Introduction to Logic

Sections 1.1, 1.2, 1.3 of Rosen

Spring 2018
CSCE 235H Introduction to Discrete Structures (Honors)
URL: cse.unl.edu/~cse235h
All questions: Piazza

Introduction: Logic?

- We will study
- Propositional Logic (PL)
- First-Order Logic (FOL)
- Logic
- is the study of the logic relationships between objects and
- forms the basis of all mathematical reasoning and all automated reasoning

Introduction: PL?

- Topic

Propositional Logic (PL) = Propositional Calculus = Sentential Logic

- In PL, the objects are called propositions
- Definition: A proposition is a statement that is either true or false, but not both
- We usually denote a proposition by a letter:

$$
p, q, r, s, \ldots
$$

Outine

- Defining Propositional Logic
- Propositions
- Connectives
- Precedence of Logical Operators
- Truth tables
- Usefulness of Logic
- Bitwise operations
- Logic in Theoretical Computer Science (SAT)
- Logic in Programming
- Logical Equivalences
- Terminology
- Truth tables
- Equivalence rules

Introduction: Proposition

- Definition: The value of a proposition is called its truth value; denoted by
$-T$ or 1 if it is true or
$-F$ or 0 if it is false
- Opinions, interrogatives, and imperatives are not propositions
- Truth table

p
0
1

Propositions: Examples

- The following are propositions
- Today is Monday
- The grass is wet
- It is raining
- The following are not propositions
$-\mathrm{C}++$ is the best language
- When is the pretest?
- Do your homework

Are these propositions?

- $2+2=5$
- Every integer is divisible by 12
- Alert: This statement is not a proposition: we cannot determine whether it is true or false.
- Microsoft is an excellent company

Logical connectives

- Connectives are used to create a compound proposition from two or more propositions
- Negation (e.g., \neg a or !a or ā) \$\neg\$, \$\bar\$
- And or logical conjunction (denoted \wedge)
- OR or logical disjunction (denoted \vee) \$\vee\$
- XOR or exclusive or (denoted \oplus) \$\oplus\$
- Impli ion (denoted \Rightarrow or \rightarrow)
\$\Rightarrow\$, \$\rightarrow\$
- Biconditional (denoted \Leftrightarrow or \leftrightarrow)
\$\LeftRightarrow\$, \$\leftrightarrow\$
- We define the meaning (semantics) of the logical connectives using truth tables

Precedence of Logical Operators

- As in arithmetic, an ordering is imposed on the use of logical operators in compound propositions
- However, it is preferable to use parentheses to disambiguate operators and facilitate readability

$$
\neg p \vee q \wedge \neg r \equiv(\neg p) \vee(q \wedge(\neg r))
$$

- To avoid unnecessary parenthesis, the following precedences hold:

1. Negation (\neg)
2. Conjunction (\wedge)
3. Disjunction (V)
4. Implication (\rightarrow)
5. Biconditional (\leftrightarrow)

Logical Connective: Negation

- $\neg p$, the negation of a proposition p, is also a proposition
- Examples:
- Today is not Monday
- It is not the case that today is Monday, etc.
- Truth table

p	$\neg p$
0	1
1	0

Logical Connective: Logical And

- The logical connective And is true only when both of the propositions are true. It is also called a conjunction
- Examples
- It is raining and it is warm
- ($2+3=5$) and ($1<2$)
- Schroedinger's cat is dead and Schroedinger's cat is not dead.
- Truth table

p	q	$p \wedge q$
0	0	
0	1	
1	0	
1	1	

Logical Connective: Logical OR

- The logical disjunction, or logical OR, is true if one or both of the propositions are true.
- Examples
- It is raining or it is the second lecture
$-(2+2=5) \vee(1<2)$
- You may have cake or ice cream
- Truth table

p	q	$p \wedge q$	$p \vee q$
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Logical Connective: Exclusive Or

- The exclusive OR, or XOR, of two propositions is true when exactly one of the propositions is true and the other one is false
- Example
- The circuit is either ON or OFF but not both
- Let $a b<0$, then either $a<0$ or $b<0$ but not both
- You may have cake or ice cream, but not both
- Truth table

p	q	$p \wedge q$	$p \vee q$	$p \oplus q$
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	1	

Logical Connective: Implication (1)

- Definition: Let p and q be two propositions. The implication $p \rightarrow q$ is the proposition that is false when p is true and q is false and true otherwise
- p is called the hypothesis, antecedent, premise
$-q$ is called the conclusion, consequence
- Truth table

p	q	$p \wedge q$	$p \vee q$	$p \oplus q$	$p \Rightarrow q$
0	0	0	0	0	
0	1	0	1	1	
1	0	0	1	1	
1	1	1	1	0	

Logical Connective: Implication (2)

- The implication of $p \rightarrow q$ can be also read as
- If p then q
$-p$ implies q
- If p, q
- p only if q
$-q$ if p
$-q$ when p
$-q$ whenever p
$-q$ follows from p
$-p$ is a sufficient condition for q (p is sufficient for q)
$-q$ is a necessary condition for p (q is necessary for p)

Logical Connective: Implication (3)

- Examples
- If you buy your air ticket in advance, it is cheaper.
- If x is an integer, then $x^{2} \geq 0$.
- If it rains, the grass gets wet.
- If the sprinklers operate, the grass gets wet.
- If $2+2=5$, then all unicorns are pink.

Exercise: Which of the following implications is true?

- If -1 is a positive number, then $2+2=5$

True. The premise is obviously false, thus no matter what the conclusion is, the implication holds.

- If -1 is a positive number, then $2+2=4$

True. Same as above.

- If you get an 100% on your Midterm 1, then you will have an A^{+}in CSCE235
False. Your grades homework, quizzes, Midterm 2, and Final, if they are bad, would prevent you from having an A^{+}.

Logical Connective: Biconditional (1)

- Definition: The biconditional $p \leftrightarrow q$ is the proposition that is true when p and q have the same truth values. It is false otherwise.
- Note that it is equivalent to $(p \rightarrow q) \wedge(q \rightarrow p)$
- Truth table

p	q	$p \wedge q$	$p \vee q$	$p \oplus q$	$p \Rightarrow q$	$p \Leftrightarrow q$
0	0	0	0	0	1	
0	1	0	1	1	1	
1	0	0	1	1	0	
1	1	1	1	0	1	

Logical Connective: Biconditional (2)

- The biconditional $p \leftrightarrow q$ can be equivalently read as
- p if and only if q
$-p$ is a necessary and sufficient condition for q
- if p then q, and conversely
- p iff q
- Examples
$-x>0$ if and only if x^{2} is positive
- The alarm goes off iff a burglar breaks in
- You may have pudding iff you eat your meat

Exercise: Which of the following biconditionals is true?

- $x^{2}+y^{2}=0$ if and only if $x=0$ and $y=0$

True. Both implications hold

- $2+2=4$ if and only if $\sqrt{ } 2<2$

True. Both implications hold.

- $x^{2} \geq 0$ if and only if $x \geq 0$

False. The implication "if $x \geq 0$ then $x^{2} \geq 0$ " holds.
However, the implication "if $x^{2} \geq 0$ then $x \geq 0$ " is false.
Consider $\mathrm{x}=-1$.
The hypothesis $(-1)^{2}=1 \geq 0$ but the conclusion fails.

Converse, Inverse, Contrapositive

- Consider the proposition $p \rightarrow q$
- Its converse is the proposition $q \rightarrow p$
- Its inverse is the proposition $\neg p \rightarrow \neg q$
- Its contrapositive is the proposition $\neg q \rightarrow \neg p$

Truth Tables

- Truth tables are used to show/define the relationships between the truth values of
- the individual propositions and
- the compound propositions based on them

p	q	$p \wedge q$	$p \vee q$	$p \oplus q$	$p \Rightarrow q$	$p \Leftrightarrow q$
0	0	0	0	0	1	1
0	1	0	1	1	1	0
1	0	0	1	1	0	0
1	1	1	1	0	1	1

Constructing Truth Tables

- Construct the truth table for the following compound proposition

$$
((p \wedge q) \vee \neg q)
$$

p	q	$p \wedge q$	$\neg q$	$((p \wedge q) \vee \neg q)$
0	0	0	1	1
0	1	0	0	0
1	0	0	1	1
1	1	1	0	1

Outine

- Defining Propositional Logic
- Propositions
- Connectives
- Precedence of Logical Operators
- Truth tables
- Usefulness of Logic
- Bitwise operations
- Logic in Theoretical Computer Science (SAT)
- Logic in Programming
- Logical Equivalences
- Terminology
- Truth tables
- Equivalence rules

Usefulness of Logic

- Logic is more precise than natural language
- You may have cake or ice cream.
- Can I have both?
- If you buy your air ticket in advance, it is cheaper.
- Are there not cheap last-minute tickets?
- For this reason, logic is used for hardware and software specification or verification
- Given a set of logic statements,
- One can decide whether or not they are satisfiable (i.e., consistent), although this is a costly process...

Bitwise Operations

- Computers represent information as bits (binary digits)
- A bit string is a sequence of bits
- The length of the string is the number of bits in the string
- Logical connectives can be applied to bit strings of equal length
- Example

> 011010101101
> 010100101111

Bitwise OR 011110101111
Bitwise AND
Bitwise XOR

Logic in TCS

- What is SAT? SAT is the problem of determining whether or not a sentence in propositional logic $(P L)$ is satisfiable.
- Given: a PL sentence
- Question: Determine whether or not it is satisfiable
- Characterizing SAT as an NP-complete problem (complexity class) is at the foundation of Theoretical Computer Science.
- What is a PL sentence? What does satisfiable mean?

Logic in TCS: A Sentence in PL

- A Boolean variable is a variable that can have a value 1 or 0 . Thus, Boolean variable is a proposition.
- A term is a Boolean variable
- A literal is a term or its negation
- A clause is a disjunction of literals
- A sentence in PL is a conjunction of clauses
- Example: $(a \vee b \vee \neg c \vee \neg d) \wedge(\neg b \vee c) \wedge(\neg a \vee c \vee d)$
- A sentence in PL is satisfiable iff
- we can assign a truth value
- to each Boolean variables
- such that the sentence evaluates to true (i.e., holds)

SAT in TCS

- Problem
- Given: A sentence in PL (a complex proposition), which is
- Boolean variables connected with logical connectives
- Usually, as a conjunction of clauses (CNF = Conjunctive Normal Form)
- Question:
- Find an assignment of truth values [0|1] to the variables
- That makes the sentence true, i.e. the sentence holds

Logic in Programming: Example 1

- Say you need to define a conditional statement as follows:
- Increment x if the following condition holds

$$
(x>0 \text { and } x<10) \text { or } x=10
$$

- You may try: If $(0<x<10$ OR $x=10) x++;$
- Can' t be written in C++ or Java
- How can you modify this statement by using logical equivalence
- Answer: If ($x>0$ AND $x<=10) x++$;

Logic in Programming: Example 2

- Say we have the following loop

While

```
((i<size AND A[i]>10) OR
(i<size AND A[i]<0) OR
(i<size AND (NOT (A[i]!=0 AND NOT (A[i]>=10)))))
```

- Is this a good code? Keep in mind:
- Readability
- Extraneous code is inefficient and poor style
- Complicated code is more prone to errors and difficult to debug
- Solution? Comes later...

Outline

- Defining Propositional Logic
- Propositions
- Connectives
- Precedence of Logical Operators
- Truth tables
- Usefulness of Logic
- Bitwise operations
- Logic in Theoretical Computer Science (SAT)
- Logic in Programming
- Logical Equivalences
- Terminology
- Truth tables
- Equivalence rules

Propositional Equivalences: Introduction

- In order to manipulate a set of statements (here, logical propositions) for the sake of mathematical argumentation, an important step is to replace
- one statement with
- another equivalent statement
- (i.e., with the same truth value)
- Below, we discuss
- Terminology
- Establishing logical equivalences using truth tables
- Establishing logical equivalences using known laws (of logical equivalences)

Terminology:

Tautology, Contradictions, Contingencies

- Definitions
- A compound proposition that is always true, no matter what the truth values of the propositions that occur in it is called a tautology
- A compound proposition that is always false is called a contradiction
- A proposition that is neither a tautology nor a contradiction is a contingency
- Examples
- A simple tautology is $p \vee \neg p$
- A simple contradiction is $p \wedge \neg p$

Logical Equivalences: Definition

- Definition: Propositions p and q are logically equivalent if $p \leftrightarrow q$ is a tautology.
- Informally, p and q are equivalent if whenever p is true, q is true, and vice versa
- Notation: $p \equiv q$ (p is equivalent to q), $p \leftrightarrow q$, and $p \Leftrightarrow q$
- Alert: \equiv is not a logical connective

Logical Equivalences: Example 1

- Are the propositions $(p \rightarrow q)$ and $(\neg p \vee q)$ logically equivalent?
- To find out, we construct the truth tables for each:

p	q	$p \rightarrow q$	$\neg p$	$\neg p \vee q$
0	0			
0	1			
1	0			
1	1			

The two columns in the truth table are identical, thus we conclude that

$$
(p \rightarrow q) \equiv(\neg p \vee q)
$$

Logical Equivalences: Example 1

- Show that
(Exercise 25 from Rosen)

$$
(p \rightarrow r) \vee(q \rightarrow r) \equiv(p \wedge q) \rightarrow r
$$

p	q	r	$p \rightarrow r$	$q \rightarrow r$	$(p \rightarrow r) \vee(q \rightarrow r)$	$p \wedge q$	$(p \wedge q) \rightarrow r$
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

Propositional Equivalences: Introduction

- In order to manipulate a set of statements (here, logical propositions) for the sake of mathematical argumentation, an important step is to replace
- one statement with
- another equivalent statement
- (i.e., with the same truth value)
- Below, we discuss
- Terminology
- Establishing logical equivalences using truth tables
- Establishing logical equivalences using known laws (of logical equivalences)

Logical Equivalences: Cheat Sheet

- Table of logical equivalences can be found in Rosen (Table 6, page 27)
- These and other can be found in a handout on the course web page: http://www.cse.unl.edu/~choueiry/LogicalEquivalences3.pdf
- Let's take a quick look at this Cheat Sheet

Using Logical Equivalences: Example 1

- Logical equivalences can be used to construct additional logical equivalences
- Example: Show that $(p \wedge q) \rightarrow q$ is a tautology

0. $(p \wedge q) \rightarrow q$
1. $\equiv \neg(p \wedge q) \vee q$
2. $\equiv(\neg p \vee \neg q) \vee q$
3. $\equiv \neg p \vee(\neg q \vee q)$
4. $\equiv \neg p \vee 1$
5. $\equiv 1$
Implication Law on 0
De Morgan's Law ($1^{\text {st }}$) on 1
Associative Law on 2
Negation Law on 3
Domination Law on 4

My Advice

- Remove double implication
- Replace implication by disjunction
- Push negation inwards
- Distribute

Using Logical Equivalences: Example 2

- Example (Exercise 17)*: Show that $\neg(p \leftrightarrow q) \equiv(p \leftrightarrow \neg q)$
- Sometimes it helps to start with the second proposition ($p \leftrightarrow \neg q$)

0. $(p \leftrightarrow \neg q)$
1. $\equiv(p \rightarrow \neg q) \wedge(\neg q \rightarrow p)$

Equivalence Law on 0
2. $\equiv(\neg p \vee \neg q) \wedge(q \vee p)$

Implication Law on
3. $\equiv \neg(\neg((\neg p \vee \neg q) \wedge(q \vee p)))$
4. $\equiv \neg(\neg(\neg p \vee \neg q) \vee \neg(q \vee p))$
5. $\equiv \neg((p \wedge q) \vee(\neg q \wedge \neg p))$
6. $\equiv \neg((p \vee \neg q) \wedge(p \vee \neg p) \wedge(q \vee \neg q) \wedge(q \vee \neg p))$

Double negation on 2
De Morgan's Law...
De Morgan's Law
Distribution Law
7. $\equiv \neg((p \vee \neg q) \wedge(q \vee \neg p))$

Identity Law
8. $\equiv \neg((q \rightarrow p) \wedge(p \rightarrow q))$
9. $\equiv \neg(p \leftrightarrow q)$

Implication Law
Equivalence Law
*See Table 8 (p 25) but you are not allowed to use the table for the proof

Using Logical Equivalences: Example 3

- Show that $\neg(q \rightarrow p) \vee(p \wedge q) \equiv q$

$$
\begin{aligned}
\text { 0. } & \neg(q \rightarrow p) \vee(p \wedge q) \\
\text { 1. } & \equiv \neg(\neg q \vee p) \vee(p \wedge q) \\
\text { 2. } & \equiv(q \wedge \neg p) \vee(p \wedge q) \\
\text { 3. } & \equiv(q \wedge \neg p) \vee(q \wedge p) \\
\text { 4. } & \equiv q \wedge(\neg p \vee p) \\
\text { 5. } & \equiv q \wedge 1 \\
& \equiv q
\end{aligned}
$$

Proving Logical Equivalences: Summary

- Proving two PL sentences A, B are equivalent using TT + EL

1. Verify that the 2 columns of A, B in the truth table are the same (i.e., A, B have the same models)
2. Verify that the column of $(A \rightarrow B) \wedge(B \rightarrow A)$ in the truth table has all 1 entries (it is a tautology)
3. Apply a sequence of Equivalence Laws

- Put A, B in CNF, they should be the same
- Sequence of equivalence laws: Biconditional, implication, moving negation inwards, distributivity

4. Apply a sequence of Inference Laws

- Starting from one sentence, usually the most complex one,
- Until reaching the second sentence
- And repeat the converse (vice versa)

Logic in Programming: Example 2 (revisited)

- Recall the loop

While

```
((i<size AND A[i]>10) OR
    (i<size AND A[i]<0) OR
    (i<size AND (NOT (A[i]!=0 AND NOT (A[i]>=10)))))
```

- Now, using logical equivalences, simplify it!
- Using De Morgan's Law and Distributivity

$$
\begin{aligned}
\text { While } & ((i< \\
& (\text { size }) \text { AND } \\
& (A[i]>10 \text { OR A[i]<0) OR } \\
& (A[i]==0 \text { OR A[i]>=10))) }
\end{aligned}
$$

- Noticing the ranges of the 4 conditions of A [i]

While ((i<size) AND (A[i]>=10 OR A[i]<=0))

Programming Pitfall Note

- In C, C++ and Java, applying the commutative law is not such a good idea.
- For example, consider accessing an integer array A of size n :
if (i<n \&\& A[i]==O) i++; is not equivalent to
if (A[i]==0 \&\& i<n) i++;

