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Mo7va7on	(1)	

•  “Mathema7cal	proofs,	like	diamonds,	are	
hard	and	clear,	and	will	be	touched	with	
nothing	but	strict	reasoning.”	 	-John		Locke	

•  Mathema7cal	proofs	are,	in	a	sense,	the	only	
true	knowledge	we	have	

•  They	provide	us	with	a	guarantee	as	well	as	an	
explana7on	(and	hopefully	some	insight)	
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Mo7va7on	(2)	

•  Mathema7cal	proofs	are	necessary	in	CS	
–  You	must	always	(try	to)	prove	that	your	algorithm		

•  terminates		
•  is	sound,	complete,	op7mal	
•  finds	op7mal	solu7on	

–  You	may	also	want	to	show	that	it	is	more	efficient	than	
another	method	

–  Proving	certain	proper7es	of	data	structures	may	lead	to	
new,	more	efficient	or	simpler	algorithms	
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Terminology	
•  A	theorem	is	a	statement	that	can	be	shown	to	be	true	(via	a	proof)	
•  A	proof	is	a	sequence	of	statements	that	form	an	argument	
•  Axioms	or	postulates	are	statements	taken	to	be	self	evident	or	assumed	

to	be	true	
•  A	lemma	(plural	lemmas	or	lemmata)	is	a	theorem	useful	within	the	proof	

of	a	theorem	
•  A	corollary		is	a	theorem	that	can	be	established	from	theorem	that	has	

just	been	proven			
•  A	proposi7on	is	usually	a	‘less’	important	theorem	
•  A	conjecture	is	a	statement	whose	truth	value	is	unknown	
•  The	rules	of	inference	are	the	means	used	to	draw	conclusions	from	other	

asser7ons,	and	to	derive	an	argument	or	a	proof	
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Theorems:	Example	

•  Theorem	
–  Let	a,	b,	and	c	be	integers.		Then	

•  If	a|b	and	a|c	then	a|(b+c)	
•  If	a|b	then	a|bc	for	all	integers	c	
•  If	a|b	and	b|c,	then	a|c	

•  Corrollary:	
–  If	a,	b,	and	c	are	integers	such	that	a|b		and	a|c,	then	a|
mb+nc	whenever	m	and	n	are	integers	

•  What	is	the	assump7on?	What	is	the	conclusion?	
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Proofs:	A	General	How	to	(1)	

•  An	argument	is	valid		
–  If,	whenever	all	the	hypotheses	are	true,		
– Then,	the	conclusion	also	holds	

•  From	a	sequence	of	assump7ons,	p1,	p2,	…,	pn,	
you	draw	the	conclusion	q.		That	is:	

(p1	∧	p2	∧	…	∧	pn)	→	q	



Predicate	Logic	and	Quan7fiers	CSCE	235	 8	

Proofs:	A	General	How	to	(2)	

•  Usually	a	proof	involves	proving	a	theorem	via	
intermediate	steps	

•  Example	
– Consider	the	theorem	‘If	x>0	and	y>0,	then	x+y>0’	
– What	are	the	assump7ons?	
– What	is	the	conclusion?	
– What	steps	should	we	take?	
– Each	intermediate	step	in	the	proof	must	be	jus7fied.	
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Rules	of	Inference	

•  Recall	the	handout	on	the	course	web	page		
– hkp://www.cse.unl.edu/~cse235h/files/
LogicalEquivalences3.pdf	

•  In	textbook,	Table	1	(page	72)	contains	a	
Cheat	Sheet	for	Inference	rules	

	



Predicate	Logic	and	Quan7fiers	CSCE	235	 11	

Rules	of	Inference:	Modus	Ponens	

•  Intui7vely,	modus	ponens	(or	law	of	detachment)	
can	be	described	as	the	inference:		

p	implies	q;	p	is	true;	therefore	q	holds	
•  In	logic	terminology,	modus	ponens	is	the	tautology:	

(p	∧	(p	→	q))	→	q	
•  Note:	‘therefore’	is	some7mes	denoted	∴,	so	we	
have:	

p	→	q	≡	p	∴	q	
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Rules	of	Inference:	Addi7on	

•  Addi7on	involves	the	tautology	
p	→	(p	∨	q)	

•  Intui7vely,		
–  if	we	know	that	p	is	true	
–  we	can	conclude	that	either	p	or	q	are	true	(or	both)	

•  In	other	words:		p	∴	(p	∨	q)	
•  Example:	I	read	the	newspaper	today,	therefore	I	
read	the	newspaper	or	I	ate	custard	
–  Note	that	these	are	not	mutually	exclusive	
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Rules	of	Inference:	Simplifica7on	

•  Simplifica7on	is	based	on	the	tautology	
(p	∧	q)	→	p	

•  So	we	have:		(p	∧	q)	∴p	
•  Example:	Prove	that	if	0	<	x	<	10,	then	x	≥	0	

1.  0	<	x	<	10	≡	(0	<	x)	∧	(x	<	10)	
2.  (x	>	0)	∧	(x	<	10)	→	(x	>	0)				Simplifica7on	law	on	(1)	
3.  (x	>	0)	→	(x	>	0)	∨	(x	=	0)														Addi7on	law	on	(1)	
4.  (x	>	0)	∨	(x	=	0)	≡		(x	≥	0)																																Q.E.D.	
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Rules	of	inference:	Conjunc7on	

•  The	conjunc7on	is	almost	trivially	intui7ve.		It	
is	based	on	the	following	tautology:	

((p)	∧	(q))	→	(p	∧	q)	
•  Note	the	subtle	difference	though:	
– On	the	lep-hand	side,	we	independently	know	p	
and	q	to	be	true	

– Therefore,	we	conclude,	on	the	right-hand	side,	
that	a	logical	conjunc7on	is	true	
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Rules	of	Inference:	Contraposi7ve	

•  The	contraposi7ve	is	the	following	tautology	
(p	→	q)	→	(¬q→	¬p)	

•  Usefulness	
–  If	you	are	having	trouble	proving	the	p	implies	q	in	
a	direct	manner	

– You	can	try	to	prove	the	contraposi7ve	instead!	
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Rules	of	Inference:	Modus	Tollens	
•  Similar	to	the	modus	ponens,	modus	tollens	is	based	on	the	

following	tautology	
(¬q	∧	(p	→	q))	→	¬p	

•  In	other	words:	
–  If	we	know	that	q	is	not	true	
–  And	that	p	implies	q	
–  Then	we	can	conclude	that	p	does	not	hold	either	

•  Example	
–  If	you	are		UNL	student,	then	you	are	cornhusker	
–  Don	Knuth	is	not	a	cornhusker	
–  Therefore	we	can	conclude	that	Don	Knuth	is	not	a	UNL	student.	
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Rules	of	Inference:	Hypothe7cal	Syllogism	

•  Hypothe7cal	syllogism	is	based	on	the	following	
tautology	

((p	→	q)	∧	(q	→	r))	→	(p	→	r)		
•  Essen7ally,	this	shows	that	the	rules	of	inference	are,	
in	a	sense,	transi7ve	

•  Example:	
–  If	you	don’t	get	a	job,	you	won’t	have	money	
–  If	you	don’t	have	money,	you	will	starve.	
–  Therefore,	if	you	don’t	get	a	job,	you’ll	starve	
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Rules	of	Inference:	Disjunc7ve	Syllogism	

•  A	disjunc7ve	syllogism	is	formed	on	the	basis	of	the	
tautology	

((p	∨	q)	∧	¬p)→	q	
•  Reading	this	in	English,	we	see	that		
–  If	either	p	or	q	hold	and	we	know	that	p	does	not	hold	
–  Then	we	can	conclude	that	q	must	hold	

•  Example	
–  The	sky	is	either	blue	or	grey	
– Well	it	isn’t	blue	
–  Therefore,	the	sky	is	grey	
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Rules	of	Inference:	Resolu7on	

•  For	resolu7on,	we	have	the	following	
tautology	

((p	∨	q)	∧	(¬p	∨	r))	→	(q	∨	r)	
•  Essen7ally,	
–  If	we	have	two	true	disjunc7ons	that	have	
mutually	exclusive	proposi7ons	

– Then	we	can	conclude	that	the	disjunc7on	of	the	
two	non-mutually	exclusive	proposi7ons	is	true	
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Proofs:	Example	1	(1)	

•  The	best	way	to	become	accustomed	to	
proofs	is	to	see	many	examples	

•  To	begin	with,	we	give	a	direct	proof	of	the	
following	theorem	

•  Theorem:	
The	sum	of	two	odd	integers	is	even	
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Proofs:	Example	1	(2)	
•  Let	n,	m	be	two	odd	integers.	
•  Every	odd	integer	x	can	be	wriken	as	x=2k+1	for	some	integer	k	
•  Therefore,	let	n	=2k1+1	and	m=2k2+1	
•  Consider		

n+m	=	(2k1+1)+(2k2+1)	
	 			=	2k1+	2k2+1+1 																										Associa=vity/Commuta=vity	
	 			=	2k1+	2k2+2 																																																																						Algebra	
	 			=	2(k1+	k2+1) 																																																																				Factoring	

•  By	defini7on	2(k1+k2+1)	is	even,	therefore	n+m	is	even											QED	
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Proofs:	Example	2	(1)	

•  Assume	that	the	statements	below	hold:	
•  (p	→	q)	
•  (r	→	s)	
•  (r	∨	p)	

•  Assume	that	q	is	false	
•  Show	that	s	must	be	true	
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Proofs:	Example	2	(2)	
1.  (p	→	q)	
2.  (r	→	s)	
3.  (r	∨	p)	
4.  ¬q	
5.  (¬q	∧	(p	→	q))	→	¬p 																		by	modus	tollens	on	1	+	4	
6.  (r	∨	p)	∧	¬p)	→	r																									by	disjunc7ve	syllogism	3	+	5	
7.  (r	∧	(r	→	s))	→	s 																																			by	modus	ponens	2	+	6	

	 	QED	
QED=	La7n	word	for	“quod	erat	demonstrandum”	meaning	“that	which	was	

to	be	demonstrated.”                                                                         
$\hfill\Box$	
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If	and	Only	If	

•  If	you	are	asked	to	show	an	equivalence	
p	↔	q	“if	and	only	if”	

•  You	must	show	an	implica7on	in	both	
direc7ons	

•  That	is,	you	can	show	(independently	or	via	
the	same	technique)	that	(p	→	q)	and	(q	→	p)	

•  Example	
– Show	that	x	is	odd	iff	x2+2x+1	is	even		
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Example	(iff)	

x	is	odd		↔	x=2k+1,	k∈	Z	 	by	defini=on	
	 	↔	x+1	=	2k+2																																			algebra		

															↔	x+1	=	2(k+1)	 	factoring	
	 	↔	x+1	is	even 	by	defini=on	
	 	↔	(x+1)2	is	even 	Since	x	is	even	iff	x2	is	even	
	 	↔	x2+2x+1	is	even 		algebra	
	 	 	QED	
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Outline	
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Fallacies	(1)	

•  Even	a	bad	example	is	worth	something:	it	teaches	
us	what	not	to	do	

•  There	are	three	common	mistakes	(at	least..).	
•  These	are	known	as	fallacies	

1.  Fallacy	of	affirming	the	conclusion	

(q	∧	(p	→	q))	→	p	
2.  Fallacy	of	denying	the	hypothesis	

(¬p	∧	(p	→	q))	→	¬q	
3.  Circular	reasoning.		Here	you	use	the	conclusion	as	an	

assump7on,	avoiding	an	actual	proof	
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Likle	Reminder	

•  Affirming	the	antecedent:	Modus	ponens	
(p	∧	(p	→	q))	→	q	

•  Denying	the	consequent:	Modus	Tollens	
(¬q	∧	(p	→	q))	→	¬p	

•  Affirming	the	conclusion:	Fallacy		
(q	∧	(p	→	q))	→	p	

•  Denying	the	hypothesis:	Fallacy	
(¬p	∧	(p	→	q))	→	¬q	
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Fallacies	(2)	
•  Some7mes,	bad	proofs	arise	from	illegal	
opera7ons	rather	than	poor	logic.	

•  Consider	the	bad	proof	2=1	
•  Let:						a		=	b		

													a2	 	=	ab 																							Mul=ply	both	sides	by	a	
a2	+	a2	–	2ab	 	=	ab	+	a2	–	2ab 	Add	a2	–	2ab	to	both	sides	
2(a2	–	ab)	 	=	(a2	–	ab) 																	Factor,	collect	terms	
							2 												=	1 																	Divide	both	sides	by	(a2	–	ab)	

So,	what	is	wrong	with	the	proof?	
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Proofs	with	Quan7fiers	
•  Rules	of	inference	can	be	extended	in	a	straighvorward	manner	

to	quan7fied	statements	
•  Universal	Instan*a*on:	Given	the	premise	that	∀xP(x)	and	c	∈	

UoD	(where	UoDis	the	universe	of	discourse),	we	conclude	that	
P(c)	holds	

•  Universal	Generaliza*on:	Here,	we	select	an	arbitrary	element	
in	the	universe	of	discourse	c	∈	UoD	and	show	that	P(c)	holds.	
We	can	therefore	conclude	that	∀xP(x)	holds	

•  Existen*al	Instan*a*on:	Given	the	premise	that	∃xP(x)	holds,	
we	simply	give	it	a	name,	c,	and	conclude	that	P(c)	holds	

•  Existen*al	Generaliza*on:	Conversely,	we	establish	that	P(c)	
holds	for	a	specific	c	∈	UoD,	then	we	can	conclude	that	∃xP(x)			
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Proofs	with	Quan7fiers:	Example	(1)	

•  Show	that	“A	car	in	the	garage	has	an	engine	problem”	and	“Every	car	in	
the	garage	has	been	sold”	imply	the	conclusion	“A	car	has	been	sold	has	
an	engine	problem”	

•  Let	
–  G(x):	“x	is	in	the	garage”	
–  E(x):	“x	has	an	engine	problem”	
–  S(x):	“x	has	been	sold”	

•  Let	UoD	be	the	set	of	all	cars	
•  The	premises	are	as	follows:	

–  ∃x	(G(x)	∧	E(x))	
–  ∀x	(G(x)	→	S(x))	

•  The	conclusion	we	want	to	show	is:	∃x	(S(x)	∧	E(x))	
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Proofs	with	Quan7fiers:	Example	(2)	

1.  ∃x	(G(x)	∧	E(x)) 	1st	premise	
2.  (G(c)	∧	E(c)) 	Existen=al	instan=a=on	of	(1)	
3.  G(c) 	Simplifica=on	of	(2)	
4.  ∀x	(G(x)	→	S(x)) 	2nd	premise	
5.  G(c)	→	S(c) 	Universal	instan=a=on	of	(4)	
6.  S(c) 	Modus	ponens	on	(3)	and	(5)	
7.  E(c) 	Simplifica=on	from	(2)	
8.  S(c)	∧	E(c) 	Conjunc=on	of	(6)	and	(7)	
9.  ∃x	(S(x)	∧	E(x)) 	Existen=al	generaliza=on	of	(8)	

	 	QED	
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Outline	
•  Mo7va7on	
•  Terminology	
•  Rules	of	inference:		
•  Fallacies	
•  Proofs	with	quan7fiers	
•  Types	of	proofs:	

•  Trivial,	vacuous	
•  Direct		
•  By	contraposi*ve	(indirect),	by	contradic*on	(indirect),	by	cases	
•  Existence	and	uniqueness	proofs;	counter	examples	

•  Proof	strategies:		
•  Forward	chaining;	Backward	chaining;	Alerts	
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Types	of	Proofs	

•  Trivial	proofs	
•  Vacuous	proofs	
•  Direct	proofs	
•  Proof	by	Contraposi7ve	(indirect	proof)	
•  Proof	by	Contradic7on	(indirect	proof,	aka	
refuta7on)	

•  Proof	by	Cases	(some7mes	using	WLOG)	
•  Proofs	of	equivalence	
•  Existence	Proofs	(Construc7ve	&	Nonconstruc7ve)	
•  Uniqueness	Proofs	
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Trivial	Proofs	(1)	

•  Conclusion	holds	without	using	the	premise	
•  A	trivial	proof	can	be	given	when	the	
conclusion	is	shown	to	be	(always)	true.	

•  That	is,	if	q	is	true,	then	p→q	is	true	
•  Examples	
– ‘If	the	sky	is	blue	then	the	Earth	is	round’	
– Prove	‘If	x>0	then	(x+1)2	–	2x	≥	x2’	
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Trivial	Proofs	(2)	

•  Proof.		It	is	easy	to	see:	
	(x+1)2	–	2x 		
	 	=	(x2	+	2x	+1)	-2x	
	 	=	x2	+1	
	 	≥	x2		

•  Note	that	the	conclusion	holds	without	using	
the	hypothesis.		
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Vacuous	Proofs	
•  If	the	premise	p	is	false	
•  Then	the	implica7on	p→q	is	always	true	
•  A	vacuous	proof	is	a	proof	that	relies	on	the	fact	that	no	

element	in	the	universe	of	discourse	sa7sfies	the	premise	
(thus	the	statement	exists	in	vacuum	in	the	UoD).	

•  Example:	
–  If	x	is	a	prime	number	divisible	by	16,	then	x2	<0	

•  No	prime	number	is	divisible	by	16,	thus	this	statement	is	true	
(counter-intui7ve	as	it	may	be)		
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Direct	Proofs	

•  Most	of	the	proofs	we	have	seen	so	far	are	
direct	proofs	

•  In	a	direct	proof	
– You	assume	the	hypothesis	p,	and	
– Give	a	direct	series	(sequence)	of	implica7ons		
– Using	the	rules	of	inference	
– As	well	as	other	results	(proved	independently)	
– To	show	that	the	conclusion	q	holds.	
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Proof	by	Contraposi7ve	(indirect	proof)	

•  Recall	that	(p→q)	≡	(¬q	→¬p)	
•  This	is	the	basis	for	the	proof	by	contraposi7on	
– You	assume	that	the	conclusion	is	false,	then	
– Give	a	series	of	implica7ons	to	show	that	
– Such	an	assump7on	implies	that	the	premise	is	
false	

•  Example	
– Prove	that	if	x3	<0	then	x<0	
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Proof	by	Contraposi7ve:	Example	

•  The	contraposi7ve	is	“if	x≥0	then	x3	≥	0”	
•  Proof:	

1.  If	x=0	→	x3=0	≥	0	
2.  If	x>0	→	x2>0	→	x3>0																																									QED	
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Proof	by	Contradic7on	

•  To	prove	a	statement	p	is	true	
–  you	may	assume	that	it	is	false	
–  And	then	proceed	to	show	that	such	an	assump7on	leads	
a	contradic7on	with	a	known	result		

•  In	terms	of	logic,	you	show	that		
–  for	a	known	result	r,		
–  (¬p	→	(r	∧	¬r))	is	true	

– Which	yields	a	contradic7on	c	=	(r	∧	¬r)	cannot	hold		
•  Example:	√2	is	an	irra7onal	number	



Predicate	Logic	and	Quan7fiers	CSCE	235	 43	

Proof	by	Contradic7on:	Example	
•  Let	p	be	the	proposi7on	‘√2	is	an	irra7onal	number’		
•  Assume	¬p	holds,	and	show	that	it	yields	a	contradic7on	
•  √2	is	ra7onal	

→	√2	=a/b,	a,	b	∈Z	and	a,	b	have	no	common	factor											(proposi7on	r)
																																																																																		Defini=on	of	ra=onal	numbers	

→		2=a2/b2	 																																																																												Squarring	the	equa=on		
→	(2b2=a2)→	(a2	is	even)	→	(a=2c	)																																																									Algebra		
→	(2b2=4c2)	→	(b2=2c2)→	(b2	is	even)	→	(b	is	even)																											Algebra	
→	(a,	b	are	even)	→	(a,	b	have	a	common	factor	2)	→	¬r	
→		(¬p	→	(r	∧	¬r)),	which	is	a	contradic7on	
So,	(¬p	is	false)	→	(p	is	true),	which	means	√2	is	irra7onal		
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Proof	by	Cases	

•  Some7mes	it	is	easier	to	prove	a	theorem	by	
– Breaking	it	down	into	cases	and	
– Proving	each	one	separately	

•  Example:	
– Let	n	∈	Z.		Prove	that	9n2+3n-2	is	even	
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Proof	by	Cases:	Example	

•  Observe	that		9n2+3n-2=(3n+2)(3n-1)	
•  n	is	an	integer	→(3n+2)(3n-1)	is	the	product	of	
two	integers		

•  Case	1:	Assume	3n+2	is	even	
→	9n2+3n-2	is	trivially	even	because	it	is	the	
product	of	two	integers,	one	of	which	is	even	

•  Case	2:	Assume	3n+2	is	odd	
→	3n+2-3	is	even	→	3n-1	is	even	→	9n2+3n-2	is	
even	because	one	of	its	factors	is	even																					
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Types	of	Proofs	

•  Trivial	proofs	
•  Vacuous	proofs	
•  Direct	proofs	
•  Proof	by	Contraposi7ve	(indirect	proof)	
•  Proof	by	Contradic7on	(indirect	proof,	aka	
refuta7on)	

•  Proof	by	Cases	(some7mes	using	WLOG)	
•  Proofs	of	equivalence	
•  Existence	Proofs	(Construc7ve	&	Nonconstruc7ve)	
•  Uniqueness	Proofs	
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Proofs	By	Equivalence	(Iff)	

•  If	you	are	asked	to	show	an	equivalence	
p	↔	q	“if	an	only	if”	

•  You	must	show	an	implica7on	in	both	
direc7ons	

•  That	is,	you	can	show	(independently	or	via	
the	same	technique)	that	(p	→	q)	and	(q	→	p)	

•  Example	
– Show	that	x	is	odd	iff	x2+2x+1	is	even		
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Example	(iff)	

x	is	odd		↔	x=2k+1,	k∈	Z	 	by	defini=on	
	 	↔	x+1	=	2k+2																																			algebra		

															↔	x+1	=	2(k+1)	 	factoring	
	 	↔	x+1	is	even 	by	defini=on	
	 	↔	(x+1)2	is	even 	Since	x	is	even	iff	x2	is	even	
	 	↔	x2+2x+1	is	even 		algebra	
	 	 	QED	
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Existence	Proofs	
•  A	construc*ve	existence	proof	asserts	a	theorem	by	

providing	a	specific,	concrete	example	of	a	statement	
–  Such	a	proof	only	proves	a	statement	of	the	form	∃xP(x)	for	some	

predicate	P.			
–  It	does	not	prove	the	statement	for	all	such	x	

•  A	nonconstruc*ve	existence	proof	also	shows	a	statement	of	
the	form	∃xP(x),	but	is	does	not	necessarily	need	to	give	a	
specific	example	x.	
–  Such	a	proof	usually	proceeds	by	contradic7on:		

•  Assume	that	¬∃xP(x)	≡∀x¬P(x)	holds	
•  Then	get	a	contradic7on	
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Uniqueness	Proofs	

•  A	uniqueness	proof	is	used	to	show	that	a	
certain	element	(specific	or	not)	has	a	certain	
property.	

•  Such	a	proof	usually	has	two	parts	
1.  A	proof	of	existence:	∃xP(x)		
2.  A	proof	of	uniqueness:	if	x≠y	then	¬P(y))	

•  Together	we	have	the	following:	
∃x	(	P(x)	∧	(∀y	(x≠y	→	¬P(y)	)	)		
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Counter	Examples	

•  Some7mes	you	are	asked	to	disprove	a	
statement	

•  In	such	a	situa7on	you	are	actually	trying	to	
prove	the	nega7on	of	the	statement	

•  With	statements	of	the	form	∀x	P(x),	it	
suffices	to	give	a	counter	example		
– because	the	existence	of	an	element	x	for	which	
¬P(x)	holds	proves	that	∃x	¬P(x)	

– which	is	the	nega7on	of	∀x	P(x)	
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Counter	Examples:	Example	

•  Example:		Disprove	n2+n+1	is	a	prime	number	
for	all	n≥1	

•  A	simple	counterexample	is	n=4.	
•  In	fact:	for	n=4,	we	have		
	n2+n+1	=	42+4+1		
	 	=	16+4+1		
	 	=	21	=	3×7,	which	is	clearly	not	prime				QED	
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Counter	Examples:	A	Word	of	Cau7on	

•  No	maker	how	many	examples	you	give,	you	
can	never	prove	a	theorem	by	giving	examples	
(unless	the	universe	of	discourse	is	finite—
why?—which	is	in	called	an	exhaus7ve	proof)	

•  Counter	examples	can	only	be	used	to	
disprove	universally	quan7fied	statements	

•  Do	not	give	a	proof	by	simply	giving	an	
example	
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Proof	Strategies	
•  Example:	Forward	and	backward	reasoning	
•  If	there	were	a	single	strategy	that	always	worked	for	proofs,	

mathema7cs	would	be	easy	
•  The	best	advice	we	can	give	you:	

–  Beware	of	fallacies	and	circular	arguments	(i.e.,	begging	the	ques7on)	
–  Don’t	take	things	for	granted,	try	proving	asser7ons	first	before	you	

can	take/use	them	as	facts	
–  Don’t	peek	at	proofs.		Try	proving	something	for	yourself	before	

looking	at	the	proof	
–  If	you	peeked,	challenge	yourself	to	reproduce	the	proof	later	on..	w/o	

peeking	again	
–  The	best	way	to	improve	your	proof	skills	is	PRACTICE.	


