Recitation 6

Created by Taylor Spangler, Adapted by Beau Christ

February 12, 2018

• Problem 2.2:31: Show that for A and B subsets of some universal set U,

$$A\subseteq B\Leftrightarrow \bar{B}\subseteq \bar{A}$$

$A \subseteq B \Leftrightarrow$		
$\forall x,$	$x\in A\to x\in B$	Definition of set inclusion
	$\Leftrightarrow x \notin A \lor x \in B \Leftrightarrow$	Implication rule
	$x \in B \lor x \notin A \Leftrightarrow$	Commutativity
	$x \notin B \to x \notin A \Leftrightarrow$	Implication rule
	$x\in \bar{B}\to x\in \bar{A}\Leftrightarrow$	Definition of set complement
$\bar{B} \subseteq \bar{A}$		by definition of a set inclusion
		QED

• 2.2.37 c: Show that if A is a subset of universal set U

$$A \oplus U = \bar{A}$$

 $\forall x, \quad x \in A \oplus U \Leftrightarrow$ $((x \in A) \lor (x \in U)) \land \neg ((x \in A) \land (x \in U)) \Leftrightarrow$ definition of symmetric difference \oplus on page 137 $((x \in A \cup U)) \land \neg ((x \in A \cap U)) \Leftrightarrow$ Definition set union, intersection $(x \in U) \land \neg (x \in A) \Leftrightarrow$ Domination, identity laws $\neg (x \in A) \land (x \in U) \Leftrightarrow$ Commutative law (logic) $(x \notin A) \land (x \in U) \Leftrightarrow$ Moving negation inward Definition of set absolute complement $x \in \bar{A}$ We showed that $\forall x, x \in A \oplus U \Leftrightarrow x \in \overline{A}$. Thus, $A \oplus U = \overline{A}$. \square

Suppose that A ∪ B = Ø, what can you conclude? Answer: we conclude that (A = Ø) ∧ (B = Ø). We formally prove that:

$$A \cup B = \emptyset \Leftrightarrow (A = \emptyset) \land (B = \emptyset)$$

First we consider prove the following statement:

 $A \cup B = \emptyset \to (A = \emptyset) \land (B = \emptyset)$

The proof is by contradiction. We assume the antecedent and negate the conclusion.

given

- $\begin{array}{ccc} (1) & A \cup B = \emptyset \\ (2) & (A \cup B) = \emptyset \end{array}$
- (2) $\neg((A = \emptyset) \land (B = \emptyset))$ negating the conclusion
- (3) $(A \neq \emptyset) \lor (B \neq \emptyset)$ moving negation inward
- (4) $(A \neq \emptyset) \lor (B \neq \emptyset)$ moving negation inward

We continue the proof using a proof by cases. Expression (4) states that, at least one of the following cases must hold and both can also hold:

- (a) There is at least an element in A, assume we have $x \in A$
- (b) There is at least an element in B, assume we have $y \in B$

Case (a) above: $x \in A \Rightarrow x \in \{A \cup B\}$ by definition of set union $A \cup B \neq \emptyset$, which contradicts the premise (1).

Case (b) can be shown to yield the same contradiction (exchanging A for B in the above case).

WLOG, we can conclude that

$$A \cup B = \emptyset \Rightarrow (A = \emptyset) \land (B = \emptyset)$$

Proving the implication in the opposite direction is straightforward by definition of set union:

$$(A = \emptyset) \land (B = \emptyset) \Rightarrow A \cup B = \emptyset$$

- Now let's look at functions, say we have the following function: $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = \lfloor \frac{x}{2} \rfloor$
 - First what does the graph of this function look like?
 - is f one-to-one (i.e., injective)? No, for example both 1 and 1.1 are assigned 0.
 - Is f onto \mathbb{R} (i.e., surjective)? No, the floor function only maps to integers, so only integers would be mapped to.
- Let $A = \{1, 2, 3, 4\}, B = \{a, b, c\}, \text{ and } C = \{2, 7, 10\}$

Consider the following two functions: $g : A \to B$ and $f : B \to C$ where $g : \{(1,b), (2,a), (3,a), (4,b)\}$ and $f : \{(a,10), (b,7), (c,2)\}$

- Find $f \circ g$. Answer: $\{(1,7), (2,10), (3,10), (4,7)\}$
- Find f^{-1} . Answer: $\{(10, a), (7, b), (2, c)\}$
- Is g^{-1} a function? Answer: No, because *a* has two pre-images but in a function, each element of the domain must be mapped to *exactly one* element in the co-domain.

- Find $f \circ f^{-1}$. Answer: {(10, 10), (7, 7), (2, 2)}
- Prove or disprove: $\forall x, y \in \mathbb{R}, \lfloor x \times y \rfloor \leq \lfloor x \rfloor \times \lfloor y \rfloor$
 - let x = 3.5, and y = 1.5. $\lfloor 3.5 \times 1.5 \rfloor = \lfloor 5.25 \rfloor = 5$, but $\lfloor 3.5 \rfloor \times \lfloor 1.5 \rfloor = 4$
 - $-5 \neq 4,$ therefore the statement does not hold. This is a proof with a counterexample.
- Prove or disprove for all $x, y \in \mathbb{R}, \lceil x \times y \rceil \leq \lceil x \rceil \times \lceil y \rceil$
 - Here the same example works $\lceil 3.5 \times 1.5 \rceil = \lceil 5.25 \rceil = 6$, but $\lceil 3.5 \rceil \times \lceil 1.5 \rceil = 4 \times 2 = 8$
- Show that the function $f : \mathbb{R} \to \mathbb{R}^+$ where f(x) = |x| is not invertible, but if the domain is restricted to the set of nonnegative real numbers (i.e., $f : \mathbb{R}^+ \to \mathbb{R}^+$), the resulting function is invertible.

For a function to be invertible, it must be bijective (i.e., a one-to-one correspondance). Therefore, we need to check if this is one-to-one (injective) and onto (surjective).

1. Injective: No, $f(x_1) \neq f(x_2) \Rightarrow |x_1| \neq |x_2| \Rightarrow \pm x_1 \neq \pm x_2$ Now, if the domain is restricted to the set of nonnegative real numbers. Is f(x) injective?

 $f(x_1) = f(x_2) \Rightarrow |x_1| = |x_2| \Rightarrow x_1 = x_2$. Therefore, on the restricted domain f(x) is injective.

- 2. Surjective: Every element in codomain (\mathbb{R}^+) is a positive number, then for $\forall b \in codomain(f) \exists a \in \mathbb{R}b = |a|$. Thus, b has necessarily a preimage. Thus, the range and the codomain are equal, we can conclude that f is surjective.
- 3. Bijective: No, because it is not injective.

However, on the restricted domain, it is bijective because it is both injective and surjective.

- 4. Invertible: Again, only on the restricted domain.
- Now a quick review of membership, determine whether these statements are true or false:
 - 1. $\{a, b\} \subseteq \{\{a, b\}\}$ False, because neither a nor b is an element in $\{\{a, b\}\}$.
 - 2. $\{a, b\} \in \{\{a, b\}\}$

True, because there the element $\{a, b\}$ is in $\{\{a, b\}\}$

3. $\{a, b, c\} \subset \{a, b, c\}$

False, because the sets are equal, and the statement is wondering if it is a strict subset.

- 4. $\{a, b, c\} \subseteq \{a, b, c\}$ True, because the sets are equal.
- 5. {} $\subseteq \{a, b, c\}$ True, because the empty set $\emptyset = \{\}$ is a subset of all sets.
- 6. $\emptyset \in \{a, b, c\}$ False, because the element \emptyset is not in the set $\{a, b, c\}$.
- 7. $\{a\} \subset \{a, a\}$ False, the set $\{a, a\}$ is really $\{a\}$ because, in a set, elements are *not* repeated. Therefore, $\{a\} \subset \{a, a\}$ is *false* because $\{a\} \not\subset \{a\}$ (Note that $\{a\} \subseteq \{a\}$ though).