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Recursive Algorithms
• A recursive algorithm is one in which objects are defined in 

terms of other objects of the same type
• Advantages:

– Simplicity of code
– Easy to understand

• Disadvantages
– Memory
– Speed
– Possibly redundant work

• Tail recursion offers a solution to the memory problem, but 
really, do we need recursion?



RecursionCSCE 235 4

Recursive Algorithms: Analysis

• We have already discussed how to analyze the 
running time of (iterative) algorithms

• To analyze recursive algorithms, we require 
more sophisticated techniques

• Specifically, we study how to define & solve 
recurrence relations
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Motivating Examples: Factorial
• Recall the factorial function:

• Consider the following (recursive) algorithm for computing n!
Factorial

Input:  nÎN
Output: n!
1. If (n=1) or (n=0) 
2. Then Return 1
3. Else Return n ´ Factorial(n-1)
4. Endif
5. End

1 if n= 1
n! =

n.(n-1) if n > 1
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Factorial: Analysis

How many multiplications M(x) does factorial perform?

• When n=1 we don’t perform any

• Otherwise, we perform one…

• … plus how ever many multiplications we perform in the 
recursive call Factorial(n-1)

• The number of multiplications can be expressed as a formula 

(similar to the definition of n!

M(0) = 0

M(n) = 1 + M(n-1)

• This relation is known as a recurrence relation
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Recurrence Relations

• Definition: A recurrence relation for a sequence 
{an} is an equation that expresses an in terms of one 
or more of the previous terms in the sequence:

a0, a1, a2, …, an-1

for all integers n³n0 where n0 is a nonnegative 
integer.

• A sequence is called a solution of a recurrence if its 
terms satisfy the recurrence relation
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Recurrence Relations: Solutions

• Consider the recurrence relation an=2an-1-an-2

• It has the following sequences an as solutions
– an= 3n
– an= n+1
– an=5

• The initial conditions + recurrence relation 
uniquely determine the sequence
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Recurrence Relations: Example

• The Fibonacci numbers are defined by the recurrence
F(n) = F(n-1) +F(n-2)
F(1) = 1
F(0) = 1

• The solution to the Fibonacci recurrence is

(The solution is derived in your textbook.)

fn =
1p
(5)

(
(1 +

p
(5)

2
)n � 1p

(5)
(
(1�

p
(5)

2
)n
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Recurrence Relations: General Form

• More generally, recurrences can have the form
T(n) = aT(n-b) + f(n), T(d) = c

or
T(n) = aT(n/b) + f(n), T(d) = c

• Note that it may be necessary to define several T(d), 
which are the initial conditions
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Recurrence Relations: Initial Conditions

• The initial conditions specify the value of the first few necessary terms in 
the sequence

• In the Fibonacci numbers, we needed two initial conditions: 
F(0)=F(1)=1

because F(n) is defined by the two previous terms in the sequence
• Initial conditions are also known as boundary conditions (as opposed to 

general conditions)
• From now on, we will use the subscript notation, so the Fibonacci 

numbers are:
fn =  fn-1 + fn-2

f1 = 1
f0 =  1
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Recurrence Relations: Terms
• Recurrence relations have two parts: 

– recursive terms and 
– non-recursive terms

T(n) = 2T(n-2) + n2 -10
• Recursive terms come from when an algorithms calls itself
• Non-recursive terms correspond to the non-recursive cost of 

the algorithm: work the algorithm performs within a function
• We will see examples later.  First, we need to know how to 

solve recurrences.
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Solving Recurrences

• There are several methods for solving 
recurrences
– Characteristic Equations
– Forward Substitution
– Backward Substitution
– Recurrence Trees
– … Maple!
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Linear Homogeneous Recurrences
• Definition: A linear homogeneous recurrence relation of 

degree k with constant coefficients is a recurrence relation of 
the form

an = c1an-1 + c2an-2 + … + ckan-k
with c1, c2, …, ckÎR, ck¹ 0.

• Linear: RHS is a sum of multiples of previous terms of the 
sequence (linear combination of previous terms).  The 
coefficients are all constants (not functions depending on n)

• Homogeneous: no terms occur that are not multiples of aj’s
• Degree k: an is expressed in terms of (n-k)th term of the 

sequence
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Linear Homogeneous Recurrences: Examples

• The Fibonacci sequence is a linear homogeneous 
recurrence relation

• So are the following relations:
an = 4an-1 + 5an-2 + 7an-3

an = 2an-2 + 4an-4 + 8an-8

How many initial conditions do we need to specify 
for these relations?

• So, how do solve linear homogeneous recurrences?
As many as the degree k: k = 3, 8 respectively



RecursionCSCE 235 18

Solving Linear Homogeneous Recurrences

• We want a solution of the form an=rn where r is some real constant
• We observe that an=rn is a solution to a linear homogeneous recurrence if 

and only if 
rn = c1rn-1 + c2rn-2 + … + ckrn-k

• We can now divide both sides by rn-k, collect terms and we get a k-degree 
polynomial

rk - c1rk-1 - c2rk-2 - … - ck = 0
• This equation is called the characteristic equation of the recurrence 

relation
• The roots of this polynomial are called the characteristics roots of the 

recurrence relation. They can be used to find the solutions (if they exist) to 
the recurrence relation.  We will consider several cases.
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Second Order Linear Homogeneous Recurrences

• A second order (k=2) linear homogeneous recurrence is a 
recurrence of the form

an = c1an-1+ c2an-2

• Theorem (Theorem 1, page 462): Let c1, c2ÎR and suppose 
that r2-c1r-c2=0 is the characteristic polynomial of a 2nd order 
linear homogeneous recurrence that has two distinct* roots 
r1,r2, then {an} is a solution if and only if 

an= a1r1
n + a2r2

n

for n=0,1,2,… where a1, a2 are constants dependent upon the 
initial conditions

* We discuss single root later
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Second Order Linear Homogeneous 
Recurrences: Example A (1)

• Find a solution to

an = 5an-1 - 6an-2

with initial conditions a0=1, a1=4

• The characteristic equation is

r2 - 5r + 6 = 0

• The roots are r1=2, r2=3

r2 - 5r + 6 = (r-2)(r-3)

• Using the 2nd order theorem we have a solution

an = a12n + a23n
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Second Order Linear Homogeneous 
Recurrences: Example A (2)

• Given the solution
an = a12n + a23n 

• We plug in the two initial conditions to get a system 
of linear equations

a0 = a120 + a230

a1 = a121 + a231

• Thus:
1 = a1 + a2

4 = 2a1 + 3a2
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Second Order Linear Homogeneous 
Recurrences: Example A (3)

1 = a1 + a2

4 = 2a1 + 3a2

• Solving for a1 = (1 - a2), we get
4 = 2a1 + 3a2

4 = 2(1-a2) + 3a2

4 = 2 - 2a2 + 3a2

2 = a2

• Substituting for a1: a1 = -1
• Putting it back together, we have

an = a12n + a23n

an = -1×2n + 2×3n
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Second Order Linear Homogeneous 

Recurrences: Example B (1)

• Solve the recurrence

an = -2an-1 + 15an-2

with initial conditions a0= 0, a1= 1

• If we did it right, we have

an = 1/8 (3)n - 1/8 (-5)n

• To check ourselves, we verify a0, a1, we compute a3 with both 

equations, then maybe a4, etc.
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Single Root Case

• We can apply the theorem if the roots are distincts, i.e. r1¹r2

• If the roots are not distinct (r1=r2), we say that one 

characteristic root has multiplicity two.  In this case, we apply 

a different theorem

• Theorem (Theorem2, page 464)

Let c1, c2ÎR and suppose that r2 - c1r - c2 = 0 has only one 

distinct root, r0, then {an} is a solution to an = c1an-1+ c2an-2 if 

and only if 

an= a1r0
n + a2nr0

n

for n=0,1,2,… where a1, a2 are constants depending upon the 

initial conditions
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Single Root Case: Example (1)

• What is the solution to the recurrence relation
an = 8an-1 - 16an-2

with initial conditions a0= 1, a1= 7?
• The characteristic equation is:

r2 – 8r + 16 = 0
• Factoring gives us:

r2 – 8r + 16 = (r-4)(r-4), so r0=4

• Applying the theorem we have the solution:
an= a1(4)n + a2n(4)n
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Single Root Case: Example (2)

• Given:          an= a1(4)n + a2n(4)n

• Using the initial conditions, we get:
a0= 1 = a1(4)0 + a20(4)0 = a1

a1= 7 = a1(4) + a21(4)1 = 4a1 + 4a2

• Thus: = a1 = 1, a2 = 3/4

• The solution is 
an= (4)n + ¾ n (4)n

• Always check yourself…
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General Linear Homogeneous Recurrences

• There is a straightforward generalization of these cases to 
higher-order linear homogeneous recurrences

• Essentially, we simply define higher degree polynomials
• The roots of these polynomials lead to a general solution
• The general solution contains coefficients that depend only on 

the initial conditions
• In the general case, the coefficients form a system of linear 

equalities
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General Linear Homogeneous Recurrences: 
Distinct Roots

• Theorem (Theorem 3, page 465)
Let c1,c2,..,ck ÎR and suppose that the characteristic equation 

rk - c1rk-1 - c2rk-2 - … - ck = 0
has k distinct roots r1,r2, …,rk.  Then a sequence {an} is a 
solution of the recurrence relation

an = c1an-1 + c2an-2 + … + ckan-k

if and only if
an = a1r1

n + a2r2
n + … + akrk

n

for n=0,1,2,… where a1,a2,…,ak are constants depending upon 
the initial conditions
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General Linear Homogeneous Recurrences: 
Any Multiplicity

• Theorem (Theorem 3, page 465)

Let c1,c2,..,ck ÎR and suppose that the characteristic equation 
rk - c1rk-1 - c2rk-2 - … - ck = 0

has t roots with multiplicities m1,m2, …,mt.  Then a sequence 
{an} is a solution of the recurrence relation

an = c1an-1 + c2an-2 + … + ckan-k

if and only if   an = (a1,0 + a1,1n + … + a1,m1-1nm1-1) r1
n + 

(a2,0 + a2,1n + … + a2,m2-1nm2-1) r2
n + ... 

(at,0 + at,1n + … + at,mt-1nmt-1) rt
n

for n=0,1,2,… where ai,j are constants for 1 £ i £ t and 
0 £ j£mi-1 depending upon the initial conditions
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Linear NonHomogeneous Recurrences

• For recursive algorithms, cost function are often not homogeneous 
because there is usually a non-recursive cost depending on the input size

• Such a recurrence relation is called a linear nonhomogeneous recurrence 
relation

• Such functions are of the form
an = c1an-1 + c2an-2 + … + ckan-k + f(n)

• f(n) represents a non-recursive cost.  If we chop it off, we are left with
an = c1an-1 + c2an-2 + … + ckan-k

which is the associated homogeneous recurrence relation
• Every solution of a linear nonhomogeneous recurrence  relation is the sum 

of
– a particular solution and 
– a solution to the associated linear homogeneous recurrence relation 
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Solving Linear NonHomogeneous Recurrences (1)

• Theorem (Theorem 5, p468)
If {an

(p)} is a particular solution of the 
nonhomogeneous linear recurrence relation with 
constant coefficients

an = c1an-1 + c2an-2 + … + ckan-k + f(n)
then every solution is of the form  {an

(p) + an
(h)} where 

{an
(h)}  is a solution of the associated homogeneous 

recurrence relation
an = c1an-1 + c2an-2 + … + ckan-k
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Solving Linear NonHomogeneous Recurrences (2)

• There is no general method for solving such 
relations.

• However, we can solve them for special cases
• In particular, if f(n) is 
– a polynomial function
– exponential function, or
– the product of a polynomial and exponential 

functions, 
then there is a general solution
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Solving Linear NonHomogeneous Recurrences (3)

• Theorem (Theorem 6, p469)

Suppose {an} satisfies the linear nonhomogeneous 

recurrence relation

an = c1an-1 + c2an-2 + … + ckan-k + f(n)
where c1,c2,..,ck ÎR and

f(n) = (btn
t + bt-1nt-1 + .. + b1n + b0) sn

where b0,b1,..,bn,sÎR
… continues
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Solving Linear NonHomogeneous Recurrences (4)

• Theorem (Theorem 6, p469)… continued
When s is not a root of the characteristic equation of the 
associated linear homogeneous recurrence relation, there is a 
particular solution of the form

(ptnt+ pt-1nt-1+ … +p1n + p0) sn

When s is a root of this characteristic equation and its 
multiplicity is m, there is a particular solution of the form

nm(ptnt+ pt-1nt-1+ … +p1n + p0) sn
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Linear NonHomogeneous Recurrences: Examples

• The examples in the textbook are quite good (see 
pp467—470) and illustrate how to solve simple 
nonhomogeneous relations

• We may go over more examples if time allows

• Also read up on generating functions in Section 7.4 
(though we may return to this subject)

• However, there are alternate, more intuitive 
methods
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Other Methods

• When analyzing algorithms, linear homogeneous recurrences 

of order greater than 2 hardly ever arise in practice

• We briefly describe two unfolding methods that work for a lot 

of cases

– Backward substitution: this works exactly as its name suggests.  

Starting from the equation itself, work backwards, substituting values 

of the function for previous ones

– Recurrence trees: just as powerful, but perhaps more intuitive, this 

method involves mapping out the recurrence tree for an equation.  

Starting from the equation, you unfold each recursive call to the 

function and calculate the non-recursive cost at each level of the tree.   

Then, you find a general formula for each level and take a summation 

over all such levels
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Backward Substitution: Example (1)
• Give a solution to

T(n)= T(n-1) + 2n
where T(1)=5

• We begin by unfolding the recursion by a simple substitution 
of the function values

• We observe that
T(n-1) = T((n-1) - 1) + 2(n-1) = T(n-2) + 2(n-1)

• Substituting into the original equation
T(n)=T(n-2)+2(n-1)+2n
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Backward Substitution: Example (2)
• If we continue to do that we get

T(n) = T(n-2) + 2(n-1) + 2n
T(n) = T(n-3) + 2(n-2) + 2(n-1) + 2n

T(n) = T(n-4) + 2(n-3) + 2(n-2) + 2(n-1) + 2n
…..

T(n) = T(n-i) + Sj=0
i-1 2(n - j)                 function�s value at the ith iteration

• Solving the sum we get
T(n) = T(n-i) + 2n(i-1) – 2(i-1)(i-1+1)/2 + 2n
T(n) = T(n-i) + 2n(i-1) – i2 + i + 2n
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Backward Substitution: Example (3)

• We want to get rid of the recursive term

T(n) = T(n-i) + 2n(i-1) – i2 + i + 2n

• To do that, we need to know at what iteration we reach our 

based case, i.e. for what value of i can we use the initial 

condition T(1)=5?

• We get the base case when n-i=1 or i=n-1

• Substituting in the equation above we get

T(n)  = 5 + 2n(n-1-1) – (n-1)2 + (n-1) + 2n 

T(n)  = 5 + 2n(n-2) – (n2-2n+1) + (n-1) + 2n = n2 + n + 3 



RecursionCSCE 235 42

Recurrence Trees (1)
• When using recurrence trees, we graphically represent the 

recursion
• Each node in the tree is an instance of the function.  As we 

progress downward, the size of the input decreases
• The contribution of each level to the function is equivalent to 

the number of nodes at that level times the non-recursive 
cost on the size of the input at that level

• The tree ends at the depth at which we reach the base case
• As an example, we consider a recursive function of the form

T(n) = aT(n/b) + f(n),   T(d) = c    
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Recurrence Trees (2)
Iteration

0

1

2
.
.
i
.
.

logbn

TT(n)

T(n/b) T(n/b) T(n/b)××× a ×××

T(n/b2) T(n/b2)××× a ××× T(n/b2) T(n/b2)××× a ×××

Cost
f(n)

af(n/b)

a2f(n/b2)
.
.

ai f(n/bi)
.
.
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Recurrence Trees (3)

• The total value of the function is the 
summation over all levels of the tree

• Consider the following concrete example
T(n) = 2T(n/2) + n,   T(1)= 4

T (n) = �log� nT (⇤) +

log� n�1X

i=0

�if(
n

⇥i
)



RecursionCSCE 235 45

Recurrence Tree: Example (2)
Iteration

0

1

2
.
.
i
.
.

log2 n

T(n)

T(n/2) T(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

Cost
n

n/2 +n/2

4. n/4

8.n/8
.
.

2i(n/2i)
.
.

T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8)
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Recurrence Trees: Example (3)

• The value of the function is the summation of 
the value of all levels.

• We treat the last level as a special case since 
its non-recursive cost is different
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Smoothness Rule
• In the previous example, we make the following assumption

n has a power of two (n=2k)
This assumption is necessary to get a nice depth of log(n) and 
a full tree

• We can restrict consideration to certain powers because of 
the smoothness rule, which is not studied in this course. 

• For more information about that rule, consult pages 481—483 
of the textbook �The Design & Analysis of Algorithms� by 
Anany Levitin
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How to Cheat with Maple (1)
• Maple and other math tools are great resources.  However, 

they are no substitutes for knowing how to solve recurrences 
yourself

• As such, you should only use Maple to check you answers
• Recurrence relations can be solved using the rsolve

command and giving Maple the proper parameters
• The arguments are essentially a comma-delimited list of 

equations
– General and boundary conditions
– Followed by the �name� and variables of the function
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How to Cheat with Maple (2)
> rsolve({T(n)= T(n-1)+2*n,T(1)=5},T(n)); 

1+2(n+1)(1/2n+1)-2n
• You can clean up Maple�s answer a bit by encapsulating it in the 

simplify command

> simplify(rsolve({T(n)= T(n-1) + 2*n, T(1) = 5}, 
T(n))); 

3 + n2 + n
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