Recitation 11: Asymptotics and Summations

Created by Taylor Spangler, Adapted by Beau Christ

April 15, 2018

- Problem 3.2:25: Give a good big- O estimate for the following functions:
$-\left(n^{2}+8\right)(n+1)=n^{3}+n^{2}+8 n+1$. We can find n_{0}, c to prove that it is $O\left(n^{3}\right)$
$-\left(n \log n+n^{2}\right)\left(n^{3}+1\right)=n^{5}+n^{4} \log n+n^{2}+n \log n$, again easily this is $O\left(n^{5}\right)$, perhaps using the limit method.
$-\left(n!+2^{n}\right)\left(n^{3}+\log \left(n^{2}+1\right)\right)=n!\cdot n^{3}+n!\cdot \log \left(n^{2}+1\right)+2^{n} \cdot n^{3}+2^{n} \cdot \log \left(n^{2}+1\right)$. Well, this one is a little bit trickier. It is actually $O\left(n!\cdot n^{3}\right)$, why is it not $O(n!)$ or 2^{n} ?
- Problem 3.2:31: Show that

$$
f(x) \in \Theta(g(x)) \Leftrightarrow f(x) \in O(g(x)) \wedge g(x) \in O(f(x))
$$

1. \Rightarrow First we begin with a definition: $f(x) \in \Theta(g(x))$ if $f(x) \in O(g(x))$ and $f(x) \in \Omega(g(x))$

- So we can see that $\exists c_{1}, c_{2} \in(R)^{+}$such that $f(x) \leq c_{1} \cdot g(x)$. We also know that $f(x) \geq c_{2} \cdot g(x)$.
- Reversing the second inequality we get $g(x) \leq c \cdot f(x)$ where $c=\frac{1}{c_{2}}$.
- So then we have $f(x) \in O(g(x))$ and $g(x) \in O(f(x))$
$2 . \Leftarrow$
- Suppose $f(x) \in O(g(x))$ and $g(x) \in O(f(x))$.
- Then we know that $\exists c_{1}, c_{2}$ such that $f(x) \leq c_{1} \cdot g(x)$ and $g(x) \leq c_{2} \cdot f(x)$.
- so $\frac{1}{c_{1}} g(x) \leq f(x) \leq c_{2} \cdot g(x)$.
- But this is the definition of Θ, therefore $f(x) \in \Theta(g(x))$.
- What is the tightest bound we can form here:

1. $x^{2}+3 x+5 \in \Delta\left(x^{3}\right):$ big-O
2. $2^{n} \log (6)+n^{2} \in \Delta\left(2^{n}\right): \Theta$
3. $2^{n} \cdot n!+2^{n} \log (n) \in \Delta\left(2^{n}\right): \Omega$

- To prove the first one of the previous questions, we use the limit method We have:

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+3 x+4}{x^{3}}=\lim _{x \rightarrow \infty} \frac{2 x+3}{3 x^{2}}=\lim _{x \rightarrow \infty} \frac{2}{6 x}=0
$$

Therefore we can conclude that x^{3} grows much faster, and so we get that $x^{2}+3 x+4 \in$ $O\left(x^{3}\right)$

- Next up Sequences: Can we name the first 4 terms of the following sequence $\left\{2^{n}+\right.$ $1\}_{n=0}^{\infty}$?

1. $a_{0}=2^{0}+1=2$
2. $a_{1}=2^{1}+1=3$
3. $a_{2}=2^{2}+1=5$
4. $a_{3}=2^{3}+1=9$

- Now compute the following sum $\sum_{i=1}^{5} 6$ We have:

$$
\sum_{i=1}^{5} 6=6 \sum_{i=1}^{5} 1=6 \cdot(5-1+1)=6 \cdot 5=30
$$

- How about the following geometric $\sum_{i=1}^{8} 3 \cdot 2^{i}$
- We can recognize that this expression is the sum of a geometric progression (i.e., geometric series), which is in general given as $\sum_{i=0}^{n} a r^{i}$, except that here we start at 1 instead of zero, so we can simply compute it by subtracting the first term from the sum.
- The formula for computing this is $\frac{a \cdot r^{n+1}-a}{r-1}$, here $r=2$ and $a=3$
- Using the formula we can get $\frac{3 \cdot 2^{9}-3}{1}=3 \cdot 512-3=1533$
- However, remember we have to subtract the first term, so $1533-3 \cdot 2^{0}=1530$.

