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Nota7on	and	LaTeX	
•  A	set	is	a	collec7on	of	objects.			
•  For	example:	

–  S	=	{s1,s2,s3,…,sn}	is	a	finite	set	of	n	elements		
–  S	=	{s1,s2,s3,…}	is	a	infinite	set	of	elements.	

•  s1		∈	S		denotes	that	the	object	s1	is	an	element	of	the	set	S	
•  s1		∉	S		denotes	that	the	object	s1	is	not	an	element	of	the	set	

S	
•  LaTex	

–  $S=\{s_1,s_2,s_3,	\ldots,s_n\}$	
–  $s_i	\in	S$	
–  $si	\no7n	S$	
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Sets	of	Numbers	
•  Using	the	package:	\usepackage{amssymb}	

–  Set	of	natural	numbers:	$\mathbb{N}$:		may	or	may	not	include	0	(by	default,	it	does)		
–  Set	of	integer	numbers:	$\mathbb{Z}$	
–  Set	of	ra7onal	numbers:	$\mathbb{Q}$	
–  Set	of	real	numbers:	$\mathbb{R}$	
–  Set	of	complex	numbers:	$\mathbb{C}$	



Sets	CSCE	235	 4	

Outline	
•  Defini7ons:	set,	element	
•  Terminology	and	nota7on	

•  Set	equal,	mul7-set,	bag,	set	builder,	intension,	extension,	Venn	Diagram	(representa7on),	empty	
set,	singleton	set,	subset,	proper	subset,	finite/infinite	set,	cardinality	

•  Proving	equivalences	
•  Power	set	
•  Tuples	(ordered	pair)	
•  Cartesian	Product	(a.k.a.	Cross	product),	rela7on	
•  Quan7fiers	
•  Set	Opera7ons	(union,	intersec7on,	complement,	difference),	Disjoint	sets	
•  Set	equivalences	(cheat	sheet	or	Table	1,	page	130)	

•  Inclusion	in	both	direc7ons	
•  	Using	membership	tables	

•  Generalized	Unions	and	Intersec7on	
•  Computer	Representa7on	of	Sets	
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Introduc7on	(1)		

•  We	have	already	implicitly	dealt	with	sets	
–  Integers	(Z),	ra7onals	(Q),	naturals	(N),	reals	(R),	etc.	

•  We	will	develop	more	fully		
–  The	defini7ons	of	sets		
–  The	proper7es		of	sets	
–  The	opera7ons	on	sets	

•  Defini'on:		A	set	is	an	unordered	collec7on	of	
(unique)	objects	

•  Sets	are	fundamental	discrete	structures	and	for	the	
basis	of	more	complex	discrete	structures	like	graphs	

	



Sets	CSCE	235	 6	

Introduc7on	(2)		

•  Defini'on:	The	objects	in	a	set	are	called	
elements	or	members	of	a	set.	A	set	is	said	to	
contain	its	elements	

•  Nota7on,	for	a	set	A:	
– x	∈	A:	x	is	an	element	of	A																																	$\in$	
– x	∉	A:	x	is	not	an	element	of	A																				$\no7n$	
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Terminology	(1)	

•  Defini'on:	Two	sets,	A	and	B,	are	equal	is	they	
contain	the	same	elements.		We	write	A=B.	

•  Example:	
–  {2,3,5,7}={3,2,7,5},	because	a	set	is	unordered	
– Also,	{2,3,5,7}={2,2,3,5,3,7}	because	a	set	contains	
unique	elements	

– However,	{2,3,5,7}	≠{2,3}																																$\neq$	
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Terminology	(2)	

•  A	mul7-set	is	a	set	where	you	specify	the	number	of	
occurrences	of	each	element:	{m1⋅a1,m2⋅a2,…,mr⋅ar}	is	
a	set	where		
–  m1	occurs	a1	7mes		
–  m2	occurs	a2	7mes	
– …	
–  mr	occurs	ar	7mes	

•  In	Databases,	we	dis7nguish	
–  A	set:	elements	cannot	be	repeated	
–  A	bag:	elements	can	be	repeated	
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Terminology	(3)	

•  The	set-builder	nota7on	
S={	x	|	(x∈Z)	∧	(x=2k)	for	some	k∈Z}	

	reads:	S	is	the	set	that	contains	all	x	such	that	x	is	an	
integer	and	x	is	even	

•  A	set	is	defined	in	intension	when	you	give	its	set-
builder	nota7on	

S={	x	|	(x∈Z)	∧	(0≤x≤8)	∧	(x=2k)	for	some	k	∈	Z	}	

•  A	set	is	defined	in	extension	when	you	enumerate	all	
the	elements:	

S={0,2,4,6,8}	
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Venn	Diagram:	Example	

•  A	set	can	be	represented	graphically	using	a	
Venn	Diagram	

	 U

a

x y

z
A

C

B
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More	Terminology	and	Nota7on	(1)	

•  A	set	that	has	no	elements	is	called	the	empty	set	or	
null	set	and	is	denoted	∅																										$\emptyset$	

•  A	set	that	has	one	element	is	called	a	singleton	set.			
–  For	example:	{a},	with	brackets,	is	a	singleton	set	
–  a,	without	brackets,	is	an	element	of	the	set	{a}	

•  Note	the	subtlety	in	∅	≠	{∅}		
–  The	lep-hand	side	is	the	empty	set	
–  The	right	hand-side	is	a	singleton	set,	and	a	set	containing	
a	set	
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More	Terminology	and	Nota7on	(2)	

•  Defini'on:	A	is	said	to	be	a	subset	of	B,	and	
we	write	A	⊆	B,	if	and	only	if	every	element	of	
A	is	also	an	element	of	B																	$\subseteq$	

•  That	is,	we	have	the	equivalence:	
A	⊆	B		⇔	∀	x	(x	∈	A	⇒	x	∈	B)	



Sets	CSCE	235	 13	

More	Terminology	and	Nota7on	(3)	

•  Theorem:	For	any	set	S													Theorem	1,	page	120	
– ∅	⊆	S	and	
– S	⊆	S	

•  The	proof	is	in	the	book,	an	excellent	example	
of	a	vacuous	proof	
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More	Terminology	and	Nota7on	(4)	

•  Defini'on:		A	set	A	that	is	a	subset	of	a	set	B	is	
called	a	proper	subset	if	A	≠	B.			

•  That	is	there	is	an	element	x∈B	such	that	x∉A	
•  We	write:	A	⊂	B,	A	⊂	B													
•  In	LaTex:	$\subset$,	$\subsetneq$	
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More	Terminology	and	Nota7on	(5)	

•  Sets	can	be	elements	of	other	sets	
•  Examples	

– S1	=	{∅,{a},{b},{a,b},c}	
– S2={{1},{2,4,8},{3},{6},4,5,6}	
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More	Terminology	and	Nota7on	(6)	

•  Defini'on:	If	there	are	exactly	n	dis7nct	
elements	in	a	set	S,	with	n	a	nonnega7ve	
integer,	we	say	that:	
– S	is	a	finite	set,	and	
– The	cardinality	of	S	is	n.		Nota7on:	|S|	=	n.	

•  Defini'on:	A	set	that	is	not	finite	is	said	to	be	
infinite	
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More	Terminology	and	Nota7on	(7)	

•  Examples	
– Let	B	=	{x	|	(x≤100)	∧	(x	is	prime)},	the	cardinality	
of	B	is	|B|=25	because	there	are	25	primes	less	
than	or	equal	to	100.	

– The	cardinality	of	the	empty	set	is	|∅|=0	
– The	sets	N,	Z,	Q,	R	are	all	infinite	
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Proving	Equivalence	(1)	
•  You	may	be	asked	to	show	that	a	set	is		

–  a	subset	of,		
–  proper	subset	of,	or		
–  equal	to	another	set.	

•  To	prove	that	A	is	a	subset	of	B,	use	the	equivalence	discussed	
earlier	A	⊆	B		⇔	∀x(x∈A	⇒	x∈B)	
–  To	prove	that	A	⊆	B	it	is	enough	to	show	that	for	an	arbitrary	

(nonspecific)	element	x,	x∈A	implies	that	x	is	also	in	B.	
–  Any	proof	method	can	be	used.	

•  	To	prove	that	A	is	a	proper	subset	of	B,	you	must	prove	
–  A	is	a	subset	of	B	and	
–  ∃x	(x∈B)	∧	(x∉A)	
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Proving	Equivalence	(2)	

•  Finally	to	show	that	two	sets	are	equal,	it	is	sufficient	
to	show	independently	(much	like	a	bicondi7onal)	
that		
–  A	⊆	B	and		
–  B	⊆	A	

•  Logically	speaking,	you	must	show	the	following	
quan7fied	statements:	

(∀x	(x∈A	⇒	x∈B))	∧	(∀x	(x∈B	⇒	x∈A))	
	we	will	see	an	example	later..	
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Power	Set	(1)	

•  Defini'on:	The	power	set	of	a	set	S,	denoted	
P(S),	is	the	set	of	all	subsets	of	S.	

•  Examples	
–  Let	A={a,b,c},	P(A)={∅,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}	
–  Let	A={{a,b},c},	P(A)={∅,{{a,b}},{c},{{a,b},c}}	

•  Note:	the	empty	set	∅	and	the	set	itself	are	
always	elements	of	the	power	set.		This	fact	
follows	from	Theorem	1	(Rosen,	page	120).	
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Power	Set	(2)	

•  The	power	set	is	a	fundamental	combinatorial	
object	useful	when	considering	all	possible	
combina7ons	of	elements	of	a	set	

•  Fact:	Let	S	be	a	set	such	that	|S|=n,	then	
|P(S)|	=	2n	
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Outline	
•  Defini7ons:	set,	element	
•  Terminology	and	nota7on	

•  Set	equal,	mul7-set,	bag,	set	builder,	intension,	extension,	Venn	Diagram	(representa7on),	
empty	set,	singleton	set,	subset,	proper	subset,	finite/infinite	set,	cardinality	

•  Proving	equivalences	
•  Power	set	
•  Tuples	(ordered	pair)	
•  Cartesian	Product	(a.k.a.	Cross	product),	rela'on	
•  Quan'fiers	
•  Set	Opera7ons	(union,	intersec7on,	complement,	difference),	Disjoint	sets	
•  Set	equivalences	(cheat	sheet	or	Table	1,	page	130)	

•  Inclusion	in	both	direc7ons	
•  	Using	membership	tables	

•  Generalized	Unions	and	Intersec7on	
•  Computer	Representa7on	of	Sets	
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Tuples	(1)	

•  Some7mes	we	need	to	consider	ordered	
collec7ons	of	objects	

•  Defini'on:	The	ordered	n-tuple	(a1,a2,…,an)	is	
the	ordered	collec7on	with	the	element	ai	
being	the	i-th	element	for	i=1,2,…,n	

•  Two	ordered	n-tuples	(a1,a2,…,an)	and	(b1,b2,
…,bn)	are	equal	iff	for	every	i=1,2,…,n	we	have	
ai=bi	(a1,a2,…,an)	

•  A	2-tuple	(n=2)	is	called	an	ordered	pair	
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Cartesian	Product	(1)	
•  Defini'on:	Let	A	and	B	be	two	sets.		The	Cartesian	product	of	

A	and	B,	denoted	AxB,	is	the	set	of	all	ordered	pairs	(a,b)	
where	a∈A	and	b∈B	

AxB	=	{	(a,b)	|	(a∈A)	∧	(b	∈	B)	}	
•  The	Cartesian	product	is	also	known	as	the	cross	product	
•  Defini'on:	A	subset	of	a	Cartesian	product,	R	⊆	AxB	is	called	a	

rela7on.		We	will	talk	more	about	rela7ons	in	the	next	set	of	
slides	

•  Note:	AxB	≠	BxA	unless	A=∅	or	B=∅	or	A=B.		Find	a	counter	
example	to	prove	this.	
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Cartesian	Product	(2)	

•  Cartesian	Products	can	be	generalized	for	any	
n-tuple	

•  Defini'on:	The	Cartesian	product	of	n	sets,	
A1,A2,	…,	An,	denoted	A1×A2×…	×An,	is	
A1×A2×…	×An	={	(a1,a2,…,an)	|	ai	∈	Ai	for	i=1,2,…,n}	

	
	
	
	

\prod\limits_{i=1}^n	A_i	=	A_1	\7mes	A_2	\7mes	\ldots	\7mes	A_n	

nY

i=1

Ai = A1 ⇥A2 ⇥ . . .⇥An
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Nota7on	with	Quan7fiers	

•  Whenever	we	wrote	∃xP(x)	or	∀xP(x),	we	specified	
the	universe	of	discourse	using	explicit	English	
language	

•  Now	we	can	simplify	things	using	set	nota7on!	
•  Example	

–  ∀	x	∈	R	(x2≥0)	
–  ∃		x	∈	Z (x2=1)	
–  Also	mixing	quan7fiers:	

∀a,b,c	∈	R	∃	x	∈	C (ax2+bx+c=0)	
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Outline	
•  Defini7ons:	set,	element	
•  Terminology	and	nota7on	

•  Set	equal,	mul7-set,	bag,	set	builder,	intension,	extension,	Venn	Diagram	(representa7on),	empty	
set,	singleton	set,	subset,	proper	subset,	finite/infinite	set,	cardinality	

•  Proving	equivalences	
•  Power	set	
•  Tuples	(ordered	pair)	
•  Cartesian	Product	(a.k.a.	Cross	product),	rela7on	
•  Quan7fiers	
•  Set	Opera7ons	(union,	intersec7on,	complement,	difference),	Disjoint	sets	
•  Set	equivalences	(cheat	sheet	or	Table	1,	page	130)	

•  Inclusion	in	both	direc7ons	
•  	Using	membership	tables	

•  Generalized	Unions	and	Intersec7on	
•  Computer	Representa7on	of	Sets	
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Set	Opera7ons	
•  Arithme7c	operators	(+,-,	×	,÷)	can	be	used	on	
pairs	of	numbers	to	give	us	new	numbers	

•  Similarly,	set	operators	exist	and	act	on	two	sets	
to	give	us	new	sets	
–  Union																																																																																		$\cup$	
–  Intersec7on																																																																								$\cap$	
–  Set	difference																																																										$\setminus$	
–  Set	complement																																																			$\overline{S}$	
–  Generalized	union																																																							$\bigcup$	
–  Generalized	intersec7on																																												$\bigcap$	
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Set	Operators:	Union	

•  Defini'on:	The	union	of	two	sets	A	and	B	is	
the	set	that	contains	all	elements	in	A,	B,	or	
both.		We	write:	

A∪B	=	{	x	|	(x	∈	A)	∨	(x	∈	B)	}	

U
 	A B
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Set	Operators:	Intersec7on	

•  Defini'on:	The	intersec7on	of	two	sets	A	and	
B	is	the	set	that	contains	all	elements	that	are	
element	of	both	A	and	B.		We	write:	

A	∩	B	=	{	x	|	(x	∈	A)	∧	(x	∈	B)	}	
	
U

A B
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Disjoint	Sets	

•  Defini'on:	Two	sets	are	said	to	be	disjoint	if	
their	intersec7on	is	the	empty	set:	A	∩	B	=	∅	

U
A B



Sets	CSCE	235	 32	

Set	Difference	

•  Defini'on:	The	difference	of	two	sets	A	and	B,	
denoted	A\B	($\setminus$)	or	A−B,	is	the	set	
containing	those	elements	that	are	in	A	but	
not	in	B	

U
A B
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Set	Complement	

•  Defini'on:	The	complement	of	a	set	A,	
denoted	A	($\bar$),	consists	of	all	elements	not	
in	A.		That	is	the	difference	of	the	universal	set	
and	U:	U\A	

A=	AC	=	{x	|	x	∉	A	}	

U A A
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Set	Complement:	Absolute	&	Rela7ve	

•  Given	the	Universe	U,	and	A,B	⊂	U.	
•  The	(absolute)	complement	of	A	is	A=U\A	
•  The	(rela7ve)	complement	of	A	in	B	is	B\A		

U
AA

U
BA
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Set	Idendi7es	
Let’s	take	a	quick	look	at	
this	Cheat	Sheet	or	at	
Table	1	on	page	130	in	
your	textbook	
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Proving	Set	Equivalences	

•  Recall	that	to	prove	such	iden7ty,	we	must	show	
that:	
1.  The	lep-hand	side	is	a	subset	of	the	right-hand	side	
2.  The	right-hand	side	is	a	subset	of	the	lep-hand	side	
3.  Then	conclude	that	the	two	sides	are	thus	equal	

•  The	book	proves	several	of	the	standard	set	
iden77es	

•  We	will	give	a	couple	of	different	examples	here	
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Proving	Set	Equivalences:	Example	A	(1)	

•  Let		
– A={x|x	is	even}		
– B={x|x	is	a	mul7ple	of	3}	
– C={x|x	is	a	mul7ple	of	6}	

•  Show	that	A∩B=C	
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Proving	Set	Equivalences:	Example	A	(2)	

•  A∩B	⊆	C:		∀	x	∈	A∩B		
⇒ 	x	is	a	mul7ple	of	2	and	x	is	a	mul7ple	of	3	
⇒ 	we	can	write	x=2.3.k	for	some	integer	k	
⇒ 	x=6k	for	some	integer	k	⇒	x	is	a	mul7ple	of	6		
⇒ 	x	∈	C	

•  C	⊆A∩B:	∀	x∈	C	
⇒ 	x	is	a	mul7ple	of	6	⇒	x=6k	for	some	integer	k	
⇒ 	x=2(3k)=3(2k)	⇒	x	is	a	mul7ple	of	2	and	of	3	
⇒ 	x	∈	A∩B	
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Proving	Set	Equivalences:	Example	B	(1)	

•  An	alterna7ve	prove	is	to	use	membership	
tables	where	an	entry	is	
– 1	if	a	chosen	(but	fixed)	element	is	in	the	set	
– 0	otherwise	

•  Example:	Show	that	
A	∩	B	∩	C	=	A	∪	B	∪	C	
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Proving	Set	Equivalences:	Example	B	(2)	
A	B	 C	 A∩B∩C	 A∩B∩C	 A	 B	 C	 A∪B∪C	

0	 0	 0	 0	 1	 1	 1	 1	 1	

0	 0	 1	 0	 1	 1	 1	 0	 1	

0	 1	 0	 0	 1	 1	 0	 1	 1	

0	 1	 1	 0	 1	 1	 0	 0	 1	

1	 0	 0	 0	 1	 0	 1	 1	 1	

1	 0	 1	 0	 1	 0	 1	 0	 1	

1	 1	 0	 0	 1	 0	 0	 1	 1	

1	 1	 1	 1	 0	 0	 0	 0	 0	

•  1	under	a	set	indicates	that	“an	element	is	in	the	set”	
•  If	the	columns	are	equivalent,	we	can	conclude	that	indeed	

the	two	sets	are	equal	
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Generalizing	Set	Opera7ons:	Union	and	Intersec7on	

•  In	the	previous	example,	we	showed	De	
Morgan’s	Law	generalized	to	unions	involving	
3	sets	

•  In	fact,	De	Morgan’s	Laws	hold	for	any	finite	
set	of	sets	

•  Moreover,	we	can	generalize	set	opera7ons	
union	and	intersec7on	in	a	straighyorward	
manner	to	any	finite	number	of	sets	
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Generalized	Union	

•  Defini'on:	The	union	of	a	collec7on	of	sets	is	
the	set	that	contains	those	elements	that	are	
members	of	at	least	one	set	in	the	collec7on	

	
	
	

$\bigcup_{i=1}^{n}A_i=A_1\cup	A_2	\cup\ldots\cup		A_n$	

n[

i=1

Ai = A1 [A2 [ . . . [An
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Generalized	Intersec7on	

•  Defini'on:	The	intersec7on	of	a	collec7on	of	
sets	is	the	set	that	contains	those	elements	
that	are	members	of	every	set	in	the	collec7on	

LaTex:	$\bigcap_{i=1}^{n}A_i=A_1\cap	A_2	\cap\ldots\cap		A_n$	

n\

i=1

Ai = A1 \A2 \ . . . \An
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Computer	Representa7on	of	Sets	(1)	

•  There	really	aren’t	ways	to	represent	infinite	sets	by	a	
computer	since	a	computer	has	a	finite	amount	of	memory	

•  If	we	assume	that	the	universal	set	U	is	finite,	then	we	can	
easily	and	effec7vely	represent	sets	by	bit	vectors	

•  Specifically,	we	force	an	ordering	on	the	objects,	say:		
U={a1,	a2,…,an}	

•  For	a	set	A⊆U,	a	bit	vector	can	be	defined	as,	for	i=1,2,…,n	
–  bi=0	if	ai	∉	A	
–  bi=1	if	ai	∈	A	
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Computer	Representa7on	of	Sets	(2)	

•  Examples	
–  Let	U={0,1,2,3,4,5,6,7}	and	A={0,1,6,7}	
–  The	bit	vector	represen7ng	A	is:	1100	0011	
–  How	is	the	empty	set	represented?	
–  How	is	U	represented?	

•  Set	opera7ons	become	trivial	when	sets	are	
represented	by	bit	vectors	
–  Union	is	obtained	by	making	the	bit-wise	OR	
–  Intersec7on	is	obtained	by	making	the	bit-wise	AND	
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Computer	Representa7on	of	Sets	(3)	

•  Let	U={0,1,2,3,4,5,6,7},	A={0,1,6,7},	B={0,4,5}	
•  What	is	the	bit-vector	representa7on	of	B?	
•  Compute,	bit-wise,	the	bit-vector	
representa7on	of	A∩B	

•  Compute,	bit-wise,	the	bit-vector	
representa7on	of	A∪B	
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Programming	Ques7on	

•  Using	bit	vector,	we	can	represent	sets	of	
cardinality	equal	to	the	size	of	the	vector	

•  What	if	we	want	to	represent	an	arbitrary	
sized	set	in	a	computer	(i.e.,	that	we	do	not	
know	a	priori	the	size	of	the	set)?	

•  What	data	structure	could	we	use?	


