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Introduction: Logic?

• We will study
– Propositional Logic (PL)
– First-Order Logic (FOL)

• Logic
– is the study of the logic relationships between 

objects and 
– forms the basis of all mathematical reasoning and 

all automated reasoning
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Introduction: PL?

• Topic

Propositional Logic (PL) = Propositional Calculus = 

Sentential Logic 

• In PL, the objects are called propositions

• Definition:  A proposition is a statement that is 

either true or false, but not both

• We usually denote a proposition by a letter: 

p, q, r, s, …
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Outline
• Defining Propositional Logic

– Propositions
– Connectives
– Precedence of Logical Operators
– Truth tables

• Usefulness of Logic
– Bitwise operations
– Logic in Theoretical Computer Science (SAT)
– Logic in Programming

• Logical Equivalences
– Terminology
– Truth tables
– Equivalence rules
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Introduction: Proposition

• Definition:  The value of a proposition is called 
its truth value; denoted by 
– T or 1 if it is true or
– F or 0 if it is false

• Opinions, interrogatives, and imperatives are 
not propositions

• Truth table p
0
1
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Propositions: Examples

• The following are propositions
– Today is Monday M
– The grass is wet W
– It is raining R

• The following are not propositions
– C++ is the best language                                 Opinion
– When is the pretest? Interrogative
– Do your homework Imperative
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Are these propositions?

• 2+2=5
• Every integer is divisible by 12
– ALERT: This statement is not a proposition: we 

cannot determine whether it is true or false.
• Microsoft is an excellent company
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Logical connectives
• Connectives are used to create a compound 

proposition from two or more propositions
– Negation (e.g., ¬a or !a or ā) $\neg$, $\bar$
– And or logical conjunction (denoted Ù) $\wedge$
– OR or logical disjunction (denoted Ú) $\vee$
– XOR or exclusive or (denoted Å) $\oplus$
– Impli ion (denoted Þ or ®)

$\Rightarrow$, $\rightarrow$
– Biconditional (denoted Û or «)

$\LeftRightarrow$, $\leftrightarrow$
• We define the meaning (semantics) of the logical 

connectives using truth tables
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Precedence of Logical Operators
• As in arithmetic, an ordering is imposed on the use of logical 

operators in compound propositions
• However, it is preferable to use parentheses to disambiguate 

operators and facilitate readability
¬ p Ú q Ù ¬ r º (¬p) Ú (q Ù (¬r))

• To avoid unnecessary parenthesis, the following precedences
hold:
1. Negation (¬)
2. Conjunction (Ù)
3. Disjunction (Ú)
4. Implication (®)
5. Biconditional («)
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Logical Connective: Negation

• ¬p, the negation  of a proposition p, is also a 
proposition

• Examples:
– Today is not Monday
– It is not the case that today is Monday, etc.

• Truth table
p ¬p

0 1

1 0
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Logical Connective: Logical And

• The logical connective And is true only when both of the 
propositions are true.  It is also called a conjunction

• Examples
– It is raining and it is warm

– (2+3=5) and (1<2)

– Schroedinger�s cat is dead and Schroedinger�s cat is not dead.

• Truth table
p q pÙq 
0 0

0 1

1 0

1 1
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Logical Connective: Logical OR

• The logical disjunction, or logical OR, is true if one or 
both of the propositions are true.

• Examples
– It is raining or it is the second lecture

– (2+2=5) Ú (1<2)

– You may have cake or ice cream

• Truth table p q pÙq pÚq
0 0 0

0 1 0

1 0 0

1 1 1
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Logical Connective: Exclusive Or
• The exclusive OR, or XOR, of two propositions is true when 

exactly one of the propositions is true and the other one is 
false

• Example
– The circuit is either ON or OFF but not both
– Let ab<0, then either a<0 or b<0 but not both
– You may have cake or ice cream, but not both

• Truth table p q pÙq pÚq pÅq
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1
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Logical Connective: Implication (1)

• Definition: Let p and q be two propositions.  The 
implication p®q is the proposition that is false when 
p is true and q is false and true otherwise
– p is called the hypothesis, antecedent, premise
– q is called the conclusion, consequence

• Truth table
p q pÙq pÚq pÅq pÞq
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0
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Logical Connective: Implication (2)
• The implication of p®q can be also read as
– If p then q
– p implies q
– If p, q
– p only if q
– q if p
– q when p
– q whenever p
– q follows from p
– p is a sufficient condition for q (p is sufficient for q)
– q is a necessary condition for p (q is necessary for p)
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Logical Connective: Implication (3)

• Examples
– If you buy your air ticket in advance, it is cheaper.
– If x is an integer, then x2 ³ 0.
– If it rains, the grass gets wet.
– If the sprinklers operate, the grass gets wet.
– If 2+2=5, then all unicorns are pink.
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Exercise: Which of the following implications is true?

• If -1 is a positive number, then 2+2=5

• If -1 is a positive number, then 2+2=4

• If you get an 100% on your Midterm 1, then 

you will have an A+ in CSCE235

True.  The premise is obviously false, thus no matter what the 

conclusion is, the implication holds.

True.  Same as above.

False.  Your grades homework, quizzes, Midterm 2, and Final, if 

they are bad, would prevent you from having an A+.
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Logical Connective: Biconditional (1)

• Definition: The biconditional p«q is the 
proposition that is true when p and q have the 
same truth values.  It is false otherwise.

• Note that it is equivalent to (p®q)Ù(q®p)
• Truth table p q pÙq pÚq pÅq pÞq pÛq

0 0 0 0 0 1
0 1 0 1 1 1
1 0 0 1 1 0
1 1 1 1 0 1
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Logical Connective: Biconditional (2)

• The biconditional p«q can be equivalently read 
as
– p if and only if q
– p is a necessary and sufficient condition for q
– if p then q, and conversely
– p iff q

• Examples
– x>0 if and only if x2 is positive 
– The alarm goes off iff a burglar breaks in
– You may have pudding iff you eat your meat
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Exercise: Which of the following biconditionals is true?

• x2 + y2 = 0 if and only if x=0 and y=0

• 2 + 2 = 4 if and only if Ö2<2

• x2 ³ 0 if and only if x ³ 0

True.  Both implications hold

True.  Both implications hold.

False.  The implication �if x ³ 0 then x2 ³ 0� holds.  
However, the implication �if x2 ³ 0 then x ³ 0� is false.  
Consider x=-1. 
The hypothesis (-1)2=1 ³ 0 but the conclusion fails.
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Converse, Inverse, Contrapositive

• Consider the proposition p ® q
– Its converse is the proposition q ® p
– Its inverse is the proposition ¬p ® ¬q
– Its contrapositive is the proposition ¬q ® ¬p
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Truth Tables

• Truth tables are used to show/define the 
relationships between the truth values of
– the individual propositions and
– the compound propositions based on them

p q pÙq pÚq pÅq pÞq pÛq

0 0 0 0 0 1 1
0 1 0 1 1 1 0
1 0 0 1 1 0 0
1 1 1 1 0 1 1
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Constructing Truth Tables

• Construct the truth table for the following 
compound proposition

(( p Ù q )Ú ¬q )

p q pÙq ¬q (( p Ù q )Ú ¬q )

0 0 0 1 1
0 1 0 0 0
1 0 0 1 1
1 1 1 0 1
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Outline
• Defining Propositional Logic

– Propositions
– Connectives
– Precedence of Logical Operators
– Truth tables

• Usefulness of Logic
– Bitwise operations
– Logic in Theoretical Computer Science (SAT)
– Logic in Programming

• Logical Equivalences
– Terminology
– Truth tables
– Equivalence rules
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Usefulness of Logic
• Logic is more precise than natural language
– You may have cake or ice cream.  

• Can I have both?
– If you buy your air ticket in advance, it is cheaper.

• Are there not cheap last-minute tickets?

• For this reason, logic is used for hardware and 
software specification or verification
– Given a set of logic statements, 
– One can decide whether or not they are satisfiable

(i.e., consistent), although this is a costly process…
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Bitwise Operations

• Computers represent information as bits (binary digits)

• A bit string is a sequence of bits

• The length of the string is the number of bits in the string

• Logical connectives can be applied to bit strings of equal 

length

• Example 0110 1010 1101

0101 0010 1111

_____________

Bitwise OR 0111 1010 1111

Bitwise AND ...

Bitwise XOR …
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Logic in TCS
• What is SAT? SAT is the problem of determining 

whether or not a sentence in propositional logic 
(PL) is satisfiable.
– Given: a PL sentence
– Question: Determine whether or not it is satisfiable

• Characterizing SAT as an NP-complete problem 
(complexity class) is at the foundation of 
Theoretical Computer Science.

• What is a PL sentence? What does satisfiable 
mean?
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Logic in TCS: A Sentence in PL
• A Boolean variable is a variable that can have a value 1 

or 0.   Thus,  Boolean variable is a proposition.
• A term is a Boolean variable
• A literal is a term or its negation
• A clause is a disjunction of literals
• A sentence in PL is a conjunction of clauses
• Example: (a Ú b Ú ¬c Ú ¬d) Ù (¬b Ú c) Ù (¬a Ú c Ú d)
• A sentence in PL is satisfiable iff 

– we can assign a truth value 
– to each Boolean variables
– such that the sentence evaluates to true (i.e., holds)
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SAT in TCS

• Problem
– Given:  A sentence in PL (a complex proposition), 

which is
• Boolean variables connected with logical connectives
• Usually, as a conjunction of clauses (CNF = Conjunctive 

Normal Form)
– Question:  
• Find an assignment of truth values [0|1] to the variables
• That makes the sentence true, i.e. the sentence holds
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Logic in Programming: Example 1

• Say you need to define a conditional 
statement as follows:
– Increment x if the following condition holds

(x > 0 and x < 10) or x=10
• You may try: If (0<x<10 OR x=10) x++;
• Can�t be written in C++ or Java
• How can you modify this statement by using 

logical equivalence
• Answer: If (x>0 AND x<=10) x++;
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Logic in Programming: Example 2
• Say we have the following loop

While
((i<size AND A[i]>10) OR
(i<size AND A[i]<0) OR
(i<size AND (NOT (A[i]!=0 AND NOT (A[i]>=10)))))

• Is this a good code? Keep in mind:
– Readability
– Extraneous code is inefficient and poor style
– Complicated code is more prone to errors and difficult 

to debug
– Solution?  Comes later…  
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Outline
• Defining Propositional Logic

– Propositions
– Connectives
– Precedence of Logical Operators
– Truth tables

• Usefulness of Logic
– Bitwise operations
– Logic in Theoretical Computer Science (SAT)
– Logic in Programming

• Logical Equivalences
– Terminology
– Truth tables
– Equivalence rules
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Propositional Equivalences: Introduction

• In order to manipulate a set of statements (here, 
logical propositions) for the sake of mathematical 
argumentation, an important step is to replace
• one statement with 
• another equivalent statement 
• (i.e., with the same truth value)

• Below, we discuss
– Terminology
– Establishing logical equivalences using truth tables
– Establishing logical equivalences using known laws (of 

logical equivalences)
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Terminology: 
Tautology, Contradictions, Contingencies
• Definitions
– A compound proposition that is always true, no 

matter what the truth values of the propositions that 
occur in it is called a tautology

– A compound proposition that is always false is called a 
contradiction

– A proposition that is neither a tautology nor a 
contradiction is a contingency

• Examples
– A simple tautology is p Ú ¬p
– A simple contradiction is p Ù ¬p
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Logical Equivalences: Definition

• Definition: Propositions p and q are logically 
equivalent if p « q is a tautology.

• Informally, p and q are equivalent if whenever 
p is true, q is true, and vice versa

• Notation: p º q (p is equivalent to q), p « q, 
and p Û q

• Alert: º is not a logical connective     $\equiv$
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Logical Equivalences: Example 1

• Are the propositions (p ® q) and (¬p Ú q) 
logically equivalent?

• To find out, we construct the truth tables for 
each: p q p®q ¬p ¬pÚq

0 0
0 1
1 0
1 1

The two columns in the truth table are identical, thus we conclude that
(p ® q) º (¬p Ú q)
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Logical Equivalences: Example 1

• Show that (Exercise 25 from Rosen)
(p® r) Ú (q® r) º (p Ù q) ® r

p q r p® r q® r (p® r) Ú (q® r) p Ù q (p Ù q) ® r
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
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• In order to manipulate a set of statements (here, 
logical propositions) for the sake of mathematical 
argumentation, an important step is to replace
• one statement with 
• another equivalent statement 
• (i.e., with the same truth value)

• Below, we discuss
– Terminology
– Establishing logical equivalences using truth tables
– Establishing logical equivalences using known laws 

(of logical equivalences)

Propositional Equivalences: Introduction
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Logical Equivalences: Cheat Sheet

• Table of logical equivalences can be found in 
Rosen (Table 6, page 27)

• These and other can be found in a handout on 
the course web page: 
http://www.cse.unl.edu/~choueiry/LogicalEquivalences3.pdf

• Let�s take a quick look at this Cheat Sheet

http://www.cse.unl.edu/~choueiry/LogicalEquivalences3.pdf
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Using Logical Equivalences: Example 1

• Logical equivalences can be used to construct 
additional logical equivalences

• Example: Show that (p Ù q) ®q is a tautology
0.    (p Ù q) ®q
1.     º ¬(p Ù q) Ú q Implication Law on 0
2. º (¬p Ú ¬q) Ú q                         De Morgan�s Law (1st) on 1
3. º ¬p Ú (¬q Ú q)                                     Associative Law on 2
4. º ¬p Ú 1 Negation Law on 3
5. º 1                                                          Domination Law on 4



LogicCSCE 235 41

My Advice

• Remove double implication
• Replace implication by disjunction
• Push negation inwards
• Distribute
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Using Logical Equivalences: Example 2

• Example (Exercise 17)*: Show that ¬(p « q) º (p « ¬q)
• Sometimes it helps to start with the second proposition (p « ¬q)

0.    (p « ¬q)
1. º (p ® ¬q) Ù (¬q ® p)    Equivalence Law on 0
2. º (¬p Ú ¬q) Ù (q Ú p) Implication Law on 
1
3. º ¬(¬((¬p Ú ¬q) Ù (q Ú p))) Double negation on 2
4. º ¬(¬(¬p Ú ¬q) Ú ¬(q Ú p)) De Morgan�s Law…
5. º ¬((p Ù q) Ú (¬q Ù ¬p)) De Morgan�s Law
6.       º ¬((p Ú ¬q) Ù (p Ú ¬p) Ù (q Ú ¬q) Ù (q Ú ¬p)) Distribution Law
7. º ¬((p Ú ¬q) Ù (q Ú ¬p)) Identity Law
8. º ¬((q ® p ) Ù (p ® q)) Implication Law
9. º ¬(p « q) Equivalence Law
*See Table 8 (p 25) but you are not allowed to use the table for the proof
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Using Logical Equivalences: Example 3

• Show that ¬(q ® p) Ú (p Ù q) º q
0. ¬(q ® p) Ú (p Ù q) 
1. º ¬(¬q Ú p) Ú (p Ù q)   Implication Law
2. º (q Ù ¬p) Ú (p Ù q) De Morgan�s 

& Double negation

3.  º (q Ù ¬p) Ú (q Ù p) Commutative Law
4. º q Ù (¬p Ú p) Distributive Law
5. º q Ù 1 Identity Law

º q Identity Law
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Proving Logical Equivalences: Summary

• Proving two PL sentences A,B  are equivalent using TT + EL
1. Verify that the 2 columns of A, B in the truth table are the same (i.e., 

A,B have the same models)
2. Verify that the column of (A®B) Ù (B®A) in the truth table has all 1 

entries (it is a tautology)
3. Apply a sequence of Equivalence Laws

• Put A, B in CNF, they should be the same
• Sequence of equivalence laws: Biconditional, implication, moving 

negation inwards, distributivity
4. Apply a sequence of Inference Laws 

• Starting from one sentence, usually the most complex one,
• Until reaching the second sentence 
• And repeat the converse (vice versa)
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Logic in Programming: Example 2 
(revisited)

• Recall the loop
While

((i<size AND A[i]>10) OR
(i<size AND A[i]<0) OR
(i<size AND (NOT (A[i]!=0 AND NOT (A[i]>=10)))))

• Now, using logical equivalences, simplify it!
• Using De Morgan�s Law and Distributivity

While ((i<size) AND 
((A[i]>10 OR A[i]<0) OR
(A[i]==0 OR A[i]>=10)))

• Noticing the ranges of the 4 conditions of A[i]
While ((i<size) AND (A[i]>=10 OR A[i]<=0))
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Programming Pitfall Note

• In C, C++ and Java, applying the commutative 
law is not such a good idea. 

• For example, consider accessing an integer 
array A of size n:
if (i<n && A[i]==0) i++;

is not equivalent to
if (A[i]==0 && i<n) i++;


