx.
Therefore R is reflexive.

To see that R is symmetric, we need to prove xR y⇒ yRx for all x, y ∈R. We use
direct proof. Suppose xR y. This means x−y ∈Z. Then it follows that −(x−y)= y−x
is also in Z. But y− x ∈ Z means yRx. We’ve shown xR y implies yRx, so R is
symmetric.

To see that R is transitive, we need to prove (xR y∧ yRz)⇒ xRz is always true. We
prove this conditional statement with direct proof. Suppose xR y and yRz. Since
xR y, we know x− y ∈Z. Since yRz, we know y−z ∈Z. Thus x− y and y−z are both
integers; by adding these integers we get another integer (x− y)+ (y− z)= x− z.
Thus x− z ∈Z, and this means xRz. We’ve now shown that if xR y and yRz, then
xRz. Therefore R is transitive. ■

15. Prove or disprove: If a relation is symmetric and transitive, then it is also
reflexive.
This is false. For a counterexample, consider the relation R = {(a,a), (a,b), (b,a), (b,b)}
on the set A = {a,b, c}. This is symmetric and transitive but it is not reflexive.

17. Define a relation ∼ on Z as x ∼ y if and only if |x−y| ≤ 1. Say whether ∼ is reflexive,
symmetric and transitive.
This is reflexive because |x− x| = 0≤ 1 for all integers x. It is symmetric because
x ∼ y if and only if |x− y| ≤ 1, if and only if |y− x| ≤ 1, if and only if y∼ x. It is not
transitive because, for example, 0∼ 1 and 1∼ 2, but is not the case that 0∼ 2.
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Section 11.3

1. Let A = {1,2,3,4,5,6}, and consider the following equivalence relation on A: R =
{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (2,3), (3,2), (4,5), (5,4), (4,6), (6,4), (5,6), (6,5)}. List
the equivalence classes of R.
The equivalence classes are: [1]= {1}; [2]= [3]= {2,3}; [4]= [5]= [6]= {4,5,6}.

3. Let A = {a,b, c,d, e}. Suppose R is an equivalence relation on A. Suppose R has
three equivalence classes. Also aRd and bRc. Write out R as a set.
Answer: R = {(a,a), (b,b), (c, c), (d,d), (e, e), (a,d), (d,a), (b, c), (c,b)}.

5. There are two equivalence relations on the set A = {a,b}. Describe them.
Answer: R = {(a,a), (b,b)} and R = {(a,a), (b,b), (a,b), (b,a)}

7. Define a relation R on Z as xR y if and only if 3x−5y is even. Prove R is an
equivalence relation. Describe its equivalence classes.
We must prove that R is reflexive, symmetric and transitive.
The relation R is reflexive for the following reason. If x ∈Z, then 3x−5x =−2x is
even. But then since 3x−5x is even, we have xRx. Thus R is reflexive.
To see that R is symmetric, suppose xR y. We must show yRx. Since xR y, we
know 3x−5y is even, so 3x−5y= 2a for some integer a. Now reason as follows:

3x−5y = 2a

3x−5y+8y−8x = 2a+8y−8x

3y−5x = 2(a+4y−4x).

From this it follows that 3y−5x is even, so yRx. We’ve now shown xR y implies
yRx, so R is symmetric.
To prove that R is transitive, assume that xR y and yRz. (We will show that this
implies xRz.) Since xR y and yRz, it follows that 3x−5y and 3y−5z are both even,
so 3x−5y= 2a and 3y−5z = 2b for some integers a and b. Adding these equations,
we get (3x−5y)+ (3y−5z) = 2a+2b, and this simplifies to 3x−5z = 2(a+ b+ y).
Therefore 3x−5z is even, so xRz. We’ve now shown that if xR y and yRz, then
xRz, so R is transitive.
We’ve shown R is reflexive, symmetric and transitive, so it’s an equivalence
relation.
The completes the first part of the problem. Now we move on the second part.
To find the equivalence classes, first note that
[0]= {x ∈Z : xR0}= {x ∈Z : 3x−5 ·0 is even}= {x ∈Z : 3x is even}= {x ∈Z : x is even} .

Thus the equivalence class [0] consists of all even integers. Next, note that
[1]= {x ∈Z : xR1}= {x ∈Z : 3x−5 ·1 is even}= {x ∈Z : 3x−5 is even}= {

x ∈Z : x is odd
}
.

Thus the equivalence class [1] consists of all odd integers.
Consequently there are just two equivalence classes {. . . ,−4,−2,0,2,4, . . .} and
{. . . ,−3,−1,1,3,5, . . .}.
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9. Define a relation R on Z as xR y if and only if 4 | (x+3y). Prove R is an equivalence
relation. Describe its equivalence classes.
This is reflexive, because for any x ∈Z we have 4 | (x+3x), so xRx.
To prove that R is symmetric, suppose xR y. Then 4 | (x+3y), so x+3y= 4a for some
integer a. Multiplying by 3, we get 3x+9y= 12a, which becomes y+3x = 12a−8y.
Then y+3x = 4(3a−2y), so 4 | (y+3x), hence yRx. Thus we’ve shown xR y implies
yRx, so R is symmetric.
To prove transitivity, suppose xR y and yRz. Then 4|(x+3y) and 4|(y+3z), so
x+3y= 4a and y+3z = 4b for some integers a and b. Adding these two equations
produces x+4y+3z = 4a+4b, or x+3z = 4a+4b−4y = 4(a+ b− y). Consequently
4|(x+3z), so xRz, and R is transitive.
As R is reflexive, symmetric and transitive, it is an equivalence relation.
Now let’s compute its equivalence classes.
[0]= {x ∈Z : xR0}= {x ∈Z : 4 | (x+3 ·0)}= {x ∈Z : 4 | x}= {. . .−4,0,4,8,12,16 . . .}
[1]= {x ∈Z : xR1}= {x ∈Z : 4 | (x+3 ·1)}= {x ∈Z : 4 | (x+3)}= {. . .−3,1,5,9,13,17 . . .}
[2]= {x ∈Z : xR2}= {x ∈Z : 4 | (x+3 ·2)}= {x ∈Z : 4 | (x+6)}= {. . .−2,2,6,10,14,18 . . .}
[3]= {x ∈Z : xR3}= {x ∈Z : 4 | (x+3 ·3)}= {x ∈Z : 4 | (x+9)}= {. . .−1,3,7,11,15,19 . . .}

11. Prove or disprove: If R is an equivalence relation on an infinite set A, then R
has infinitely many equivalence classes.
This is False. Counterexample: consider the relation of congruence modulo 2.
It is a relation on the infinite set Z, but it has only two equivalence classes.

13. Answer: m|A| 15. Answer: 15

Section 11.4

1. List all the partitions of the set A = {a,b}. Compare your answer to the answer
to Exercise 5 of Section 11.3.
There are just two partitions {{a} , {b}} and {{a,b}}. These correspond to the two
equivalence relations R1 = {(a,a), (b,b)} and R2 = {(a,a), (a,b), (b,a), (b,b)}, respec-
tively, on A.

3. Describe the partition of Z resulting from the equivalence relation ≡ (mod 4).
Answer: The partition is {[0], [1], [2], [3]} ={

{. . . ,−4,0,4,8,12, . . .} , {. . . ,−3,1,5,9,13, . . .} , {. . . ,−2,2,4,6,10,14, . . .} , {. . . ,−1,3,7,11,15, . . .}
}

5. Answer: Congruence modulo 2, or “same parity.”

Section 11.5

1. Write the addition and multiplication tables for Z2.

+ [0] [1]

[0] [0] [1]

[1] [1] [0]

· [0] [1]

[0] [0] [0]

[1] [0] [1]
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3. Write the addition and multiplication tables for Z4.

+ [0] [1] [2] [3]

[0] [0] [1] [2] [3]

[1] [1] [2] [3] [0]

[2] [2] [3] [0] [1]

[3] [3] [0] [1] [2]

· [0] [1] [2] [3]

[0] [0] [0] [0] [0]

[1] [0] [1] [2] [3]

[2] [0] [2] [0] [2]

[3] [0] [3] [2] [1]

5. Suppose [a], [b] ∈Z5 and [a] · [b]= [0]. Is it necessarily true that either [a]= [0] or
[b]= [0]?

The multiplication table for Z5 is shown in Section 11.5. In the body of that
table, the only place that [0] occurs is in the first row or the first column. That
row and column are both headed by [0]. It follows that if [a] · [b]= [0], then either
[a] or [b] must be [0].

7. Do the following calculations in Z9, in each case expressing your answer as [a]
with 0≤ a ≤ 8.
(a) [8]+ [8]= [7] (b) [24]+ [11]= [8] (c) [21] · [15]= [0] (d) [8] · [8]= [1]

Chapter 12

Section 12.1

1. Suppose A = {0,1,2,3,4}, B = {2,3,4,5} and f = {(0,3), (1,3), (2,4), (3,2), (4,2)}. State
the domain and range of f . Find f (2) and f (1).
Domain is A; Range is {2,3,4}; f (2)= 4; f (1)= 3.

3. There are four different functions f : {a,b}→ {0,1}. List them all.
f1 = {(a,0), (b,0)} f2 = {(a,1), (b,0)} , f3 = {(a,0), (b,1)} f4 = {(a,1), (b,1)}

5. Give an example of a relation from {a,b, c,d} to {d, e} that is not a function.
One example is {(a,d), (a, e), (b,d), (c,d), (d,d)}.

7. Consider the set f = {(x, y) ∈Z×Z : 3x+ y= 4}. Is this a function from Z to Z?
Explain.
Yes, since 3x+ y= 4 if and only if y= 4−3x, this is the function f :Z→Z defined
as f (x)= 4−3x.

9. Consider the set f = {
(x2, x) : x ∈R}

. Is this a function from R to R? Explain.
No. This is not a function. Observe that f contains the ordered pairs (4,2) and
(4,−2). Thus the real number 4 occurs as the first coordinate of more than one
element of f .

11. Is the set θ = {(X , |X |) : X ⊆Z5} a function? If so, what is its domain and range?
Yes, this is a function. The domain is P(Z5). The range is {0,1,2,3,4,5}.
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Section 12.2

1. Let A = {1,2,3,4} and B = {a,b, c}. Give an example of a function f : A → B that is
neither injective nor surjective.
Consider f = {(1,a), (2,a), (3,a), (4,a)}.
Then f is not injective because f (1)= f (2).
Also f is not surjective because it sends no element of A to the element c ∈ B.

3. Consider the cosine function cos :R→R. Decide whether this function is injective
and whether it is surjective. What if it had been defined as cos :R→ [−1,1]?
The function cos :R→R is not injective because, for example, cos(0)= cos(2π). It
is not surjective because if b = 5 ∈R (for example), there is no real number for
which cos(x)= b. The function cos :R→ [−1,1] is surjective but not injective.

5. A function f :Z→Z is defined as f (n) = 2n+1. Verify whether this function is
injective and whether it is surjective.
This function is injective. To see this, suppose m,n ∈Z and f (m)= f (n).
This means 2m+1= 2n+1, from which we get 2m = 2n, and then m = n.
Thus f is injective.
This function is not surjective. To see this notice that f (n) is odd for all n ∈Z.
So given the (even) number 2 in the codomain Z, there is no n with f (n)= 2.

7. A function f : Z×Z→ Z is defined as f ((m,n)) = 2n−4m. Verify whether this
function is injective and whether it is surjective.
This is not injective because (0,2) 6= (−1,0), yet f ((0,2)) = f ((−1,0)) = 4. This is
not surjective because f ((m,n))= 2n−4m = 2(n−2m) is always even. If b ∈Z is
odd, then f ((m,n)) 6= b, for all (m,n) ∈Z×Z.

9. Prove that the function f :R− {2}→R− {5} defined by f (x)= 5x+1
x−2 is bijective.

Proof. First, let’s check that f is injective. Suppose f (x)= f (y). Then

5x+1
x−2

= 5y+1
y−2

(5x+1)(y−2) = (5y+1)(x−2)
5xy−10x+ y−2 = 5yx−10y+ x−2

−10x+ y = −10y+ x
11y = 11x

y = x.

Since f (x)= f (y) implies x = y, it follows that f is injective.
Next we check that f is surjective. Take an arbitrary element b ∈R−{5}. We seek
an x ∈R− {2} for which f (x)= b, or 5x+1

x−2 = b. Solving this for x, we get:

5x+1 = b(x−2)
5x+1 = bx−2b

5x− xb = −2b−1
x(5−b) = −2b−1.
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Since we have assumed b ∈R− {5}, the term (5−b) is not zero, and we can divide
with impunity to get x = −2b−1

5−b
. This is an x for which f (x)= b, so f is surjective.

Since f is both injective and surjective, it is bijective. ■

11. Consider the function θ : {0,1}×N→Z defined as θ(a,b) = (−1)ab. Is θ injective?
Is it surjective? Explain.
First we show that θ is injective. Suppose θ(a,b)= θ(c,d). Then (−1)ab = (−1)cd.
As b and d are both in N, they are both positive. Then because (−1)ab = (−1)cd,
it follows that (−1)a and (−1)c have the same sign. Since each of (−1)a and (−1)c

equals ±1, we have (−1)a = (−1)c, so then (−1)ab = (−1)cd implies b = d. But also
(−1)a = (−1)c means a and c have the same parity, and because a, c ∈ {0,1}, it
follows a = c. Thus (a,b)= (c,d), so θ is injective.
Next note that θ is not surjective because θ(a,b)= (−1)ab is either positive or
negative, but never zero. Therefore there exist no element (a,b) ∈ {0,1}×N for
which θ(a,b)= 0 ∈Z.

13. Consider the function f : R2 → R2 defined by the formula f (x, y) = (xy, x3). Is f
injective? Is it surjective?
Notice that f (0,1)= (0,0) and f (0,0)= (0,0), so f is not injective. To show that f
is also not surjective, we will show that it’s impossible to find an ordered pair
(x, y) with f (x, y) = (1,0). If there were such a pair, then f (x, y) = (xy, x3) = (1,0),
which yields xy= 1 and x3 = 0. From x3 = 0 we get x = 0, so xy= 0, a contradiction.

15. This question concerns functions f : {A,B,C,D,E,F,G} → {1,2,3,4,5,6,7}. How
many such functions are there? How many of these functions are injective? How
many are surjective? How many are bijective?
Function f can described as a list ( f (A), f (B), f (C), f (D), f (E), f (F), f (G)), where
there are seven choices for each entry. By the multiplication principle, the total
number of functions f is 77 = 823543.
If f is injective, then this list can’t have any repetition, so there are 7! = 5040
injective functions. Since any injective function sends the seven elements of the
domain to seven distinct elements of the codomain, all of the injective functions
are surjective, and vice versa. Thus there are 5040 surjective functions and 5040
bijective functions.

17. This question concerns functions f : {A,B,C,D,E,F,G}→ {1,2}. How many such
functions are there? How many of these functions are injective? How many are
surjective? How many are bijective?
Function f can described as a list ( f (A), f (B), f (C), f (D), f (E), f (F), f (G)), where
there are two choices for each entry. Therefore the total number of functions
is 27 = 128. It is impossible for any function to send all seven elements of
{A,B,C,D,E,F,G} to seven distinct elements of {1,2}, so none of these 128 func-
tions is injective, hence none are bijective.
How many are surjective? Only two of the 128 functions are not surjective, and
they are the “constant” functions {(A,1), (B,1), (C,1), (D,1), (E,1), (F,1), (G,1)} and
{(A,2), (B,2), (C,2), (D,2), (E,2), (F,2), (G,2)}. So there are 126 surjective functions.
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Section 12.3

1. If 6 integers are chosen at random, at least two will have the same remainder
when divided by 5.

Proof. Write Z as follows: Z=⋃4
j=0{5k+ j : k ∈Z}. This is a partition of Z into 5

sets. If six integers are picked at random, by the pigeonhole principle, at least
two will be in the same set. However, each set corresponds to the remainder
of a number after being divided by 5 (for example, {5k+1 : k ∈ Z} are all those
integers that leave a remainder of 1 after being divided by 5). ■

3. Given any six positive integers, there are two for which their sum or difference
is divisible by 9.

Proof. Let A be a set of six positive integers. Let B = {
{0} , {1,8} , {2,7} , {3,6} , {4,5}

}
.

Notice that every element of B is a set that either has one element or has two
elements whose sum is 9. Define f : A → B so that f (x) is the set that contains
the remainder when x is divided by 9. For example, f (12)= {3,6} and f (18)= {0}.
Since 6 = |A| > |B| = 5, the pigeonhole principle implies that f is not injective.
Thus there exist x, y ∈ A for which f (x)= f (y). Then either x and y have the same
reminder r when divided by 9, or the remainders r and s add to 9. In the first
case x = 9m+ r and y= 9n+ r (for m,n ∈Z), so x− y= 9(m−n) is divisible by 9. In
the second case x = 9m+ r and y= 9n+ s, so x+ y= 9m+9n+ r+ s = 9(m+n+1) is
divisible by 9. ■

5. Prove that any set of 7 distinct natural numbers contains a pair of numbers
whose sum or difference is divisible by 10.

Proof. Let S = {a1,a2,a3,a4,a5,a6,a7} be any set of 7 natural numbers. Let’s say
that a1 < a2 < a3 < ·· · < a7. Consider the set

A = {a1 −a2, a1 −a3, a1 −a4, a1 −a5, a1 −a6, a1 −a7,
a1 +a2, a1 +a3, a1 +a4, a1 +a5, a1 +a6, a1 +a7}

Thus |A| = 12. Now let B = {0,1,2,3,4,5,6,7,8,9}, so |B| = 10. Let f : A → B be the
function for which f (n) equals the last digit of n. (That is f (97) = 7, f (12) = 2,
f (230)= 0, etc.) Then, since |A| > |B|, the pigeonhole principle guarantees that f
is not injective. Thus A contains elements a1±ai and a1±a j for which f (a1±ai)=
f (a1 ± a j). This means the last digit of a1 ± ai is the same as the last digit of
a1 ± a j. Thus the last digit of the difference (a1 ± ai)− (a1 ± a j) = ±ai ± a j is 0.
Hence ±ai ±a j is a sum or difference of elements of S that is divisible by 10. ■

Section 12.4
1. Suppose A = {5,6,8}, B = {0,1}, C = {1,2,3}. Let f : A → B be the function f =

{(5,1), (6,0), (8,1)}, and g : B → C be g = {(0,1), (1,1)}. Find g ◦ f .
g ◦ f = {(5,1), (6,1), (8,1)}

Richard Hammack Book of Proof



353

3. Suppose A = {1,2,3}. Let f : A → A be the function f = {(1,2), (2,2), (3,1)}, and let
g : A → A be the function g = {(1,3), (2,1), (3,2)}. Find g ◦ f and f ◦ g.
g ◦ f = {(1,1), (2,1), (3,3)}; f ◦ g = {(1,1), (2,2), (3,2)}.

5. Consider the functions f , g :R→R defined as f (x)= 3px+1 and g(x)= x3. Find the
formulas for g ◦ f and f ◦ g.
g ◦ f (x)= x+1; f ◦ g (x)= 3px3 +1

7. Consider the functions f , g : Z×Z → Z×Z defined as f (m,n) = (mn,m2) and
g(m,n)= (m+1,m+n). Find the formulas for g ◦ f and f ◦ g.
Note g ◦ f (m,n)= g( f (m,n))= g(mn,m2)= (mn+1,mn+m2).
Thus g ◦ f (m,n)= (mn+1,mn+m2).
Note f ◦ g (m,n)= f (g(m,n))= f (m+1,m+n)= ((m+1)(m+n), (m+1)2).
Thus f ◦ g (m,n)= (m2 +mn+m+n,m2 +2m+1).

9. Consider the functions f : Z×Z→ Z defined as f (m,n) = m+n and g : Z→ Z×Z
defined as g(m)= (m,m). Find the formulas for g ◦ f and f ◦ g.
g ◦ f (m,n)= (m+n,m+n)
f ◦ g(m)= 2m

Section 12.5
1. Check that f :Z→Z defined by f (n)= 6−n is bijective. Then compute f −1.

It is injective as follows. Suppose f (m)= f (n). Then 6−m = 6−n, which reduces
to m = n.
It is surjective as follows. If b ∈Z, then f (6−b)= 6− (6−b)= b.
Inverse: f −1(n)= 6−n.

3. Let B = {2n : n ∈Z}= {
. . . , 1

4 , 1
2 ,1,2,4,8, . . .

}
. Show that the function f :Z→ B defined

as f (n)= 2n is bijective. Then find f −1.
It is injective as follows. Suppose f (m)= f (n), which means 2m = 2n. Taking log2
of both sides gives log2(2m)= log2(2n), which simplifies to m = n.
The function f is surjective as follows. Suppose b ∈ B. By definition of B this
means b = 2n for some n ∈Z. Then f (n)= 2n = b.
Inverse: f −1(n)= log2(n).

5. The function f :R→R defined as f (x)=πx− e is bijective. Find its inverse.
Inverse: f −1(x)= x+ e

π
.

7. Show that the function f :R2 →R2 defined by the formula f ((x, y)= ((x2 +1)y, x3)
is bijective. Then find its inverse.
First we prove the function is injective. Assume f (x1, y1) = f (x2, y2). Then (x2

1 +
1)y1 = (x2

2 +1)y2 and x3
1 = x3

2. Since the real-valued function f (x)= x3 is one-to-one,
it follows that x1 = x2. Since x1 = x2, and x2

1 +1 > 0 we may divide both sides of
(x2

1 +1)y1 = (x2
1 +1)y2 by (x2

1 +1) to get y1 = y2. Hence (x1, y1)= (x2, y2).
Now we prove the function is surjective. Let (a,b) ∈ R2. Set x = b1/3 and y =
a/(b2/3 +1). Then f (x, y) = ((b2/3 +1) a

b2/3+1 , (b1/3)3) = (a,b). It now follows that f is
bijective.
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Finally, we compute the inverse. Write f (x, y)= (u,v). Interchange variables to
get (x, y)= f (u,v)= ((u2 +1)v,u3). Thus x = (u2 +1)v and y= u3. Hence u = y1/3 and
v = x

y2/3+1 . Therefore f −1(x, y)= (u,v)=
(
y1/3, x

y2/3+1

)
.

9. Consider the function f :R×N→N×R defined as f (x, y)= (y,3xy). Check that this
is bijective; find its inverse.
To see that this is injective, suppose f (a,b)= f (c,d). This means (b,3ab)= (d,3cd).
Since the first coordinates must be equal, we get b = d. As the second coordinates
are equal, we get 3ab = 3dc, which becomes 3ab = 3bc. Note that, from the
definition of f , b ∈N, so b 6= 0. Thus we can divide both sides of 3ab = 3bc by the
non-zero quantity 3b to get a = c. Now we have a = c and b = d, so (a,b)= (c,d). It
follows that f is injective.
Next we check that f is surjective. Given any (b, c) in the codomain N×R, notice
that ( c

3b ,b) belongs to the domain R×N, and f ( c
3b ,b)= (b, c). Thus f is surjective.

As it is both injective and surjective, it is bijective; thus the inverse exists.
To find the inverse, recall that we obtained f ( c

3b ,b) = (b, c). Then f −1 f ( c
3b ,b) =

f −1(b, c), which reduces to ( c
3b ,b) = f −1(b, c). Replacing b and c with x and y,

respectively, we get f −1(x, y)= ( y
3x , x).

Section 12.6
1. Consider the function f : R → R defined as f (x) = x2 + 3. Find f ([−3,5]) and

f −1([12,19]). Answers: f ([−3,5])= [3,28]; f −1([12,19])= [−4,−3]∪ [3,4].
3. This problem concerns functions f : {1,2,3,4,5,6,7}→ {0,1,2,3,4}. How many such

functions have the property that | f −1({3})| = 3? Answer: 44 (7
3
)
.

5. Consider a function f : A → B and a subset X ⊆ A. We observed in Section 12.6
that f −1( f (X )) 6= X in general. However X ⊆ f −1( f (X )) is always true. Prove this.

Proof. Suppose a ∈ X . Thus f (a) ∈ { f (x) : x ∈ X }= f (X ), that is f (a) ∈ f (X ). Now, by
definition of preimage, we have f −1( f (X )) = {x ∈ A : f (x) ∈ f (X )}. Since a ∈ A and
f (a) ∈ f (X ), it follows that a ∈ f −1( f (X )). This proves X ⊆ f −1( f (X )). ■

7. Given a function f : A → B and subsets W , X ⊆ A, prove f (W ∩ X )⊆ f (W)∩ f (X ).

Proof. Suppose b ∈ f (W ∩ X ). This means b ∈ { f (x) : x ∈W ∩ X }, that is b = f (a)
for some a ∈ W ∩ X . Since a ∈ W we have b = f (a) ∈ { f (x) : x ∈W} = f (W). Since
a ∈ X we have b = f (a) ∈ { f (x) : x ∈ X } = f (X ). Thus b is in both f (W) and f (X ), so
b ∈ f (W)∩ f (X ). This completes the proof that f (W ∩ X )⊆ f (W)∩ f (X ). ■

9. Given a function f : A → B and subsets W , X ⊆ A, prove f (W ∪ X )= f (W)∪ f (X ).

Proof. First we will show f (W ∪ X ) ⊆ f (W)∪ f (X ). Suppose b ∈ f (W ∪ X ). This
means b ∈ { f (x) : x ∈W ∪ X }, that is, b = f (a) for some a ∈W∪X . Thus a ∈W or a ∈ X .
If a ∈W, then b = f (a) ∈ { f (x) : x ∈W}= f (W). If a ∈ X , then b = f (a) ∈ { f (x) : x ∈ X }=
f (X ). Thus b is in f (W) or f (X ), so b ∈ f (W)∪ f (X ). This completes the proof that
f (W ∪ X )⊆ f (W)∪ f (X ).
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Next we will show f (W)∪ f (X )⊆ f (W ∪ X ). Suppose b ∈ f (W)∪ f (X ). This means
b ∈ f (W) or b ∈ f (X ). If b ∈ f (W), then b = f (a) for some a ∈ W. If b ∈ f (X ), then
b = f (a) for some a ∈ X . Either way, b = f (a) for some a that is in W or X . That
is, b = f (a) for some a ∈W ∪ X . But this means b ∈ f (W ∪ X ). This completes the
proof that f (W)∪ f (X )⊆ f (W ∪ X ).
The previous two paragraphs show f (W ∪ X )= f (W)∪ f (X ). ■

11. Given f : A → B and subsets Y , Z ⊆ B, prove f −1(Y ∪Z)= f −1(Y )∪ f −1(Z).

Proof. First we will show f −1(Y ∪Z)⊆ f −1(Y )∪ f −1(Z). Suppose a ∈ f −1(Y ∪Z). By
Definition 12.9, this means f (a) ∈ Y ∪Z. Thus, f (a) ∈ Y or f (a) ∈ Z. If f (a) ∈ Y ,
then a ∈ f −1(Y ), by Definition 12.9. Similarly, if f (a) ∈ Z, then a ∈ f −1(Z). Hence
a ∈ f −1(Y ) or a ∈ f −1(Z), so a ∈ f −1(Y )∪ f −1(Z). Consequently f −1(Y ∪Z)⊆ f −1(Y )∪
f −1(Z).
Next we show f −1(Y )∪ f −1(Z) ⊆ f −1(Y ∪ Z). Suppose a ∈ f −1(Y )∪ f −1(Z). This
means a ∈ f −1(Y ) or a ∈ f −1(Z). Hence, by Definition 12.9, f (a) ∈ Y or f (a) ∈ Z,
which means f (a) ∈Y ∪Z. But by Definition 12.9, f (a) ∈Y ∪Z means a ∈ f −1(Y ∪Z).
Consequently f −1(Y )∪ f −1(Z)⊆ f −1(Y ∪Z).
The previous two paragraphs show f −1(Y ∪Z)= f −1(Y )∪ f −1(Z). ■

13. Let f : A → B be a function, and X ⊆ A. Prove or disprove: f
(
f −1( f (X ))

)= f (X ).

Proof. First we will show f
(
f −1( f (X ))

) ⊆ f (X ). Suppose y ∈ f
(
f −1( f (X ))

)
. By

definition of image, this means y= f (x) for some x ∈ f −1( f (X )). But by definition
of preimage, x ∈ f −1( f (X )) means f (x) ∈ f (X ). Thus we have y = f (x) ∈ f (X ), as
desired.
Next we show f (X ) ⊆ f

(
f −1( f (X ))

)
. Suppose y ∈ f (X ). This means y = f (x) for

some x ∈ X . Then f (x)= y ∈ f (X ), which means x ∈ f −1( f (X )). Then by definition
of image, f (x) ∈ f ( f −1( f (X ))). Now we have y= f (x) ∈ f ( f −1( f (X ))), as desired.
The previous two paragraphs show f

(
f −1( f (X ))

)= f (X ). ■

Chapter 13 Exercises

Section 13.2
1. Prove that lim

x→5
(8x−3)= 37.

Proof. Take ε> 0. Note that |(8x−3)−37| = |8x−40| = |8(x−5)| = 8|x−5|. So if δ= ε
8 ,

then 0< |x−5| < δ implies |(8x−3)−37| = 8|x−5| < 8δ= 8 ε
8 = ε. By Definition 13.2,

lim
x→5

(8x−3)= 37. ■

3. Prove that lim
x→0

(x+2)= 2.

Proof. Given ε> 0, let δ= ε. Then 0< |x−0| < δ implies |(x+2)−2| = |x−0| < δ= ε.
By Definition 13.2, lim

x→0
(x+2)= 2. ■
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5. Prove that lim
x→3

(x2 −2)= 7.

Proof. Suppose ε > 0. In what follows we will produce a corresponding δ for
which 0< |x−3| < δ implies |(x2 −2)−7| < ε. Notice that

|(x2 −2)−7| = |x2 −9| = |(x−3)(x+3)| = |x−3| · |x+3|.
If |x−3| ≤ 1, then |x+3| = |(x−3)+6| ≤ |x−3|+|6| ≤ 1+6= 7 (using the inequality (13.2)
from page 245). So if |x−3| ≤ 1, then |x+3| ≤ 7 and the above equation yields

|(x2 −2)−7| = |x−3| · |x+3| < |x−3| ·7= 7|x−3|.
Take δ to be smaller than both 1 and ε

7 . Then 0< |x−3| < δ implies |(x2 −2)−7| <
7 · |x−3| < 7δ< 7 ε

7 = ε. By Definition 13.2, we have lim
x→3

(x2 −2)= 7. ■

Section 13.3
1. Prove that lim

x→0
log10 |x| does not exist.

Proof. Suppose for the sake of contradiction that lim
x→0

log10 |x| = L, for some L ∈R.
Let ε = 1, so there is a δ > 0 for which 0 < |x−0| < δ implies

∣∣ log10(|x|)−L
∣∣ < 1.

Choose an x 6= 0 for which |x| is smaller than both δ and 10L−1. Then 0< |x−0| <
δ, so

∣∣ log10 |x| − L
∣∣ < 1. But also |x| < 10L−1, so log10 |x| < L − 1. Consequently

log10 |x|−L <−1, and thus
∣∣ log10 |x|−L

∣∣> 1. This is a contradiction. ■

3. Prove that lim
x→0

1
x2 does not exist.

Proof. Suppose for the sake of contradiction that lim
x→0

1
x2 = L, for some L ∈R. Fix

an ε> 0 for which L+ε> 0. Choose a real number δ> 0 for which 0 < |x−0| < δ

implies
∣∣ 1

x2 −L
∣∣< ε. Choose an x > 0 that is smaller than both δ and

√
1

L+ε . Then

0< |x−0| < δ, so
∣∣ 1

x2 −L
∣∣< ε. But also, x <

√
1

L+ε , so x2 < 1
L+ε and hence 1

x2 > L+ε.
Consequently 1

x2 −L > ε, and thus
∣∣ 1

x2 −L
∣∣> ε. This is a contradiction. ■

5. Prove that lim
x→0

xcot
( 1

x
)
does not exist.

Proof. Note that cot(x) = 1
sin(x) . Because sin(kπ) = 0 for any k ∈Z, it follows that

cot(x) is undefined for any x = kπ. Hence xcot
( 1

x ) is undefined for any x = 1
kπ . Given

any δ> 0, there exist values of x = 1
kπ that satisfy 0 < |x−0| < δ. The statement

(0 < |x−0| < δ) ⇒ ∣∣xcot
( 1

x
)−L

∣∣ < ε is meaningless for such x, so the limit cannot
exist. (See the remark following Example 13.5 on page 250.) ■

Section 13.4
1. Given two or more functions f1, f2, . . . , fn, suppose that lim

x→c
f i(x) exists for each

1≤ i ≤ n. Prove that lim
x→c

(
f1(x)+ f2(x)+·· ·+ fn(x)

)= lim
x→c

f1(x)+lim
x→c

f2(x)+·· ·+lim
x→c

fn(x).
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Proof. The proof is by induction. For the basis case n = 2, and the result follows
from the multiplication rule (Theorem 13.7).
Now let k > 2 assume that the theorem holds for k functions f1, f2, . . . , fk. That
is, lim

x→c

(
f1(x)+ f2(x)+·· ·+ fk(x)

)= lim
x→c

f1(x)+ lim
x→c

f2(x)+·· ·+ lim
x→c

fk(x). We must show
lim
x→c

(
f1(x)+ f2(x)+·· ·+ fk(x)+ fk+1(x)

)= lim
x→c

f1(x)+lim
x→c

f2(x)+·· ·+lim
x→c

fk(x)+lim
x→c

fk+1(x).
Just note that

lim
x→c

(
f1(x)+ f2(x)+·· ·+ fk(x)+ fk+1(x)

)
= lim

x→c

((
f1(x)+ f2(x)+·· ·+ fk(x)

)+ fk+1(x)
)

(group)

= lim
x→c

(
f1(x)+ f2(x)+·· ·+ fk(x)

)+ lim
x→c

fk+1(x) (Theorem 13.7)

= lim
x→c

f1(x)+ lim
x→c

f2(x)+·· ·+ lim
x→c

fk(x)+ lim
x→c

fk+1(x) (inductive hypothesis).

This completes the proof by induction. ■

3. Use the previous two exercises and the constant multiple rule (Theorem 13.4) to
prove that that if f (x) is a polynomial, then lim

x→c
f (x)= f (c) for any c ∈R.

Proof. First note that by Exercise 2 and the identity function rule, we have
lim
x→c

xn = lim
x→c

(x · x · · · ·x)=
(
lim
x→c

x
)
·
(
lim
x→c

x
)
· · ·

(
lim
x→c

x
)
= c · c · · · · c = cn. Thus lim

x→c
xn = cn.

Now consider an arbitrary polynomial f (x) = a0 + a1x+ a2x2 + ·· ·+anxn, where
each ai is a constant real number. Then

lim
x→c

f (x)= lim
x→c

(
a0 +a1x+a2x2 +·· ·+anxn)

= lim
x→c

a0 + lim
x→c

a1x+ lim
x→c

a2x2 +·· ·+ lim
x→c

anxn (Exercise 1)

= lim
x→c

a0 +a1 lim
x→c

x+a2 lim
x→c

x2 +·· ·+an lim
x→c

xn (constant multiple rule)

= a0 +a1c+a2c2 +·· ·+ancn = f (c). ■

5. Prove that if lim
x→c

f (x)= L and lim
x→c

f (x)= M, then L = M.

Proof. Suppose lim
x→c

f (x) = L and lim
x→c

f (x) = M. Then by limit laws, L − M =
lim
x→c

f (x)− lim
x→c

f (x)= lim
x→c

(
f (x)− f (x)

)= lim
x→c

0= 0. This shows L−M = 0, so L = M. ■

Section 13.5
1. Prove that the function f (x)=p

x is continuous at any number c > 0. Deduce that
lim
x→c

√
g(x)=

√
lim
x→c

g(x), provided lim
x→c

g(x) exists and is greater than zero.

Proof. Suppose c > 0. Proving p
x is continuous at c amounts to proving that

lim
x→c

p
x =p

c. Here is a proof of this limit: For any ε> 0 let δ be smaller than both
c and εpc. Now suppose 0< |x− c| < δ. Because δ< c it follows that |x− c| < c, and
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hence −c < x− c < c. From this, 0< x, so p
x exists. Also, because δ< εpc, we have

∣∣px−p
c
∣∣ = ∣∣∣∣(px−p

c
) px+p

cp
x+p

c

∣∣∣∣ = ∣∣∣∣(x− c)
1p

x+p
c

∣∣∣∣ = |x− c| 1p
x+p

c

< |x− c| · 1p
c
< δ

1p
c
= ε

p
c

1p
c
= ε.

(Note: above we used the fact p
x+p

c > p
c to get 1p

x−pc < 1p
c .) We have now

shown that 0< |x− c| < δ implies
∣∣px−p

c
∣∣< ε, so lim

x→c

p
x =p

c. This means p
x is

continuous at any number x = c, by Definition 13.3.
Applying Theorem 13.9, we get lim

x→c

√
g(x)=

√
lim
x→c

g(x). ■

Section 13.6

1. If n ∈N, then lim
x→∞

1
xn = 0.

Proof. Suppose ε > 0. Let N = 1
npε . If x > N, then xn > Nn = 1

ε
, so 0 < 1

xn < ε.
Thus

∣∣ 1
xn −0

∣∣ = ∣∣ 1
xn

∣∣ < ε. In summary, x > N implies
∣∣ 1

xn −0
∣∣ < ε, so lim

x→∞
1
xn = 0 by

Definition 13.4. ■

3. If a ∈R, then lim
x→∞ a = a.

Proof. Suppose ε > 0. Let N = 1. Then x > N implies |a− a| < 0, which means
lim
x→∞ a = a. (Note: The implication x > N ⇒ |a−a| < ε is actually true no matter
what value x has, because |a−a| < ε is automatically true.) ■

5. If both lim
x→∞ f (x) and lim

x→∞ g(x) exist, then lim
x→∞

(
f (x)+ g(x)

)= lim
x→∞ f (x)+ lim

x→∞ g(x).

Proof. Say lim
x→∞ f (x)= L and lim

x→∞ g(x)= M. We must prove lim
x→∞

(
f (x)+ g(x)

)= L+M.
Take ε> 0. We need to find an N for which x > N implies

∣∣( f (x)+g(x)
)−(L+M)

∣∣< ε.
Because lim

x→c
f (x) = L, there is a N ′ > 0 such that x > N ′ implies

∣∣ f (x)− L
∣∣ < ε

2 .
Because lim

x→c
g(x) = M, there is a N ′′ > 0 such that x > N ′′ implies

∣∣g(x)−M
∣∣ < ε

2 .
Put N =max

{
N ′, N ′′}. If x > N, then∣∣( f (x)+ g(x)

)− (L+M)
∣∣= ∣∣( f (x)−L

)+ (
g(x)−M

)∣∣≤ ∣∣ f (x)−L
∣∣+ ∣∣g(x)−M

∣∣< ε
2 + ε

2 = ε.
We’ve now shown that for any ε > 0, there is a N > 0 for which x > N implies∣∣( f (x)+ g(x)

)− (L+M)
∣∣< ε. Thus lim

x→∞
(
f (x)+ g(x)

)= L+M. ■

7. If both lim
x→∞ f (x) and lim

x→∞ g(x) exist, then lim
x→∞

(
f (x)− g(x)

)= lim
x→∞ f (x)− lim

x→∞ g(x).

Proof. Suppose both lim
x→∞ f (x) and lim

x→∞ g(x) exist. Using exercises 4 and 5 above,

lim
x→∞

(
f (x)− g(x)

)= lim
x→∞

(
f (x)+ (−1) · g(x)

)= lim
x→∞ f (x)+ lim

x→∞ (−1) · g(x)

= lim
x→∞ f (x)+ (−1) · lim

x→∞ g(x)= lim
x→∞ f (x)− lim

x→∞ g(x). ■
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9. If lim
x→∞ g(x)= L and f is continuous at x = L, then lim

x→∞ f
(
g(x)

)= f
(

lim
x→∞ g(x)

)
.

Proof. Suppose lim
x→∞ g(x)= L and f is continuous at x = L. We need to prove

lim
x→∞ f

(
g(x)

)= f (L). Definition 13.4 says we must prove that for any ε> 0, there is
a corresponding N > 0 for which x > N implies

∣∣ f
(
g(x)

)−L
∣∣< ε.

So let ε> 0. As f is continuous at L, Definition 13.3 yields lim
x→L

f (x)= f (L). From
this, we know there is a real number δ> 0 for which

|x−L| < δ implies
∣∣ f (x)− f (L)

∣∣< ε. (∗)

But also, from lim
x→∞ g(x)= L, we know that there is a real number N > 0 for which

x > N implies
∣∣g(x)−L

∣∣< δ. If x > N, then we have
∣∣g(x)−L

∣∣< δ, and from this (∗)
yields

∣∣ f
(
g(x)

)− f (L)
∣∣< ε. Thus lim

x→c
f
(
g(x)

)= f (L), and the proof is complete. ■

Section 13.7

1. Prove that
{

2n

n!

}
converges to 0.

Proof. Observe that 0< 2n

n! < 4
n for any n ∈N because

2n

n!
= 2 · 2 · 2 · · · 2 ·2 ·2

n(n−1)(n−2) · · ·3 ·2 ·1 = 2
n
· 2

n−1
· 2

n−1
· · · 2

3
· 2
2
· 2
1

≤ 2
n

· 1 · 1 · · · 1 · 1 · 2= 4
n

.

Thus
∣∣ 2n

n!

∣∣< 4
n for any n ∈N. Given ε> 0, choose an integer N > 4

ε
. If n > N, then∣∣ 2n

n! −0
∣∣= ∣∣ 2n

n!

∣∣< 4
n < 4

N < 4
4/ε = ε. By Definition 13.5,

{
2n

n!

}
converges to 0. ■

3. Prove that
{

2n2+1
3n−1

}
diverges to ∞.

Proof. Note that 2n2+1
3n−1 > 2n2

3n−1 > 2n2

3n = 2n
3 . For any L > 0, let N = 3L

2 . Then for n > N

we have 2n2+1
3n−1 > 2n

3 > 2N
3 = L. By Definition 13.6, the sequence diverges to ∞. ■

5. Prove that
{ 2n+1

3n−1
}
converges to 2

3 .

Proof. For n ≥ 1 we have
∣∣ 2n+1

3n−1 − 2
3

∣∣= ∣∣∣ 3(2n+1)
3(3n−1) − 2(3n−1)

3(3n−1)

∣∣∣= ∣∣ 5
9n−3

∣∣= 5
9n−3 . Given ε> 0,

we will have 5
9n−3 < ε provided that 9n−3

5 > 1
ε
, or n > 5

9ε + 1
3 .

Therefore, given any ε> 0, take an integer N > 5
9ε + 1

3 . If n > N, then
∣∣ 2n+1

3n−1 − 2
3

∣∣=
5

9n−3 < 5
9N−3 < 5

9
( 5

9ε+ 1
3
)−3

= ε. By Definition 13.5,
{ 2n+1

3n−1
}
converges to 2

3 . ■

7. Prove that if a sequence diverges to infinity, then it diverges.

Proof. For the sake of contradiction, suppose that
{
an

}
diverges to ∞, and

{
an

}
converges to a number L. Definition 13.5 says that for ε= 1 there is a number
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N > 0 for which n > N implies |an −L| < 1. Also, Definition 13.6 guarantees an
N ′ > 0 for which n > N ′ implies an > L+1, that is, an −L > 1.
Let n be larger than both N and N ′. Then |an −L| < 1 and an −L > 1. Thus
|an −L| < 1 and |an −L| > 1, a contradiction. ■

9. Prove that if
{
an

}
converges to L, and c ∈R, then {

can
}
converges to cL.

Proof. Suppose
{
an

}
converges to L, and c ∈R. If c = 0, then

{
can

}
is the sequence

0,0,0,0, . . ., and this converges to 0= cL. Thus the theorem is true if c = 0, so for
the remainder of the proof we treat the case c 6= 0.
Let ε > 0. Because

{
an

}
converges to L, there exists an N > 0 for which n > N

implies
∣∣an−L

∣∣< ε
|c| . So if n > N, then

∣∣can−cL
∣∣= ∣∣c(an−L

)∣∣= |c|·∣∣an−L
∣∣< |c| ε|c| = ε.

In summary, we’ve shown that for any ε > 0, there is a N > 0 for which n > N
implies

∣∣can − cL
∣∣< ε. By Definition 13.5,

{
can

}
converges to cL. ■

11. Prove that if
{
an

}
converges to L and

{
bn

}
converges to M, then the sequence{

anbn
}
converges to LM.

Proof. Suppose
{
an

}
converges to L and

{
bn

}
converges to M. We must prove{

anbn
}
converges to LM. To prove this, take ε> 0. We need to find an N for which

n > N implies
∣∣anbn −LM

∣∣< ε. With this in mind, notice that∣∣anbn −LM
∣∣= ∣∣(anbn −Lbn

)+ (
Lbn −LM

)∣∣
≤ ∣∣anbn −Lbn

∣∣ + ∣∣Lbn −LM
∣∣

= ∣∣(an −L
)
bn

∣∣ + ∣∣L(
bn −M

)∣∣
= ∣∣an −L

∣∣ · ∣∣bn
∣∣+|L| · ∣∣bn −M

∣∣. (∗)

Take N ′ > 0 large enough so that n > N ′ implies
∣∣bn −M

∣∣< 1. If n > N ′, then∣∣bn
∣∣= ∣∣(bn −M

)+M
∣∣≤ ∣∣bn −M

∣∣+|M| < 1+|M|.

Replacing
∣∣bn

∣∣ in (∗) with the larger quantity 1+|M|, we get∣∣anbn −LM
∣∣< ∣∣an −L

∣∣ · (1+|M|)+|L| · ∣∣bn −M
∣∣ (∗∗)

for all n > N ′. Now take N ′′ > 0 such that n > N ′′ implies
∣∣an −L

∣∣< ε
2(1+|M|) . Take

N ′′′ > 0 such that n > N ′′′ implies
∣∣bn −L′∣∣ < ε

2|L| . Put N = max
{
N ′, N ′′, N ′′′}. If

n > N, then (∗∗) becomes∣∣anbn −LM
∣∣< ε

2(1+|M|) ·
(
1+|M|)+|L| · ε

2|L| =
ε

2
+ ε

2
= ε.

To summarize, we’ve shown that for any ε> 0, there is a N > 0 for which n > N
implies

∣∣anbn −LM
∣∣< ε. Therefore {

anbn
}
converges to LM. ■

13. Prove that if
{|an|

}
converges to 0, then

{
an

}
converges to 0. Give an example of

a sequence
{
an

}
for which

{|an|
}
converges to a number L 6= 0, but

{
an

}
diverges.
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Proof. Suppose
{|an|

}
converges to 0. This means that for any ε> 0, there is an

N > 0 for which n > N implies
∣∣|an| −0

∣∣ < ε. But
∣∣|an| −0

∣∣ = |an −0|. Thus n > N
implies |an −0| < ε. Therefore {

an
}
converges to 0.

Consider the sequence
{
(−1)n}

, which is −1,1,−1,1,−1 . . .. This sequence diverges.
But

{∣∣(−1)n∣∣} is the sequence 1,1,1,1, . . ., which converges to 1. ■

Chapter 14 Exercises
Section 14.1

1. R and (0,∞)
Observe that the function f (x) = ex sends R to (0,∞). It is injective because
f (x)= f (y) implies ex = ey, and taking ln of both sides gives x = y. It is surjective
because if b ∈ (0,∞), then f (ln(b))= b. Therefore, because of the bijection f :R→
(0,∞), it follows that |R| = |(0,∞)|.

3. R and (0,1)
Observe that the function 1

π
f (x) = cot−1(x) sends R to (0,1). It is injective and

surjective by elementary trigonometry. Therefore, because of the bijection f :
R→ (0,1), it follows that |R| = |(0,1)|.

5. A = {3k : k ∈Z} and B = {7k : k ∈Z}
Observe that the function f (x)= 7

3 x sends A to B. It is injective because f (x)= f (y)
implies 7

3 x = 7
3 y, and multiplying both sides by 3

7 gives x = y. It is surjective
because if b ∈ B, then b = 7k for some integer k. Then 3k ∈ A, and f (3k)= 7k = b.
Therefore, because of the bijection f : A → B, it follows that |A| = |B|.

7. Z and S = {
. . . , 1

8 , 1
4 , 1

2 ,1,2,4,8,16, . . .
}

Observe that the function f :Z→ S defined as f (n)= 2n is bijective: It is injective
because f (m)= f (n) implies 2m = 2n, and taking log2 of both sides produces m = n.
It is surjective because any element b of S has form b = 2n for some integer n,
and therefore f (n) = 2n = b. Because of the bijection f : Z→ S, it follows that
|Z| = |S|.

9. {0,1}×N and N
Consider the function f : {0,1}×N→N defined as f (a,n)= 2n−a. This is injective
because if f (a,n)= f (b,m), then 2n−a = 2m−b. Now if a were unequal to b, one of
a or b would be 0 and the other would be 1, and one side of 2n−a = 2m−b would
be odd and the other even, a contradiction. Therefore a = b. Then 2n−a = 2m−b
becomes 2n−a = 2m−a; add a to both sides and divide by 2 to get m = n. Thus we
have a = b and m = n, so (a,n)= (b,m), so f is injective. To see that f is surjective,
take any b ∈N. If b is even, then b = 2n for some integer n, and f (0,n)= 2n−0= b.
If b is odd, then b = 2n+1 for some integer n. Then f (1,n+1)= 2(n+1)−1= 2n+1= b.
Therefore f is surjective. Then f is a bijection, so |{0,1}×N| = |N|.

11. [0,1] and (0,1)

Proof. Consider the subset X = { 1
n : n ∈N}⊆ [0,1]. Let f : [0,1]→ [0,1) be defined

as f (x) = x if x ∈ [0,1]− X and f ( 1
n ) = 1

n+1 for any 1
n ∈ X . It is easy to check that

f is a bijection. Next let Y = {
1− 1

n : n ∈N} ⊆ [0,1), and define g : [0,1) → (0,1) as
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g(x)= x if x ∈ [0,1)−Y and g(1− 1
n )= 1− 1

n+1 for any 1− 1
n ∈Y . As in the case of f , it

is easy to check that g is a bijection. Therefore the composition g◦ f : [0,1]→ (0,1)
is a bijection. (See Theorem 12.2.) We conclude that |[0,1]| = |(0,1)|. ■

13. P(N) and P(Z)
Outline: By Exercise 18 of Section 12.2, we have a bijection f :N→Z defined as
f (n)= (−1)n(2n−1)+1

4
. Now define a function Φ : P(N) → P(Z) as Φ(X ) = { f (x) :

x ∈ X }. Check that Φ is a bijection.
15. Find a formula for the bijection f in Example 14.2.

Hint: Consider the function f from Exercise 18 of Section 12.2.

Section 14.2

1. Prove that the set A = {ln(n) : n ∈N}⊆R is countably infinite.
Note that its elements can be written in infinite list form as ln(1), ln(2), ln(3), · · · .
Thus A is countably infinite.

3. Prove that the set A = {(5n,−3n) : n ∈Z} is countably infinite.
Consider the function f :Z→ A defined as f (n)= (5n,−3n). This is clearly surjec-
tive, and it is injective because f (n)= f (m) gives (5n,−3n)= (5m,−3m), so 5n = 5m,
hence m = n. Thus, because f is surjective, |Z| = |A|, and |A| = |Z| = ℵ0. Therefore
A is countably infinite.

5. Prove or disprove: There exists a countably infinite subset of the set of irrational
numbers.
This is true. Just consider the set consisting of the irrational numbers π

1 , π2 , π3 , π4 , · · · .
7. Prove or disprove: The set Q100 is countably infinite.

This is true. NoteQ100 =Q×Q×·· ·×Q (100 times), and sinceQ is countably infinite,
it follows from the corollary of Theorem 14.5 that this product is countably
infinite.

9. Prove or disprove: The set {0,1}×N is countably infinite.
This is true. Note that {0,1}×N can be written in infinite list form as
(0,1), (1,1), (0,2), (1,2), (0,3), (1,3), (0,4), (1,4), · · · . Thus the set is countably infinite.

11. Partition N into 8 countably infinite sets.

For each i ∈ {1,2,3,4,5,6,7,8}, let X i be those natural numbers that are congruent
to i modulo 8, that is,

X1 = {1,9,17,25,33, . . .}

X2 = {2,10,18,26,34, . . .}

X3 = {3,11,19,27,35, . . .}

X4 = {4,12,20,28,36, . . .}

X5 = {5,13,21,29,37, . . .}

X6 = {6,14,22,30,38, . . .}
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X7 = {7,15,13,31,39, . . .}

X8 = {8,16,24,32,40, . . .}

13. If A = {X ⊂N : X is finite}, then |A| = ℵ0.

Proof. This is true. To show this we will describe how to arrange the items of
A in an infinite list X1, X2, X3, X4, . . ..
For each natural number n, let pn be the nth prime number. Thus p1 = 2,
p2 = 3, p3 = 5, p4 = 7, p5 = 11, and so on. Now consider any element X ∈ A. If
X 6= ;, then X = {n1,n2,n3, ...,nk}, where k = |X | and ni ∈ N for each 1 ≤ i ≤ k.
Define a function f : A → N∪ {0} as follows: f ({n1,n2,n3, ...,nk}) = pn1 pn2 · · · pnk .
For example, f ({1,2,3})= p1 p2 p3 = 2 ·3 ·5= 30, and f ({3,5})= p3 p5 = 5 ·11= 55, etc.
Also, we should not forget that ;∈ A, and we define f (;)= 0.
Note f : A→N∪{0} is injective: Let X = {n1,n2,n3, ...,nk} andY = {m1,m2,m3, ...,m`},
and X 6=Y . Then there is an integer a that belongs to one of X or Y but not the
other. Then the prime factorization of one of the numbers f (X ) and f (Y ) uses
the prime number pa but the prime factorization of the other does not use pa. It
follows that f (X ) 6= f (Y ) by the fundamental theorem of arithmetic. Thus f is
injective.
So each set X ∈ A is associated with an integer f (X )≥ 0, and no two different sets
are associated with the same number. Thus we can list the elements in X ∈ A in
increasing order of the numbers f (X ). The list begins as

;, {1}, {2}, {3}, {1,2}, {4}, {1,3}, {5}, {6}, {1,4}, {2,3}, {7}, . . .

It follows that A is countably infinite. ■
15. Hint: Use the fundamental theorem of arithmetic.

Section 14.3

1. Suppose B is an uncountable set and A is a set. Given that there is a surjective
function f : A → B, what can be said about the cardinality of A?
The set A must be uncountable, as follows. For each b ∈ B, let ab be an element
of A for which f (ab)= b. (Such an element must exist because f is surjective.)
Now form the set U = {ab : b ∈ B}. Then the function f : U → B is bijective, by
construction. Then since B is uncountable, so isU. ThereforeU is an uncountable
subset of A, so A is uncountable by Theorem 14.9.

3. Prove or disprove: If A is uncountable, then |A| = |R|.
This is false. Let A = P(R). Then A is uncountable, and by Theorem 14.7,
|R| < |P(R)| = |A|.

5. Prove or disprove: The set {0,1}×R is uncountable.
This is true. To see why, first note that the function f : R→ {0}×R defined as
f (x) = (0, x) is a bijection. Thus |R| = |{0}×R|, and since R is uncountable, so is
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{0}×R. Then {0}×R is an uncountable subset of the set {0,1}×R, so {0,1}×R is
uncountable by Theorem 14.9.

7. Prove or disprove: If A ⊆ B and A is countably infinite and B is uncountable,
then B− A is uncountable.

This is true. To see why, suppose to the contrary that B− A is countably infinite.
Then B = A∪ (B− A) is a union of countably infinite sets, and thus countable, by
Theorem 14.6. This contradicts the fact that B is uncountable.

Section 14.4

1. Show that if A ⊆ B and there is an injection g : B → A, then |A| = |B|.
Just note that the map f : A → B defined as f (x) = x is an injection. Now apply
the Cantor-Bernstein-Schröeder theorem.

3. Let F be the set of all functions N→ {
0,1}. Show that |R| = |F |.

Because |R| = |P(N)|, it suffices to show that |F | = |P(N)|. To do this, we will
exhibit a bijection f : F → P(N). Define f as follows. Given a function ϕ ∈ F ,
let f (ϕ) = {n ∈N : ϕ(n) = 1}. To see that f is injective, suppose f (ϕ) = f (θ). Then
{n ∈N : ϕ(n) = 1} = {n ∈N : θ(n) = 1}. Put X = {n ∈N : ϕ(n) = 1}. Now we see that if
n ∈ X , then ϕ(n) = 1 = θ(n). And if n ∈N− X , then ϕ(n) = 0 = θ(n). Consequently
ϕ(n)= θ(n) for any n ∈N, so ϕ= θ. Thus f is injective. To see that f is surjective,
take any X ∈P(N). Consider the function ϕ ∈F for which ϕ(n)= 1 if n ∈ X and
ϕ(n)= 0 if n ∉ X . Then f (ϕ)= X , so f is surjective.

5. Consider the subset B = {
(x, y) : x2 + y2 ≤ 1

}⊆R2. Show that |B| = |R2|.
This will follow from the Cantor-Bernstein-Schröeder theorem provided that we
can find injections f : B → R2 and g : R2 → B. The function f : B → R2 defined as
f (x, y)= (x, y) is clearly injective. For g :R2 → B, consider the function

g(x, y)=
(

x√
x2 + y2 +1

,
y√

x2 + y2 +1

)
.

Verify that this is an injective function g :R2 → B.
7. Prove or disprove: If there is a injection f : A → B and a surjection g : A → B, then

there is a bijection h : A → B.

This is true. Here is an outline of a proof. Define a function g′ : B → A as follows.
For each b ∈ B, choose an element xb ∈ g−1({x}). (That is, choose an element xb ∈ A
for which g(xb)= b.) Now let g′ : B → A be the function defined as g′(b)= xb. Check
that g′ is injective and apply the the Cantor-Bernstein-Schröeder theorem.
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absolute convergence test, 268
absolute value, 6, 245
addition principle, 74
and, 39
axiom of foundation, 32

basis step, 182
biconditional statement, 46
bijection, 270
bijective function, 228
byte, 66

C(n,k), 85
Cantor, Georg, 271
Cantor-Bernstein-Schröder theorem, 286
cardinality, 4, 269
Cartesian plane, 10
Cartesian power, 10
Cartesian product, 8
ceiling of a number, 104
closed interval, 7
codomain of a function, 225
Cohen, Paul, 289
combinatorial proof, 108
comparison test, 268
complement of a set, 20
composite number, 116
composition of functions, 235
conditional statement, 42
conjecture, 173
constructive proof, 154
continuity, 256
continuous function, 256
continuum hypothesis, 289
contrapositive, 128
convergence of a sequence, 262
convergence of a series, 266
converse of a statement, 46, 128

corollary, 114
countable set, 275
counterexample, 175
counting, 65

definition, 113
DeMorgan’s laws, 51, 59
difference of sets, 18
differentiability, 257
disproof, 172
divergence of a sequence, 262
divergence of a series, 266
divergence test, 267
divergence to ∞, 264
divides, 116
division algorithm, 30, 117
division principle, 104
divisor, 116
domain of a function, 225
Doxiadis, Apostolos, 33

element of a set, 3
elimination, 63
empty set, 4
entries of a list, 65
equality of functions, 227
equality of lists, 66
equality of sets, 3
equivalence class, 211
equivalence relation, 210
equivalent statements, 149
Euclid, 140, 166
Euler, Leonhard, 133, 168
existence theorem, 151
existential quantifier, 54
existential statement, 151

factorial, 78
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false, 35
Fermat’s last theorem, 37
Fermat, Pierre de, 37
Fibonacci sequence, 193
floor of a number, 104
function, 224

range of, 225
bijective, 228, 269
codomain of, 225
composition of, 235
continuous, 256
derivative of, 257
differentiable, 257
domain of, 225
equality, 227
injective, 228
inverse, 238
notation, 227
one-to-one, 228
onto, 228
surjective, 228

function notation, 227
fundamental theorem of arithmetic, 192
fundamental theorem of calculus, viii

gamma function, 84
gcd, 116
general term, 261
geometric sequence, 195
geometric series, 268
Goldbach’s conjecture, 37, 58
Goldbach, Christian, 37
golden ratio, 195
graph, 189

cycle, 189
edges, 189
vertices, 189

greatest common divisor, 116

Hagy, Jessica, 33
half-open interval, 7
harmonic series, 268

if-and-only-if theorem, 147
image, 242
inclusion-exclusion formula, 93
index set, 26
indexed set, 25
induction, 180

strong, 187
inductive hypothesis, 182
inductive step, 182
infinite interval, 7
injection, 270
injective function, 228
integers, 3, 4

congruence, 131, 207
modulo n, 219

intersection of sets, 18
interval, 6
inverse of a function, 238
inverse relation, 239
irrational number, 139

lcm, 116
least common multiple, 116
lemma, 114
length of a list, 65
limit, 247

at infinity, 259
composition rule for, 257
constant function rule for, 251
constant multiple rule for, 252
difference rule for, 252
division rule for, 253
identity function rule for, 251
informal definition of, 246
multiplication rule for, 252
non-existence of, 249
precise definition of, 247
squeeze theorem for, 255
sum rule for, 252

limit comparison test, 268
list, 65

empty, 66
entries, 65
equal, 66
length, 65
non-repetitive, 69
order, 65
repetition, 69

logic, 34
contradiction, 137
equivalence, 51
inference, 63
quantifier, 54

existential, 54
universal, 54
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symbols, 48, 53
logical equivalence, 51
logical inference, 63

mean value theorem, 57
Mersenne prime, 170
modus ponens, 63
modus tollens, 63
multiple, 116
multiplication principle, 69
multiplicity, 96
multiset, 96

natural numbers, 4
necessary condition, 44
negation of a statement, 41
non-constructive proof, 154

one-to-one function, 228
onto function, 228
open interval, 7
open sentence, 36, 56
or, 40
ordered pair, 8
ordered triple, 10

P(n,k), 81, 83
Papadimitriou, Christos, 33
parity, 115
partial sum of a series, 265
partition, 216
Pascal’s triangle, 91
Pascal, Blaise, 91
perfect number, 165, 168
permutation, 80

k-permutation, 81, 83
pigeonhole principle, 104, 233

strong form, 104
Pisano, Leonardo, 193
power set, 15
power, Cartesian, 10
preimage, 242
prime number, 37, 116
proof

by cases, 124
by contradiction, 137
by induction, 180
by smallest counterexample, 191
by strong induction, 187

combinatorial, 108
constructive, 154
contrapositive, 128
direct, 113, 118
existence, 150
involving sets, 157
non-constructive, 154
uniqueness, 150, 153
within-a-proof, 143

proposition, 114, 118
Pythagorean theorem, 37

quadratic formula, 37
quantifier, 54
quotient, 30, 117

range of a function, 225
ratio test, 268
rational numbers, 6, 139
real numbers, 4
reflexive property of a relation, 205
relations, 201

between sets, 221
equivalence, 210

class, 211
inverse, 239
reflexive, 205
symmetric, 205
transitive, 205

remainder, 30, 117, 131
Russell’s paradox, 32
Russell, Bertrand, 32

sequence, 261
convergence of, 262
divergence of, 262
divergence to ∞, 264
general term, 261

series, 265
absolute convergence test for, 268
comparison test for, 268
convergence of, 266
divergence of, 266
divergence test for, 267
geometric, 268
harmonic, 268
limit comparison test for, 268
Maclaurin, 265
partial sum of, 265
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ratio test for, 268
set(s)

builder-notation, 5, 157
cardinalities of

comparison of, 280
equal, 269
unequal, 269

cardinality of, 3, 269
complement, 20
countable, 275
element of, 3
empty, 4
equal, 3
partition of, 216
subset of, 12
uncountable, 275

sigma notation, 25
size, see cardinality
statement, 35

biconditional, 46
conditional, 42

necessary, 44
sufficient, 44

converse, 46
equivalent, 149
existential, 151
negation, 59

string, 66
strong form of pigeonhole principle, 104
strong induction, 187
subset, 12
subtraction principle, 76
sufficient condition, 44
surjection, 270
surjective function, 228
symmetric property of a relation, 205

theorem, 113
existence, 151
if-and-only-if, 147

three-dimensional space, 10
transitive property of a relation, 205
tree, 189
triangle inequality, 245
triple, ordered, 10
true, 35
truth

table, 39
value, 39

uncountable set, 275
union of sets, 18
uniqueness proof, 153
unit circle, 14, 20
universal quantifier, 54
universal set, 20

variable, 36
vector space, 157
Venn diagram, 22

well-ordering principle, 30
Wiles, Andrew, 37
WLOG, 125

Zermelo-Fraenkel axioms, 32
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