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Outline	

•  Mo7va7on	
•  What	is	induc7on?	

–  Viewed	as:	the	Well-Ordering	Principle,		Universal	
Generaliza7on	

–  Formal	Statement	
–  6	Examples	

•  Strong	Induc7on	
–  Defini7on	
–  Examples:	decomposi7on	into	product	of	primes,	gcd	
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Mo7va7on	

•  How	can	we	prove	the	following	proposi7on?	
∀x∈S	P(x)	

•  For	a	finite	set	S={s1,s2,…,sn},	we	can	prove	that	P(x)	
holds	for	each	element	because	of	the	equivalence	

P(s1)∧P(s2)∧…∧P(sn)	

•  For	an	infinite	set,	we	can	try	to	use	universal	
generaliza7on	

•  Another,	more	sophis7cated	way	is	to	use	induc&on	
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What	Is	Induc7on?	

•  If	a	statement	P(n0)	is	true	for	some	nonnega7ve	
integer	say	n0=1	

•  Suppose	that	we	are	able	to	prove	that	if	P(k)	is	true	
for	k	≥	n0,	then	P(k+1)	is	also	true	

P(k)	⇒	P(k+1)	
•  It	follows	from	these	two	statement	that	P(n)	is	true	
for	all	n	≥	n0,	that	is	

∀n ≥ n0 P(n)	

•  The	above	is	the	basis	of	induc7on,	a	‘widely’	used	
proof	technique	and	a	very	powerful	one	
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The	Well-Ordering	Principle	
•  Why	induc7on	is	a	legi7mate	proof	technique?	
•  At	its	heart,	induc7on	is	the	Well	Ordering	Principle	
•  Theorem:	Principle	of	Well	Ordering.	Every	nonempty	set	of	

nonnega7ve	integers	has	a	least	element	
•  Since,	every	such	has	a	least	element,	we	can	form	a	basis	

case	(using	the	least	element	as	the	basis	case	n0)	
•  We	can	then	proceed	to	establish	that	the	set	of	integers	

n≥n0	such	that	P(n)	is	false	is	actually	empty	
•  Thus,	induc7on	(both	‘weak’	and	‘strong’	forms)	are	logical	

equivalences	of	the	well-ordering	principle.		
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Another	View	
•  To	look	at	it	in	another	way,	assume	that	the	statements		

(1)	P(no)	
(2)	P(k)	⇒	P(k+1)	

are	true.		We	can	now	use	a	form	of	universal	generaliza7on	as	follows	

•  Say	we	choose	an	element	c	of	the	UoD.		We	wish	to	establish	that	P(c)	is	
true.	If	c=n0, then we are done	

•  Otherwise,	we	apply	(2)	above	to	get	
P(n0)	⇒	P(n0+1),	P(n0+1)⇒	P(n0+2),	P(n0+1)	⇒	P(n0+3),	…,	P(c-1)	⇒	P(c)	

						Via	a	finite	number	of	steps	(c-n0)	we	get	that	P(c)	is	true.	

•  Because	c	is	arbitrary,	the	universal	generaliza7on	is	established	and	
∀n ≥ n0 P(n) 
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Induc7on:	Formal	Defini7on	(1)	

•  Theorem:	Principle	of	Mathema7cal	Induc7on	
				Given	a	statement	P	concerning	the	integer	n,	
suppose	
1.  P	is	true	for	some	par7cular	integer	n0,	P(n0)=1	
2.  If	P	is	true	for	some	par7cular	integer	k≥n0	then	

it	is	true	for	k+1:	P(k)	→P(k+1)	
Then	P	is	true	for	all	integers	n≥n0,	that	is	

∀n	≥	n0	P(n)	is	true	
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Induc7on:	Formal	Defini7on	(2)	

•  Showing	that	P(n0)	holds	for	some	ini7al	integer	n0	is	
called	the	basis	step	

•  The	assump7on	P(k)	is	called	the	induc7ve	hypothesis	
•  Showing	the	implica7on	P(k)	→P(k+1)	for	every	k≥n0	
is	called	the	induc7ve	step	

•  Together,	they	are	used	to	define	mathema7cal	
induc7on	

•  Induc7on	is	expressed	as	an	inference	rule	
[P(n0)	∧	(∀	k≥n0	P(k)	→P(k+1)]	→	∀n	≥	n0	P(n)		
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Steps	

1.  Form	the	general	statement	
2.  Form	and	verify	the	base	case	(basis	step)	
3.  Form	the	induc7ve	hypothesis	
4.  Prove	the	induc7ve	step	
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Example	A	(1)	

•  Prove	that	n2	≤	2n	for	all	n≥5	using	induc7on	
•  We	formalize	the	statement	P(n)=(n2	≤	2n)	
•  Our	basis	case	is	for	n=5.	We	directly	verify	
that	

25=	52	≤	25	=	32	
				so	P(5)	is	true	and	thus	the	basic	step	holds	

•  We	need	now	to	perform	the	induc7ve	step	
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Example	A	(2)	
•  Assume	P(k)	holds	(the	induc7ve	hypothesis).		Thus,		k2	≤	2k	

•  Now,	we	need	to	prove	the	induc7ve	step.		For	all	k≥5,		
(k+1)2	=	k2+2k+1	<	k2	+	2k	+	k		(because	k≥5>1)	
																																			<	k2	+	3k	<	k2	+	k·k		(because	k≥5>3)	
																															<	k2+	k2	=	2k2		

•  Using	the	induc7ve	hypothesis	(k2	≤	2k),	we	get	
(k+1)2	<	2k2	≤	2·2k=2k+1	

•  Thus,	P(k+1)	holds	
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Example	B	(1)	

•  Prove	that	for	any	n	≥	1,	Σi=1
n	(i2)	=	n(n+1)(2n+1)/6	

•  The	basis	case	is	easily	verified	12=1=	1(1+1)(2+1)/6	

•  We	assume	that	P(k)	holds	for	some	k	≥	1,	so	
Σi=1

k	(i2)	=	k(k+1)(2k+1)/6	

•  We	want	to	show	that	P(k+1)	holds,	that	is	
Σi=1

k+1	(i2)	=	(k+1)(k+2)(2k+3)/6	
•  We	rewrite	this	sum	as	

Σi=1
k+1	(i2)	=	12+22+..+k2+(k+1)2	=	Σi=1

k	(i2)	+	(k+1)2	
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Example	B	(2)	
•  We	replace	Σi=1

k	(i2)	by	its	value	from	the	induc7ve	hypothesis	
	Σi=1

k+1	(i2)	=	Σi=1
k	(i2)	+	(k+1)2		

																																	=	k(k+1)(2k+1)/6	+	(k+1)2	

																						

•  Thus,	we	established	that	P(k)	→	P(k+1)	
•  Thus,	by	the	principle	of	mathema7cal	induc7on	we	have	

∀n ≥ 1, Σi=1
n (i2) = n(n+1)(2n+1)/6	

																						=	k(k+1)(2k+1)/6	+	6(k+1)2/6	

																							=	(k+1)[k(2k+1)+6(k+1)]/6	

																																												=		(k+1)[2k2+7k+6]/6	
																						=		(k+1)(k+2)(2k+3)/6	
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Example	C	(1)	

•  Prove	that	for	any	integer	n≥1,	22n-1	is	divisible	by	3	
•  Define	P(n)	to	be	the	statement	3	|	(22n-1)	
•  We	note	that	for	the	basis	case	n=1	we	do	have	P(1)		

22·1-1	=	3	is	divisible	by	3	
•  Next	we	assume	that	P(k)	holds.		That	is,	there	exists	
some	integer	u	such	that	

22k-1	=	3u	
•  We	must	prove	that	P(k+1)	holds.		That	is,	22(k+1)-1	is	
divisible	by	3	



Induc7on	
	

CSCE	235	 16	

Example	C	(2)	

•  Note	that:	22(k+1)	–	1	=	2222k	-1=4.22k	-1	
•  The	induc7ve	hypothesis:	22k	–	1	=	3u	⇒	22k	=	3u+1	
•  Thus:	22(k+1)	–	1	=	4·22k	-1	=	4(3u+1)-1	
																																=	12u+4-1	
																																=	12u+3	
																																=	3(4u+1),	a	mul7ple	of	3	

•  We	conclude,	by	the	principle	of	mathema7cal	
induc7on,	for	any	integer	n≥1,	22n-1	is	divisible	by	3	
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Example	D	
•  Prove	that	n!	>	2n	for	all	n≥4	
•  The	basis	case	holds	for	n=4	because	4!=24>24=16	
•  We	assume	that	k!	>	2k	for	some	integer	k≥4	(which	
is	our	induc7ve	hypothesis)	

	•  We	must	prove	the	P(k+1)	holds	
(k+1)!	=	k!	(k+1)	>	2k	(k+1)	

•  Because	k≥4,	k+1	≥	5	>	2,	thus	
(k+1)!	>	2k	(k+1)	>	2k	·	2	=	2k+1		

			•  Thus	by	the	principal	of	mathema7cal	induc7on,	we	
have	n!	>	2n	for	all	n≥4	
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Example	E:	Summa7on	
•  Show	that	Σi=1	n	(i3)	=	(Σi=1	n	i)2		for	all	n	≥	1	
•  The	basis	case	is	trivial:		for	n	=1,	13	=	12		
•  The	induc7ve	hypothesis	assumes	that	for	some	n≥1	
we	have	Σi=1	k	(i3)	=	(Σi=1	k	i)2 	

•  We	now	consider	the	summa7on	for	(k+1):	Σi=1	k+1	(i3)	
			=	(Σi=1	k	i)2	+	(k+1)3	 =	(	k(k+1)/2	)2	+	(k+1)3	

=	(	k2(k+1)2	+	4(k+1)3	)	/22	 =	(k+1)2	(k2	+	4(k+1)	)	/22	

=	(k+1)2	(	k2	+4k+4	)	/22	 =	(k+1)2	(	k+2)2	/22	

=	((k+1)(k+2)	/	2)	2	

•  Thus,	by	the	PMI,	the	equality	holds	



Induc7on	
	

CSCE	235	 19	

Example	F:		Deriva7ves	

•  Show	that	for	all	n≥1	and	f(x)=	xn,	we	have	f’(x)=	nxn-1	
•  Verifying	the	basis	case	for	n=1:	
	f’(x)	=	limh→0	(f(x0+h)-f(x0))	/	h	

												=	limh→0	((x0+h)1-(x01))	/	h	=	1	=	1·x0	
•  Now,	assume	that	the	induc7ve	hypothesis	holds	for	
some	k,	f(x)	=	xk,	we	have	f’(x)	=	kxk-1	

•  Now,	consider	f2(x)	=	xk+1=xk	· x			
•  Using	the	product	rule:	f’2(x) = (xk)’·x+(xk)·x’ 	

•  Thus,	f'2(x)	=	kxk-1·x	+	xk	·1	=	kxk	+	xk	=	(k+1)xk	
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The	Bad	Example:	Example	G	
•  Consider	the	proof	for:	All	of	you	will	receive	the	same	grade	
•  Let	P(n)	be	the	statement:	“Every	set	of	n	students	will	

receive	the	same	grade”	
•  Clearly,	P(1)	is	true.		So	the	basis	case	holds	
•  Now	assume	P(k)	holds,	the	induc7ve	hypothesis	
•  Given	a	group	of	k	students,	apply	P(k)	to	{s1,	s2,	…,	sk}	
•  Now,	separately	apply	the	induc7ve	hypothesis	to	the	subset	

{s2,	s3,	…,	sk+1}	
•  Combining	these	two	facts,	we	get	{s1,	s2,	…,	sk+1}.	Thus,	P(k+1)	

holds.		
•  Hence,	P(n)	is	true	for	all	students	
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Example	G:		Where	is	the	Error?	

•  The	mistake	is	not	the	basis	case:	P(1)	is	true	
•  Also,	it	is	the	case	that,	say,	P(73)	⇒	P(74)	
•  So,	this	is	cannot	be	the	mistake	

•  The	error	is	in	P(1)	⇒ P(2),	which	cannot	hold		

•  We	cannot	combine	the	two	induc7ve	
hypotheses	to	get	P(2)		
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Outline	

•  Mo7va7on	
•  What	is	induc7on?	

–  Viewed	as:	the	Well-Ordering	Principle,		Universal	
Generaliza7on	

–  Formal	Statement	
–  6	Examples	

•  Strong	Induc'on	
–  Defini'on	
–  Examples:	decomposi'on	into	product	of	primes,	gcd	
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Strong	Induc7on	
•  Theorem:	Principle	of	Mathema7cal	Induc7on	(Strong	Form)	
		
	Given	a	statement	P	concerning	an	integer	n,	suppose	
1.  P	is	true	for	some	par7cular	integer	n0,	P(n0)=1	
2.  If	k≥n0	is	any	integer	and	P	is	true	for	all	integers	m	in	the	

range	n0≤m<k,	then	it	is	true	also	for	k	

Then,	P	is	true	for	all	integers	n	≥	n0,	i.e.	
∀	n	≥	n0	P(n)	holds	
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MPI	and	its	Strong	Form	

•  Despite	the	name,	the	strong	form	of	PMI	is	
not	a	stronger	proof	technique	than	PMI	

•  In	fact,	we	have	the	following	Lemma	
•  Lemma:		The	following	are	equivalent	

– The	Well	Ordering	Principle	
– The	Principle	of	Mathema7cal	Induc7on	
– The	Principle	of	Mathema7cal	Induc7on,	Strong	
Form	



Induc7on	
	

CSCE	235	 25	

Strong	Form:	Example	A	(1)	
•  Fundamental	Theorem	of	Arithme'c	(page	211):	For	any	

integer	n≥2	can	be	wrisen	uniquely	as		
–  A	prime	or	
–  As	the	product	of	primes	

•  Prove	using	the	strong	form	of	induc7on	to	
•  Defini'on	(page	210)	

–  Prime:	A	posi7ve	integer	p	greater	than	1	is	called	prime	iff	the	only	
posi7ve	factors	of	p	are	1	and	p.	

–  Composite:	A	posi7ve	integer	that	is	greater	than	1	and	is	not	prime	is	
called	composite		

•  According	to	the	defini7on,	1	is	not	a	prime		
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Strong	Form:	Example	A	(2)	

1.  Let	P(n)	be	the	statement:	“n	is	a	prime	or	
can	be	wrisen	uniquely	as	a	product	of	
primes.”	

2.  The	basis	case	holds:	P(2)=2	and	2	is	a	prime.	
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Strong	Form:	Example	A	(3)	
3.  We	make	our	induc7ve	hypothesis.		Here	we	assume	that	

the	predicate	P	holds	for	all	integers	less	than	some	integer	
k≥2,	i.e.,	we	assume	that:		

P(2)∧P(3)	∧P(4)	∧…∧P(k)	is	true	
4.  We	want	to	show	that	this	implies	that	P(k+1)	holds.	We	

consider	two	cases:		
•  k+1	is	prime,	then	P(k+1)	holds.		We	are	done.		
•  k+1	is	a	composite.		
							k+1	has	two	factors	u,v,		2	≤ u,v	<	k+1	such	that	k+1=u·v	

By	the	induc7ve	hypothesis	u=Πi	pi	v= Πj pj,	and	pi,pj	prime	
Thus,	k+1=Πi	pi	Πj pj	

So,	by	the	strong	form	of	PMI,	P(k+1)	holds																									QED	
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Strong	Form:	Example	B	(1)	

•  Nota'on:		
–  gcd(a,b):	the	greatest	common	divisor	of	a	and	b	

•  Example:	gcd(27,	15)=3,	gcd(35,28)=7	

–  gcd(a,b)=1	⇔	a,	b	are	mutually	prime	
•  Example:	gcd(15,14)=1,	gcd(35,18)=1	

•  Lemma:	If	a,b	∈N	are	such	that	gcd(a,b)=1	then	
there	are	integers	s,t	such	that	

gcd(a,b)=1=sa+tb	
•  Ques'on:	Prove	the	above	lemma	using	the	strong	
form	of	induc7on	
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Background	Knowledge		

•  Prove	that:	gcd(a,b)=	gcd(a,b-a)	
•  Proof:	Assume	gcd(a,b)=k	and	gcd(a,b-a)=k’	

o gcd(a,b)=k	⇒	k	divides	a	and	b		
	⇒	k	divides	a	and	(b-a)	⇒	k	divides	k’		
o gcd(a,b-a)=k’	⇒	k’	divides	a	and	b-a		
	⇒	k’	divides	a	and	a+(b-a)=b	⇒	k’	divides	k		
o (k	divides	k’)	and	(k’	divides	k)	⇒	k	=	k’	
	⇒	gcd(a,b)=	gcd(a,b-a)	

	
	



Induc7on	
	

CSCE	235	 30	

(Lame)	Alterna7ve	Proof	

•  Prove	that	gcd(a,b)=1	⇒	gcd(a,b-a)=1	
•  We	prove	the	contraposi7ve	

– Assume	gcd(a,b-a)≠	1	⇒	∃k∈Z,	k≠1	k	divides	a	
and	b-a	⇒	∃m,n∈Z	a=km	and	b-a=kn		
	⇒	a+(b-a)=k(m+n)	⇒	b=k(m+n)	⇒	k	divides	b	

– k≠1	divides	a	and	divides	b	⇒	gcd(a,b)	≠	1	

•  But,	don’t	prove	a	special	case	when	you	
have	the	more	general	one	(see	previous	
slide..)	
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Strong	Form:	Example	B	(2)	
1.  Let	P(n)	be	the	statement	

	(a,b∈N	)	∧	(gcd(a,b)=1)	∧	(a+b=n)	⇒	∃s,t	∈Z,	sa+tb=1	
	

2.  Our	basis	case	is	when	n=2	because	a=b=1.	
	For	s=1,	t=0,	the	statement	P(2)	is	sa7sfied	(sa+tb=1.1+1.0=1)	

3.  We	form	the	induc7ve	hypothesis	P(k):	
•  For	k	∈N,	k	≥2		
•  For	all	i, 2≤i≤k	P(a+b=k)	holds	
•  For	a,b∈ N,	(gcd(a,b)=1)	∧	(a+b=k)	∃s,t ∈Z, sa+tb=1	

4.  Given	the	induc7ve	hypothesis,	we	prove	P(a+b	=	k+1)		
	We	consider	three	cases:	a=b,	a<b,	a>b	
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Strong	Form:	Example	B	(3)	

Case	1:	a=b	
•  In	this	case:	gcd(a,b)	=	gcd(a,a)											Because	a=b	
																																									=	a																								By	defini&on	
																																									=	1																			See	assump&on	
•  gcd(a,b)=1	⇒	a=b=1		
																							⇒	We	have	the	basis	case,		
																												P(a+b)=P(2),	which	holds	
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Strong	Form:	Example	B	(4)	

Case	2:	a<b	
•  b	>	a	⇒	b	-	a	>	0.		So	gcd(a,b)=gcd(a,b-a)=1		

•  Further:	2≤a+(b-a)=(a+b)-a	=(k+1)-a	≤	k	⇒ a+(b-a)≤k		

•  Applying	the	induc7ve	hypothesis	P(a+(b-a))	
 (a,(b-a)∈N) ∧ (gcd(a,b-a)=1) ∧ (a+(b-a)=b) ⇒ ∃s0,t0 ∈Z, s0a+t0(b-a)=1	

•  Thus,	∃s0,t0∈Z 	such	that	(s0-t0)a	+	t0b=1	

•  So,	for	s,t ∈Z where	s=s0-t0	,	t=t0 we	have	sa	+	tb=1	

•  Thus,	P(k+1)	is	established	for	this	case	
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Strong	Form:	Example	B	(5)	

Case	2:	a>b	
•  This	case	is	completely	symmetric	to	case	2	
•  We	use	a-b	instead	of	a-b	
	
•  Because	the	three	cases	handle	every	possibility,	we	
have	established	that	P(k+1)	holds	

•  Thus,	by	the	PMI	strong	form,	the	Lemma	holds.	QED	
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Template	

•  In	order	to	prove	by	induc7on	
•  Some	mathema7cal	theorem,	or	
•  ∀	n	≥	n0	P(n)		

•  Follow	the	template		
1. State	a	proposi7onal	predicate		

P(n):		some	statement	involving	n	

2. Form	and	verify	the	basis	case	(basis	step)	
3. Form	the	induc7ve	hypothesis	(assume	P(k))	
4. Prove	the	induc7ve	step	(prove	P(k+1))	
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Summary	

•  Mo7va7on	
•  What	is	induc7on?	

–  Viewed	as:	the	Well-Ordering	Principle,		Universal	
Generaliza7on	

–  Formal	Statement	
–  6	Examples	

•  Strong	Induc7on	
–  Defini7on	
–  Examples:	decomposi7on	into	product	of	primes,	gcd	


