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Mo7va7ng	Example	(1)	

•  Consider	the	renova7on	of	Avery	Hall.		In	this	
process	several	tasks	were	undertaken	
–  Remove	Asbestos	
–  Replace	windows	
–  Paint	walls	
–  Refinish	floors	
–  Assign	offices	
– Move	in	office	furniture	
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Mo7va7ng	Example	(2)	
•  Clearly,	some	things	had	to	be	done	before	others	could	begin	

–  Asbestos	had	to	be	removed	before	anything	(except	assigning	offices)	
–  Pain7ng	walls	had	to	be	done	before	refinishing	floors	to	avoid	ruining	

them,	etc.	

•  On	the	other	hand,	several	things	could	be	done	concurrently:	
–  Pain7ng	could	be	done	while	replacing	the	windows	
–  Assigning	offices	could	be	done	at	any7me	before	moving	in	office	

furniture	

•  This	scenario	can	be	nicely	modeled	using	par7al	orderings	
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Par7al	Orderings:	Defini7ons		

•  Defini%ons:		
–  A	rela7on	R	on	a	set	S	is	called	a	par7al	order	if	it	is	

•  Reflexive	
•  An7symmetric	
•  Transi7ve	

–  A	set	S	together	with	a	par7al	ordering	R	is	called	a	
par7ally	ordered	set	(poset,	for	short)	and	is	denote	(S,R)		

•  Par7al	orderings	are	used	to	give	an	order	to	sets	that	may	
not	have	a	natural	one	

•  In	our	renova7on	example,	we	could	define	an	ordering	such	
that	(a,b)∈R	if	‘a	must	be	done	before	b	can	be	done’	
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Par7al	Orderings:	Nota7on	

•  We	use	the	nota7on:		
– a≺b,	when	(a,b)∈R																																			$\preccurlyeq$	
– a≺b,	when	(a,b)∈R	and	a≠b																													$\prec$ 

•  The	nota7on	≺	is	not	to	be	mistaken	for	“less	
than”	(≺ versus	≤)		

•  The	nota7on	≺	is	used	to	denote	any	par7al	
ordering 
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Comparability:	Defini7on	

•  Defini%on:		
– The	elements	a	and	b	of	a	poset	(S, ≺)	are	called	
comparable	if	either	a≺b	or	b≺a.			

– When	for	a,b∈S,	we	have	neither	a≺b	nor	b≺a,	we	
say	that	a,b	are	incomparable	

•  Consider	again	our	renova7on	example	
–  Remove	Asbestos	≺ ai	for	all	ac7vi7es	ai	except	assign	offices	
–  Paint	walls	≺ Refinish	floors	
–  Some	tasks	are	incomparable:	Replacing	windows	can	be	done	before,	

acer,	or	during	the	assignment	of	offices	
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Total	orders:	Defini7on	

•  Defini%on:		
–  If	(S,≺)	is	a	poset	and	every	two	elements	of	S	are	
comparable,	S	is	called	a	totally	ordered	set.			

– The	rela7on	≺ is	said	to	be	a	total	order	
•  Example	

– The	rela7on	“less	than	or	equal	to”	over	the	set	of	
integers	(Z,	≤)	since	for	every	a,b∈Z,	it	must	be	
the	case	that	a≤b	or	b≤a	

– What	happens	if	we	replace	≤	with	<?	
The	rela7on	<	is	not	reflexive,	and	(Z,<)	is	not	a	poset	
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Well	Orderings:	Defini7on	

•  Defini%on:	(S,≺)	is	a	well-ordered	set	if	
–  It	is	a	poset	
–  Such	that	≺	is	a	total	ordering	and	
–  Such	that	every	non-empty	subset	of	S	has	a	least	element	

•  Example	
–  The	natural	numbers	along	with	≤,	(N ,≤),	is	a	well-ordered	
set	since	any	nonempty	subset	of	N  has	a	least	element	
and	≤	is	a	total	ordering	on	N 

–  However,	(Z,≤)	is	not	a	well-ordered	set	
•  Why?	
•  Is	it	totally	ordered?	

Z- ⊂	Z	but	does	not	have	a	least	element	
Yes	
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Principle	of	Well-Ordered	Induc7on	

•  Well-ordered	sets	are	the	basis	of	the	proof	technique	
known	as	induc7on	(more	when	we	cover	Chapter	3)	

•  Theorem:	Principle	of	Well-Ordered	Induc%on	
	Given	S	is	a	well-ordered	set.	P(x)	is	true	for	all	x∈S	if	

	(Basis	Step:	P(x0)	is	true	for	the	least	element	in	S	and)  	
	Induc%ve	Step:	For	every	y∈S	if	P(x)	is	true	for	all	x≺y,	then	P(y)	is	true	
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Principle	of	Well-Ordered	Induc7on:	Proof	
Proof:	(S	well	ordered)	∧(Basis	Step)	∧	(Induc7on	Step)	⇒	∀x∈S,	P(x)	

•  Suppose	that	it	is	not	the	case	the	P(x)	holds	for	all	x∈S	
	 	⇒	∃y	P(y)	is	false	
	 	⇒	A={	x∈S	|	P(x)	is	false	}	is	not	empty	

•  S	is	well	ordered	⇒	A	has	a	least	element	a	
•  Since	P(x0)	is	true	and	P(a)	is	false	⇒	a≠x0	
•  P(x)	holds	for	all	x∈S	and	x≺a,	then	P(a)	holds	by	the	induc7on	

step	
•  This	yields	a	contradic7on																																																								QED	
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Lexicographic	Orderings:	Idea	

•  Lexigraphic	ordering	is	the	same	as	any	
dic7onary	or	phone-book	ordering:	
– We	use	alphabe7c	ordering		

•  Star7ng	with	the	first	character	in	the	string	
•  Then	the	next	character,	if	the	first	was	equal,	etc.	

–  If	a	word	is	shorter	than	the	other,	than	we	
consider	that	the	‘no	character’	of	the	shorter	
word	to	be	less	than	‘a’	
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Lexicographic	Orderings	on	A1×A2	

•  Formally,	lexicographic	ordering	is	defined	by	two	
other	orderings	

•  Defini%on:		Let	(A1,≺1)	and	(A2,≺2)	be	two	posets.	The	
lexicographic	ordering	≺ on	the	Cartesian	product	
A1×A2	is	defined	by	

(a1,a2)≺(a’1,a’2)	if		(a1≺1a’1)	or	(a1=a’1	and	a2≺2	a’2) "

•  If	we	add	equality	to	the	lexicographic	ordering	≺ on	
A1×A2,	we	obtain	a	par7al	ordering		
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Lexicographic	Ordering	on	A1×A2	×…	×	An		

•  Lexicographic	ordering	generalizes	to	the	
Cartesian	Product	of	n	set	in	a	natural	way	

•  Define	≺ on	A1×A2	×…	×	An	by	
(a1,a2,…,an) ≺ 	(b1,b2,…,bn)	

	If	a1 ≺ b1	or	of	there	is	an	integer	i>0	such	
that	

a1=b1,	a2=b2,	…,	ai=bi	and	ai+1≺ bi+1	
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Lexicographic	Ordering	on	Strings	

•  Consider	the	two	non-equal	strings	a1a2…am	
and	b1b2…bn	on	a	poset	(St,	≺)	

•  Let		
–  t=min(n,m)		
– ≺ be	the	lexicographic	ordering	on	St	

•  a1a2…am	is	less	than		b1b2…bn	if	and	only	if	
–  (a1,a2,…,at)	≺ (b1,b2,…,bt)	or	
–  (a1,a2,…,at)=(b1,b2,…,bt)	and	m<n	
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Hasse	Diagrams	

•  Like	rela7ons	and	func7ons,	par7al	orders	have	a	
convenient	graphical	representa7on:	Hasse	Diagrams	
–  Consider	the	digraph	representa7on	of	a	par7al	order		
–  Because	we	are	dealing	with	a	par7al	order,	we	know	that	
the	rela7on	must	be	reflexive	and	transi7ve	

–  Thus,	we	can	simplify	the	graph	as	follows	
•  Remove	all	self	loops	
•  Remove	all	transi7ve	edges	
•  Remove	direc7ons	on	edges	assuming	that	they	are	oriented	
upwards	

–  The	resul7ng	diagram	is	far	simpler	
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Hasse	Diagram:	Example	

a1 

a2 

a4 
a5 

a3 

a1 

a2 

a4 
a5 

a3 
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Hasse	Diagrams:	Example	(1)	

•  Of	course,	you	need	not	always	start	with	the	
complete	rela7on	in	the	par7al	order	and	then	trim	
everything.	

•  Rather,	you	can	build	a	Hasse	Diagram	directly	from	
the	par7al	order	

•  Example:		Draw	the	Hasse	Diagram		
–  for	the	following	par7al	ordering:	{(a,b)	|	a|b	}		
–  	on	the	set	{1,	2,	3,	4,	5,	6,	10,	12,	15,	20,	30,	60}		
–  (these	are	the	divisors	of	60	which	form	the	basis	of	the	
ancient	Babylonian	base-60	numeral	system)	
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Hasse	Diagram:	Example	(2)	

1 

3 5 

15 

30 

10 

60 

12 

4 

2 

6 

20 
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Extremal	Elements:	Summary	

We	will	define	the	following	terms:	
•  A	maximal/minimal	element	in	a	poset	(S, ≺)	
•  The	maximum	(greatest)/minimum	(least)	element	
of	a	poset	(S, ≺)	

•  An	upper/lower	bound	element	of	a	subset	A	of	a	
poset	(S, ≺)	

•  The	greatest	lower/least	upper	bound	element	of	a	
subset	A	of	a	poset	(S, ≺)	
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Extremal	Elements:	Maximal	

•  Defini%on:	An	element	a	in	a	poset	(S, ≺)	is	
called	maximal	if	it	is	not	less	than	any	other	
element	in	S.	That	is:	¬(∃b∈S	(a≺b))	

•  If	there	is	one	unique	maximal	element	a,	we	
call	it	the	maximum	element	(or	the	greatest	
element)	
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Extremal	Elements:	Minimal	

•  Defini%on:	An	element	a	in	a	poset	(S, ≺)	is	
called	minimal	if	it	is	not	greater	than	any	
other	element	in	S.	That	is:	¬(∃b∈S	(b≺a))	

•  If	there	is	one	unique	minimal	element	a,	we	
call	it	the	minimum	element	(or	the	least	
element)	
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Extremal	Elements:	Upper	Bound	

•  Defini%on:	Let	(S,≺)	be	a	poset	and	let	A⊆S.		If	
u	is	an	element	of	S	such	that	a	≺ u	for	all	a∈A	
then	u	is	an	upper	bound	of	A	

•  An	element	x	that	is	an	upper	bound	on	a	
subset	A	and	is	less	than	all	other	upper	
bounds	on	A	is	called	the	least	upper	bound	
on	A.		We	abbreviate	it	as	lub.	
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Extremal	Elements:	Lower	Bound	

•  Defini%on:	Let	(S,≺)	be	a	poset	and	let	A⊆S.		If	
l	is	an	element	of	S	such	that	l	≺ a	for	all	a∈A	
then	l	is	an	lower	bound	of	A	

•  An	element	x	that	is	a	lower	bound	on	a	
subset	A	and	is	greater	than	all	other	lower	
bounds	on	A	is	called	the	greatest	lower	
bound	on	A.		We	abbreviate	it	glb.	
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Extremal	Elements:	Example	1	

What	are	the	minimal,	maximal,	minimum,	maximum	elements?	

c 

a 

d 

b 

•  Minimal:	{a,b}	
•  Maximal:	{c,d}	
•  There	are	no	unique	minimal	or	maximal	elements,	thus	no	

minimum	or	maximum	
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Extremal	Elements:	Example	2	
Give	lower/upper	bounds	
&	glb/lub	of	the	sets:		

{d,e,f},	{a,c}	and	{b,d}	

a b 

d 

g h i 

f e 

c 

{d,e,f}	

•  Lower	bounds:	∅,		thus	no	glb	
•  Upper	bounds:	∅,		thus	no	lub	

{a,c}	
•  Lower	bounds:	∅,		thus	no	glb	
•  Upper	bounds:	{h},		lub:	h	

{b,d}	
•  Lower	bounds:	{b},	glb:	b	
•  Upper	bounds:	{d,g},		lub:	d	

because	d≺g	



Par7al	Orders	CSCE	235	 31	

Extremal	Elements:	Example	3	

•  Minimal/Maximal	elements?	

a 

b d 

g h 

i 

f 

e 

c 

j 

•  Bounds,	glb,	lub	of	{c,e}?	

•  Bounds,	glb,	lub	of	{b,i}?	

•  Minimal	&	Minimum	element:	a	
•  Maximal	elements:	b,d,i,j	

•  Lower	bounds:	{a,c},	thus	glb	is	c	
•  Upper	bounds:	{e,f,g,h,i,j},	thus	

lub	is	e	

•  Lower	bounds:	{a},	thus	glb	is	a	
•  Upper	bounds:	∅,	thus	lub	DNE	
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LaSces	

•  A	special	structure	arises	when	every	pair	of	
elements	in	a	poset	has	an	lub	and	a	glb	

•  Defini%on:	A	laSce	is	a	par7ally	ordered	set	in	
which	every	pair	of	elements	has	both		
– a	least	upper	bound	and	
– a	greatest	lower	bound		
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LaSces:	Example	1	

•  Is	the	example	from	
before	a	laSce?	

a 

b d 

g h 

i 

f 

e 

c 

j 

•  No,	because	the	pair	
{b,c}	does	not	have	a	
least	upper	bound	
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LaSces:	Example	2	

•  What	if	we	modified	
it	as	shown	here?	

a 

b d 

g h 

i 

f 

e 

c 

j 

•  Yes,	because	for	any	
pair,	there	is	an	lub	&	
a	glb	
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LaSces:	Example	3	

•  Is	this	example	a	
laSce?	

a 

b d 

g 

h f e 

c 

No!		
•  The	lower	bound	of	A={e,f}	is	{a,b,c}	
•  However,	A	has	no	glb	

Similarly,	B={b,c}	has	no	ulb	
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A	LaSce	Or	Not	a	LaSce?	

•  To	show	that	a	par7al	order	is	not	a	laSce,	it	
suffices	to	find	a	pair	that	does	not	have	an	
lub	or	a	glb	(i.e.,	a	counter-example)	

•  For	a	pair	not	to	have	an	lub/glb,	the	elements	
of	the	pair	must	first	be	incomparable	(Why?)	

•  You	can	then	view	the	upper/lower	bounds	on	
a	pair	as	a	sub-Hasse	diagram:	If	there	is	no	
maximum/minimum	element	in	this	sub-
diagram,	then	it	is	not	a	laSce	
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Topological	Sor7ng	
•  Let	us	return	to	the	introductory	example	of	Avery	Hall	

renova7on.	Now	that	we	have	got	a	par7al	order	model,	it	
would	be	nice	to	actually	create	a	concrete	schedule	

•  That	is,	given	a	par7al	order,	we	would	like	to	transform	it	
into	a	total	order	that	is	compa7ble	with	the	par7al	order	

•  A	total	order	is	compa7ble	if	it	does	not	violate	any	of	the	
original	rela7ons	in	the	par7al	order	

•  Essen7ally,	we	are	simply	imposing	an	order	on	incomparable	
elements	in	the	par7al	order	
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Topological	Sor7ng:	Preliminaries	(1)	

•  Before	we	give	the	algorithm,	we	need	some	
tools	to	jus7fy	its	correctness	

•  Fact:	Every	finite,	nonempty	poset	(S,≺)	has	a	
minimal	element	

•  We	will	prove	the	above	fact	by	a	form	of	
reduc)o	ad	absurdum	
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Topological	Sor7ng:	Preliminaries	(2)	

•  Proof:			
–  Assume,	to	the	contrary,	that	a	nonempty	finite	poset	(S,≺)	has	no	

minimal	element.		In	par7cular,	assume	that	a1	is	not	a	minimal	
element.	

–  Assume,	w/o	loss	of	generality,	that	|S|=n	
–  If	a1	is	not	minimal,	then	there	exists	a2	such	that	a2≺	a1	
–  But	a2	is	also	not	minimal	because	of	the	above	assump7on	
–  Therefore,	there	exists	a3	such	that	a3≺	a2.	This	process	proceeds	un7l	

we	have	the	last	element	an.		Thus,	an	≺		an-1	≺ … ≺ a2	≺	a1	
–  Finally,	by	defini7on	an	is	the	minimal	element																																				QED	
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Topological	Sor7ng:		Intui7on	
•  The	idea	of	topological	sor7ng	is	

–  We	start	with	a	poset	(S,	≺)		
–  We	remove	a	minimal	element,	choosing	arbitrarily	if	there	is	more	

than	one.		Such	an	element	is	guaranteed	to	exist	by	the	previous	fact	
–  As	we	remove	each	minimal	element,	one	at	a	7me,	the	set	S	shrinks	
–  Thus	we	are	guaranteed	that	the	algorithm	will	terminate	in	a	finite	

number	of	steps	
–  Furthermore,	the	order	in	which	the	elements	are	removed	is	a	total	

order:	a1	≺		a2	≺ … ≺ an-1≺	an	

•  Now,	we	can	give	the	algorithm	itself	
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Topological	Sor7ng:		Algorithm	

Input:	(S, ≺)	a	poset	with	|S|=n	
Output:	A	total	ordering	(a1,a2,…,	an)	
1. 	k	←	1	
2. 	While	S	Do	
3. 					ak	←	a	minimal	element	in	S	
4. 					S	←	S	\	{ak}	
5. 					k	←	k+1	
6. 	End	
7. 	Return	(a1,	a2,	…,	an)	
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Topological	Sor7ng:		Example	

•  Find	a	compa7ble	ordering	(topological	ordering)	of	
the	poset	represented	by	the	Hasse	diagrams	below	

a 

b d 

g h 

i 

f 

e 

c 

j 

a 

b d 

g h 

i 

f 

e 

c 

j 
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Summary	

•  Defini7ons	
–  Par7al	ordering,	comparability,	total	ordering,	well	ordering	

•  Principle	of	well-ordered	induc7on	
•  Lexicographic	orderings	

–  Idea,	on	A1×A2,	A1×A2×…×An,	St	(strings)	

•  Hasse	Diagrams	
•  Extremal	elements	

– Minimal/minimum,	maximal/maximum,	glb,	lub	

•  LaSces	
•  Topological	Sor7ng	


