
Introduction to Logic

Sections 1.1, 1.2, 1.3 of Rosen
Spring 2018

CSCE 235H Introduction to Discrete Structures (Honors)
URL: cse.unl.edu/~cse235h

All questions: Piazza

LogicCSCE 235 2

Introduction: Logic?

• We will study
– Propositional Logic (PL)
– First-Order Logic (FOL)

• Logic
– is the study of the logic relationships between

objects and
– forms the basis of all mathematical reasoning and

all automated reasoning

LogicCSCE 235 3

Introduction: PL?

• Topic

Propositional Logic (PL) = Propositional Calculus =

Sentential Logic

• In PL, the objects are called propositions

• Definition: A proposition is a statement that is

either true or false, but not both

• We usually denote a proposition by a letter:

p, q, r, s, …

LogicCSCE 235 4

Outline
• Defining Propositional Logic

– Propositions
– Connectives
– Precedence of Logical Operators
– Truth tables

• Usefulness of Logic
– Bitwise operations
– Logic in Theoretical Computer Science (SAT)
– Logic in Programming

• Logical Equivalences
– Terminology
– Truth tables
– Equivalence rules

LogicCSCE 235 5

Introduction: Proposition

• Definition: The value of a proposition is called
its truth value; denoted by
– T or 1 if it is true or
– F or 0 if it is false

• Opinions, interrogatives, and imperatives are
not propositions

• Truth table p
0
1

LogicCSCE 235 6

Propositions: Examples

• The following are propositions
– Today is Monday M
– The grass is wet W
– It is raining R

• The following are not propositions
– C++ is the best language Opinion
– When is the pretest? Interrogative
– Do your homework Imperative

LogicCSCE 235 7

Are these propositions?

• 2+2=5
• Every integer is divisible by 12
– ALERT: This statement is not a proposition: we

cannot determine whether it is true or false.
• Microsoft is an excellent company

LogicCSCE 235 8

Logical connectives
• Connectives are used to create a compound

proposition from two or more propositions
– Negation (e.g., ¬a or !a or ā) \neg, \bar
– And or logical conjunction (denoted Ù) \wedge
– OR or logical disjunction (denoted Ú) \vee
– XOR or exclusive or (denoted Å) \oplus
– Impli ion (denoted Þ or ®)

\Rightarrow, \rightarrow
– Biconditional (denoted Û or «)

\LeftRightarrow, \leftrightarrow
• We define the meaning (semantics) of the logical

connectives using truth tables

LogicCSCE 235 9

Precedence of Logical Operators
• As in arithmetic, an ordering is imposed on the use of logical

operators in compound propositions
• However, it is preferable to use parentheses to disambiguate

operators and facilitate readability
¬ p Ú q Ù ¬ r º (¬p) Ú (q Ù (¬r))

• To avoid unnecessary parenthesis, the following precedences
hold:
1. Negation (¬)
2. Conjunction (Ù)
3. Disjunction (Ú)
4. Implication (®)
5. Biconditional («)

LogicCSCE 235 10

Logical Connective: Negation

• ¬p, the negation of a proposition p, is also a
proposition

• Examples:
– Today is not Monday
– It is not the case that today is Monday, etc.

• Truth table
p ¬p

0 1

1 0

LogicCSCE 235 11

Logical Connective: Logical And

• The logical connective And is true only when both of the
propositions are true. It is also called a conjunction

• Examples
– It is raining and it is warm

– (2+3=5) and (1<2)

– Schroedinger�s cat is dead and Schroedinger�s cat is not dead.

• Truth table
p q pÙq
0 0

0 1

1 0

1 1

LogicCSCE 235 12

Logical Connective: Logical OR

• The logical disjunction, or logical OR, is true if one or
both of the propositions are true.

• Examples
– It is raining or it is the second lecture

– (2+2=5) Ú (1<2)

– You may have cake or ice cream

• Truth table p q pÙq pÚq
0 0 0

0 1 0

1 0 0

1 1 1

LogicCSCE 235 13

Logical Connective: Exclusive Or
• The exclusive OR, or XOR, of two propositions is true when

exactly one of the propositions is true and the other one is
false

• Example
– The circuit is either ON or OFF but not both
– Let ab<0, then either a<0 or b<0 but not both
– You may have cake or ice cream, but not both

• Truth table p q pÙq pÚq pÅq
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

LogicCSCE 235 14

Logical Connective: Implication (1)

• Definition: Let p and q be two propositions. The
implication p®q is the proposition that is false when
p is true and q is false and true otherwise
– p is called the hypothesis, antecedent, premise
– q is called the conclusion, consequence

• Truth table
p q pÙq pÚq pÅq pÞq
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

LogicCSCE 235 15

Logical Connective: Implication (2)
• The implication of p®q can be also read as
– If p then q
– p implies q
– If p, q
– p only if q
– q if p
– q when p
– q whenever p
– q follows from p
– p is a sufficient condition for q (p is sufficient for q)
– q is a necessary condition for p (q is necessary for p)

LogicCSCE 235 16

Logical Connective: Implication (3)

• Examples
– If you buy your air ticket in advance, it is cheaper.
– If x is an integer, then x2 ³ 0.
– If it rains, the grass gets wet.
– If the sprinklers operate, the grass gets wet.
– If 2+2=5, then all unicorns are pink.

LogicCSCE 235 17

Exercise: Which of the following implications is true?

• If -1 is a positive number, then 2+2=5

• If -1 is a positive number, then 2+2=4

• If you get an 100% on your Midterm 1, then

you will have an A+ in CSCE235

True. The premise is obviously false, thus no matter what the

conclusion is, the implication holds.

True. Same as above.

False. Your grades homework, quizzes, Midterm 2, and Final, if

they are bad, would prevent you from having an A+.

LogicCSCE 235 18

Logical Connective: Biconditional (1)

• Definition: The biconditional p«q is the
proposition that is true when p and q have the
same truth values. It is false otherwise.

• Note that it is equivalent to (p®q)Ù(q®p)
• Truth table p q pÙq pÚq pÅq pÞq pÛq

0 0 0 0 0 1
0 1 0 1 1 1
1 0 0 1 1 0
1 1 1 1 0 1

LogicCSCE 235 19

Logical Connective: Biconditional (2)

• The biconditional p«q can be equivalently read
as
– p if and only if q
– p is a necessary and sufficient condition for q
– if p then q, and conversely
– p iff q

• Examples
– x>0 if and only if x2 is positive
– The alarm goes off iff a burglar breaks in
– You may have pudding iff you eat your meat

LogicCSCE 235 20

Exercise: Which of the following biconditionals is true?

• x2 + y2 = 0 if and only if x=0 and y=0

• 2 + 2 = 4 if and only if Ö2<2

• x2 ³ 0 if and only if x ³ 0

True. Both implications hold

True. Both implications hold.

False. The implication �if x ³ 0 then x2 ³ 0� holds.
However, the implication �if x2 ³ 0 then x ³ 0� is false.
Consider x=-1.
The hypothesis (-1)2=1 ³ 0 but the conclusion fails.

LogicCSCE 235 21

Converse, Inverse, Contrapositive

• Consider the proposition p ® q
– Its converse is the proposition q ® p
– Its inverse is the proposition ¬p ® ¬q
– Its contrapositive is the proposition ¬q ® ¬p

LogicCSCE 235 22

Truth Tables

• Truth tables are used to show/define the
relationships between the truth values of
– the individual propositions and
– the compound propositions based on them

p q pÙq pÚq pÅq pÞq pÛq

0 0 0 0 0 1 1
0 1 0 1 1 1 0
1 0 0 1 1 0 0
1 1 1 1 0 1 1

LogicCSCE 235 23

Constructing Truth Tables

• Construct the truth table for the following
compound proposition

((p Ù q)Ú ¬q)

p q pÙq ¬q ((p Ù q)Ú ¬q)

0 0 0 1 1
0 1 0 0 0
1 0 0 1 1
1 1 1 0 1

LogicCSCE 235 24

Outline
• Defining Propositional Logic

– Propositions
– Connectives
– Precedence of Logical Operators
– Truth tables

• Usefulness of Logic
– Bitwise operations
– Logic in Theoretical Computer Science (SAT)
– Logic in Programming

• Logical Equivalences
– Terminology
– Truth tables
– Equivalence rules

LogicCSCE 235 25

Usefulness of Logic
• Logic is more precise than natural language
– You may have cake or ice cream.

• Can I have both?
– If you buy your air ticket in advance, it is cheaper.

• Are there not cheap last-minute tickets?

• For this reason, logic is used for hardware and
software specification or verification
– Given a set of logic statements,
– One can decide whether or not they are satisfiable

(i.e., consistent), although this is a costly process…

LogicCSCE 235 26

Bitwise Operations

• Computers represent information as bits (binary digits)

• A bit string is a sequence of bits

• The length of the string is the number of bits in the string

• Logical connectives can be applied to bit strings of equal

length

• Example 0110 1010 1101

0101 0010 1111

Bitwise OR 0111 1010 1111

Bitwise AND ...

Bitwise XOR …

LogicCSCE 235 27

Logic in TCS
• What is SAT? SAT is the problem of determining

whether or not a sentence in propositional logic
(PL) is satisfiable.
– Given: a PL sentence
– Question: Determine whether or not it is satisfiable

• Characterizing SAT as an NP-complete problem
(complexity class) is at the foundation of
Theoretical Computer Science.

• What is a PL sentence? What does satisfiable
mean?

LogicCSCE 235 28

Logic in TCS: A Sentence in PL
• A Boolean variable is a variable that can have a value 1

or 0. Thus, Boolean variable is a proposition.
• A term is a Boolean variable
• A literal is a term or its negation
• A clause is a disjunction of literals
• A sentence in PL is a conjunction of clauses
• Example: (a Ú b Ú ¬c Ú ¬d) Ù (¬b Ú c) Ù (¬a Ú c Ú d)
• A sentence in PL is satisfiable iff

– we can assign a truth value
– to each Boolean variables
– such that the sentence evaluates to true (i.e., holds)

LogicCSCE 235 29

SAT in TCS

• Problem
– Given: A sentence in PL (a complex proposition),

which is
• Boolean variables connected with logical connectives
• Usually, as a conjunction of clauses (CNF = Conjunctive

Normal Form)
– Question:
• Find an assignment of truth values [0|1] to the variables
• That makes the sentence true, i.e. the sentence holds

LogicCSCE 235 30

Logic in Programming: Example 1

• Say you need to define a conditional
statement as follows:
– Increment x if the following condition holds

(x > 0 and x < 10) or x=10
• You may try: If (0<x<10 OR x=10) x++;
• Can�t be written in C++ or Java
• How can you modify this statement by using

logical equivalence
• Answer: If (x>0 AND x<=10) x++;

LogicCSCE 235 31

Logic in Programming: Example 2
• Say we have the following loop

While
((i<size AND A[i]>10) OR
(i<size AND A[i]<0) OR
(i<size AND (NOT (A[i]!=0 AND NOT (A[i]>=10)))))

• Is this a good code? Keep in mind:
– Readability
– Extraneous code is inefficient and poor style
– Complicated code is more prone to errors and difficult

to debug
– Solution? Comes later…

LogicCSCE 235 32

Outline
• Defining Propositional Logic

– Propositions
– Connectives
– Precedence of Logical Operators
– Truth tables

• Usefulness of Logic
– Bitwise operations
– Logic in Theoretical Computer Science (SAT)
– Logic in Programming

• Logical Equivalences
– Terminology
– Truth tables
– Equivalence rules

LogicCSCE 235 33

Propositional Equivalences: Introduction

• In order to manipulate a set of statements (here,
logical propositions) for the sake of mathematical
argumentation, an important step is to replace
• one statement with
• another equivalent statement
• (i.e., with the same truth value)

• Below, we discuss
– Terminology
– Establishing logical equivalences using truth tables
– Establishing logical equivalences using known laws (of

logical equivalences)

LogicCSCE 235 34

Terminology:
Tautology, Contradictions, Contingencies
• Definitions
– A compound proposition that is always true, no

matter what the truth values of the propositions that
occur in it is called a tautology

– A compound proposition that is always false is called a
contradiction

– A proposition that is neither a tautology nor a
contradiction is a contingency

• Examples
– A simple tautology is p Ú ¬p
– A simple contradiction is p Ù ¬p

LogicCSCE 235 35

Logical Equivalences: Definition

• Definition: Propositions p and q are logically
equivalent if p « q is a tautology.

• Informally, p and q are equivalent if whenever
p is true, q is true, and vice versa

• Notation: p º q (p is equivalent to q), p « q,
and p Û q

• Alert: º is not a logical connective \equiv

LogicCSCE 235 36

Logical Equivalences: Example 1

• Are the propositions (p ® q) and (¬p Ú q)
logically equivalent?

• To find out, we construct the truth tables for
each: p q p®q ¬p ¬pÚq

0 0
0 1
1 0
1 1

The two columns in the truth table are identical, thus we conclude that
(p ® q) º (¬p Ú q)

LogicCSCE 235 37

Logical Equivalences: Example 1

• Show that (Exercise 25 from Rosen)
(p® r) Ú (q® r) º (p Ù q) ® r

p q r p® r q® r (p® r) Ú (q® r) p Ù q (p Ù q) ® r
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

LogicCSCE 235 38

• In order to manipulate a set of statements (here,
logical propositions) for the sake of mathematical
argumentation, an important step is to replace
• one statement with
• another equivalent statement
• (i.e., with the same truth value)

• Below, we discuss
– Terminology
– Establishing logical equivalences using truth tables
– Establishing logical equivalences using known laws

(of logical equivalences)

Propositional Equivalences: Introduction

LogicCSCE 235 39

Logical Equivalences: Cheat Sheet

• Table of logical equivalences can be found in
Rosen (Table 6, page 27)

• These and other can be found in a handout on
the course web page:
http://www.cse.unl.edu/~choueiry/LogicalEquivalences3.pdf

• Let�s take a quick look at this Cheat Sheet

http://www.cse.unl.edu/~choueiry/LogicalEquivalences3.pdf

LogicCSCE 235 40

Using Logical Equivalences: Example 1

• Logical equivalences can be used to construct
additional logical equivalences

• Example: Show that (p Ù q) ®q is a tautology
0. (p Ù q) ®q
1. º ¬(p Ù q) Ú q Implication Law on 0
2. º (¬p Ú ¬q) Ú q De Morgan�s Law (1st) on 1
3. º ¬p Ú (¬q Ú q) Associative Law on 2
4. º ¬p Ú 1 Negation Law on 3
5. º 1 Domination Law on 4

LogicCSCE 235 41

My Advice

• Remove double implication
• Replace implication by disjunction
• Push negation inwards
• Distribute

LogicCSCE 235 42

Using Logical Equivalences: Example 2

• Example (Exercise 17)*: Show that ¬(p « q) º (p « ¬q)
• Sometimes it helps to start with the second proposition (p « ¬q)

0. (p « ¬q)
1. º (p ® ¬q) Ù (¬q ® p) Equivalence Law on 0
2. º (¬p Ú ¬q) Ù (q Ú p) Implication Law on
1
3. º ¬(¬((¬p Ú ¬q) Ù (q Ú p))) Double negation on 2
4. º ¬(¬(¬p Ú ¬q) Ú ¬(q Ú p)) De Morgan�s Law…
5. º ¬((p Ù q) Ú (¬q Ù ¬p)) De Morgan�s Law
6. º ¬((p Ú ¬q) Ù (p Ú ¬p) Ù (q Ú ¬q) Ù (q Ú ¬p)) Distribution Law
7. º ¬((p Ú ¬q) Ù (q Ú ¬p)) Identity Law
8. º ¬((q ® p) Ù (p ® q)) Implication Law
9. º ¬(p « q) Equivalence Law
*See Table 8 (p 25) but you are not allowed to use the table for the proof

LogicCSCE 235 43

Using Logical Equivalences: Example 3

• Show that ¬(q ® p) Ú (p Ù q) º q
0. ¬(q ® p) Ú (p Ù q)
1. º ¬(¬q Ú p) Ú (p Ù q) Implication Law
2. º (q Ù ¬p) Ú (p Ù q) De Morgan�s

& Double negation

3. º (q Ù ¬p) Ú (q Ù p) Commutative Law
4. º q Ù (¬p Ú p) Distributive Law
5. º q Ù 1 Identity Law

º q Identity Law

LogicCSCE 235 44

Proving Logical Equivalences: Summary

• Proving two PL sentences A,B are equivalent using TT + EL
1. Verify that the 2 columns of A, B in the truth table are the same (i.e.,

A,B have the same models)
2. Verify that the column of (A®B) Ù (B®A) in the truth table has all 1

entries (it is a tautology)
3. Apply a sequence of Equivalence Laws

• Put A, B in CNF, they should be the same
• Sequence of equivalence laws: Biconditional, implication, moving

negation inwards, distributivity
4. Apply a sequence of Inference Laws

• Starting from one sentence, usually the most complex one,
• Until reaching the second sentence
• And repeat the converse (vice versa)

LogicCSCE 235 45

Logic in Programming: Example 2
(revisited)

• Recall the loop
While

((i<size AND A[i]>10) OR
(i<size AND A[i]<0) OR
(i<size AND (NOT (A[i]!=0 AND NOT (A[i]>=10)))))

• Now, using logical equivalences, simplify it!
• Using De Morgan�s Law and Distributivity

While ((i<size) AND
((A[i]>10 OR A[i]<0) OR
(A[i]==0 OR A[i]>=10)))

• Noticing the ranges of the 4 conditions of A[i]
While ((i<size) AND (A[i]>=10 OR A[i]<=0))

LogicCSCE 235 46

Programming Pitfall Note

• In C, C++ and Java, applying the commutative
law is not such a good idea.

• For example, consider accessing an integer
array A of size n:
if (i<n && A[i]==0) i++;

is not equivalent to
if (A[i]==0 && i<n) i++;

