Functions

Section 2.3 of Rosen

Spring 2018 CSCE 235H Introduction to Discrete Structures (Honors) Course web-page: cse.unl.edu/~cse235h Questions: Piazza

Outline

- Definitions & terminology
 - function, domain, co-domain, image, preimage (antecedent), range, image of a set, strictly increasing, strictly decreasing, monotonic
- Properties
 - One-to-one (injective)
 - Onto (surjective)
 - One-to-one correspondence (bijective)
 - Exercices (5)
- Inverse functions (examples)
- Operators
 - Composition, Equality
- Important functions
 - identity, absolute value, floor, ceiling, factorial

Introduction

- You have already encountered function
 - f(x,y) = x+y- f(x) = x- f(x) = sin(x)
- Here we will study functions defined on <u>discrete</u> domains and ranges
- We may not always be able to write function in a 'neat way' as above

Definition: Function

- **Definition**: A function f
 - from a set A to a set B
 - is an assignment of exactly one element of B to each element of A.
- We write f(a)=b if b is the unique element of B assigned by the function f to the element a ∈ A.
- Notation: $f: A \rightarrow B$

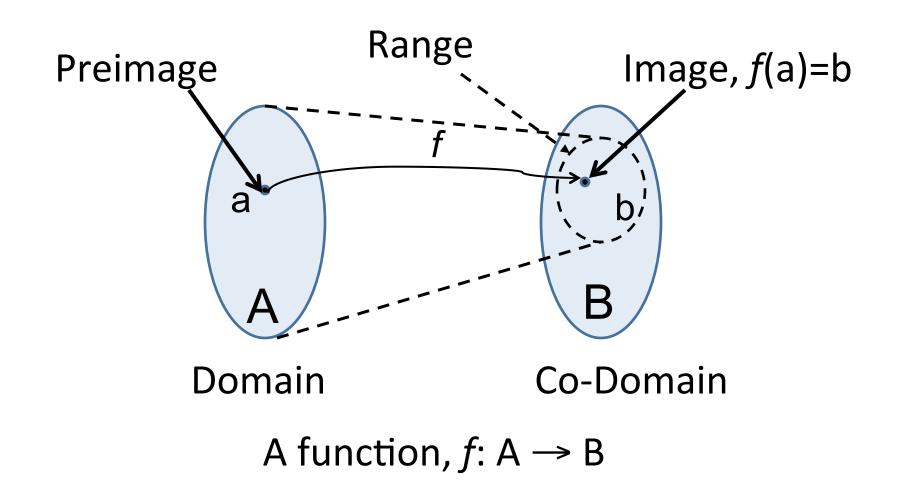
which can be read as 'f maps A to B'

- Note the subtlety
 - Each and every element of A has a single mapping
 - Each element of B may be mapped to by <u>several</u> elements in A or <u>not</u> <u>at all</u>

Terminology

- Let *f*: A → B and *f*(a)=b. Then we use the following terminology:
 - A is the <u>domain</u> of *f*, denoted <u>dom(*f*)</u>
 - B is the <u>co-domain</u> of f
 - b is the <u>image</u> of a
 - a is the preimage (antecedent) of b
 - The <u>range</u> of *f* is the set of all images of elements of A, denoted rng(*f*)

Function: Visualization



More Definitions (1)

• **Definition**: Let f_1 and f_2 be two functions from a set A to R. Then f_1+f_2 and f_1f_2 are also function from A to R defined by:

$$- (f_1 + f_2)(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x})$$

- $f_1 f_2(\mathbf{x}) = f_1(\mathbf{x}) f_2(\mathbf{x})$

• Example: Let $f_1(x) = x^4 + 2x^2 + 1$ and $f_2(x) = 2 - x^2$ - $(f_1 + f_2)(x) = x^4 + 2x^2 + 1 + 2 - x^2 = x^4 + x^2 + 3$ - $f_1 f_2(x) = (x^4 + 2x^2 + 1)(2 - x^2) = -x^6 + 3x^2 + 2$

More Definitions (2)

- **Definition**: Let $f: A \rightarrow B$ and $S \subseteq A$. The image of the set S is the subset of B that consists of all the images of the elements of S. We denote the image of S by f(S), so that $f(S)=\{f(s) \mid \forall s \in S\}$
- Note there that the image of S is a set and not an element.

Image of a set: Example

• Let:

$$- A = \{a_1, a_2, a_3, a_4, a_5\}$$

- B = {b_1, b_2, b_3, b_4, b_5}
- f={(a_1, b_2), (a_2, b_3), (a_3, b_3), (a_4, b_1), (a_5, b_4)}
- S={a_1, a_3}

- Draw a diagram for *f*
- What is the:
 - Domain, co-domain, range of f?
 - Image of S, f(S)?

More Definitions (3)

- **Definition**: A function *f* whose domain and codomain are subsets of the set of real numbers (*R*) is called
 - strictly increasing if f(x)<f(y) whenever x<y and x and y are in the domain of f.
 - strictly decreasing if f(x)>f(y) whenever x<y and x and y are in the domain of f.
- A function that is increasing or decreasing is said to be monotonic

Outline

- Definitions & terminology
- Properties
 - One-to-one (injective)
 - Onto (surjective)
 - One-to-one correspondence (bijective)
 - Exercices (5)
- Inverse functions (examples)
- Operators
- Important functions

Definition: Injection

 Definition: A function f is said to be <u>one-to-one</u> or <u>injective</u> (or an injection) if

 \forall x and y in in the domain of *f*, *f*(x)=*f*(y) \Rightarrow x=y

- Intuitively, an injection simply means that each element in the range has at most one preimage (antecedent)
- It is useful to think of the contrapositive of this definition

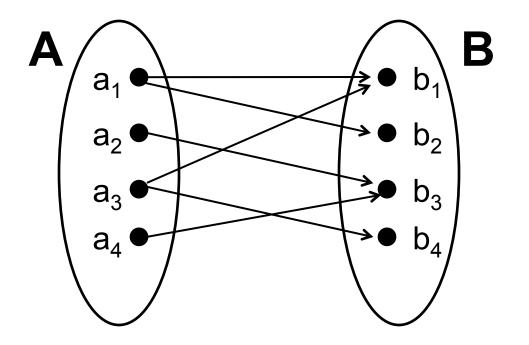
$$\mathsf{x}\neq\mathsf{y} \implies f(\mathsf{x})\neq f(\mathsf{y})$$

Definition: Surjection

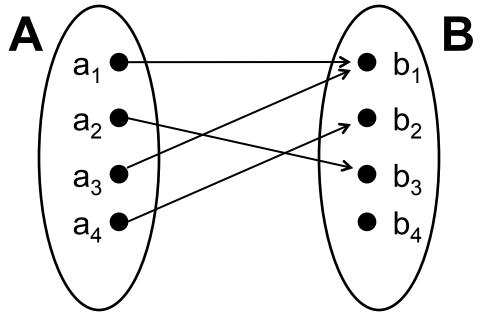
- **Definition**: A function $f: A \rightarrow B$ is called <u>onto</u> or <u>surjective</u> (or an surjection) if $\forall b \in B, \exists a \in A \text{ with } f(a)=b$
- Intuitively, a surjection means that every element in the codomain is mapped into (i.e., it is an image, has an antecedent)
- Thus, the range is the same as the codomain

Definition: Bijection

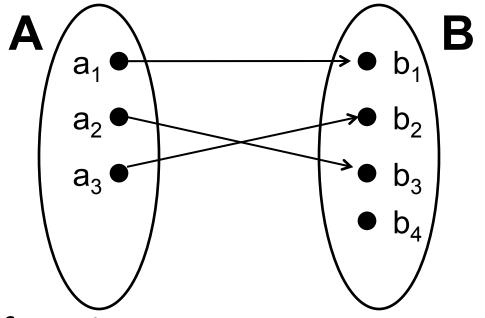
- Definition: A function *f* is a <u>one-to-one</u> correspondence (or a <u>bijection</u>), if it is both
 - one-to-one (injective) and
 - onto (surjective)
- One-to-one correspondences are important because they endow a function with an <u>inverse</u>.
- They also allow us to have a concept cardinality for infinite sets
- Let's look at a few examples to develop a feel for these definitions...



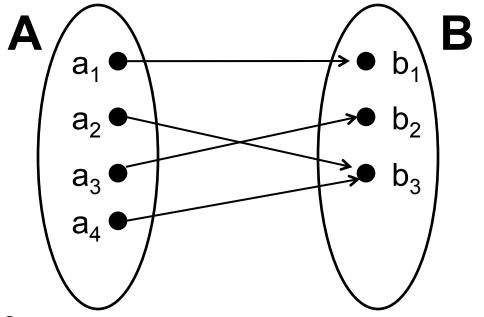
- Is this a function? Why?
- No, because each of a₁, a₂ has two images



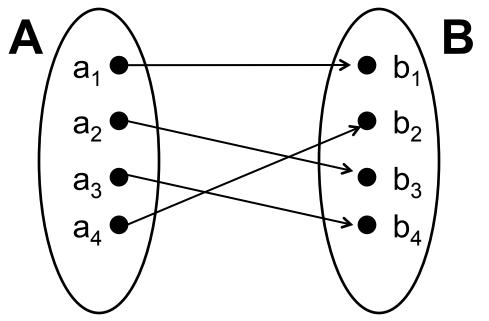
- Is this a function
 - One-to-one (injective)? Why? No, b_1 has 2 preimages - Onto (surjective)? Why? No, b_4 has no preimage



- Is this a function
 - One-to-one (injective)? Why? Yes, no b_i has 2 preimages
 - Onto (surjective)? Why?
 No, b₄ has no preimage



- Is this a function
 - One-to-one (injective)? Why? No, b_3 has 2 preimages
 - Onto (surjective)? Why? Yes, every b_i has a preimage



• Is this a function

– One-to-one (injective)?

– Onto (surjective)?

Thus, it is a bijection or a one-to-one correspondence

Functions

Exercice 1

• Let $f: Z \rightarrow Z$ be defined by

 $f(\mathbf{x})=2\mathbf{x}-3$

- What is the domain, codomain, range of *f*?
- Is f one-to-one (injective)?
- Is f onto (surjective)?
- Clearly, dom(f)=Z. To see what the range is, note that:

```
b \in \operatorname{rng}(f) \Leftrightarrow b=2a-3, with a \in Z
\Leftrightarrow b=2(a-2)+1
\Leftrightarrow b \text{ is odd}
```

Exercise 1 (cont'd)

- Thus, the range is the set of all odd integers
- Since the range and the codomain are different (i.e., rng(f) ≠ Z), we can conclude that f is not onto (surjective)
- However, f is one-to-one injective. Using simple algebra, we have:

$$f(x_1) = f(x_2) \Longrightarrow 2x_1 - 3 = 2x_2 - 3 \Longrightarrow x_1 = x_2$$
 QED

Exercise 2

• Let *f* be as before

$$f(\mathbf{x})=2\mathbf{x}-3$$

but now we define $f: N \rightarrow N$

- What is the domain and range of *f*?
- Is *f* onto (surjective)?
- Is f one-to-one (injective)?
- By changing the domain and codomain of *f*, *f* is not even a function anymore. Indeed, *f*(1)=2·1-3=-1∉N

Exercice 3

• Let $f: Z \rightarrow Z$ be defined by

 $f(x) = x^2 - 5x + 5$

- Is this function
 - One-to-one?
 - Onto?

Exercice 3: Answer

• It is not one-to-one (injective)

$$f(x_1)=f(x_2) \Rightarrow x_1^2 - 5x_1 + 5 = x_2^2 - 5x_2 + 5 \Rightarrow x_1^2 - 5x_1 = x_2^2 - 5x_2$$

$$\Rightarrow x_1^2 - x_2^2 = 5x_1 - 5x_2 \Rightarrow (x_1 - x_2)(x_1 + x_2) = 5(x_1 - x_2)$$

$$\Rightarrow (x_1 + x_2) = 5$$

Many $x_1, x_2 \in Z$ satisfy this equality. There are thus an infinite number of solutions. In particular, f(2)=f(3)=-1

• It is also not onto (surjective).

The function is a parabola with a global minimum at (5/2,-5/4). Therefore, the function fails to map to any integer less than -1

• What would happen if we changed the domain/codomain?

Exercice 4

- Let $f: Z \rightarrow Z$ be defined by $f(x) = 2x^2 + 7x$
- Is this function
 - One-to-one (injective)?
 - Onto (surjective)?
- Again, this is a parabola, it cannot be onto (where is the global minimum?)

Exercice 4: Answer

• f(x) is one-to-one! Indeed:

$$f(x_1)=f(x_2) \Rightarrow 2x_1^2 + 7x_1 = 2x_2^2 + 7x_2 \Rightarrow 2x_1^2 - 2x_2^2 = 7x_2 - 7x_1$$

$$\Rightarrow 2(x_1 - x_2)(x_1 + x_2) = 7(x_2 - x_1) \Rightarrow 2(x_1 + x_2) = -7 \Rightarrow (x_1 + x_2) = -7$$

$$\Rightarrow (x_1 + x_2) = -7/2$$

But $-7/2 \notin Z$. Therefore it must be the case that $x_1 = x_2$. It follows that f is a one-to-one function. QED

f(x) is not surjective because f(x)=1 does not exist

 $2x^2 + 7x = 1 \implies x(2x + 7) = 1$ the product of two integers is 1 if both integers are 1 or -1

$$x=1 \Rightarrow (2x+7)=1 \Rightarrow 9=1$$
, impossible
 $x=-1 \Rightarrow -1(-2+7)=1 \Rightarrow -5=1$, impossible

Functions

Exercise 5

- Let $f: Z \rightarrow Z$ be defined by $f(x) = 3x^3 - x$
- Is this function
 - One-to-one (injective)?
 - Onto (surjective)?

Exercice 5: *f* is one-to-one

 To check if f is one-to-one, again we suppose that for $x_1, x_2 \in \mathbb{Z}$ we have $f(x_1) = f(x_2)$ $f(x_1)=f(x_2) \implies 3x_1^3-x_1=3x_2^3-x_2$ $\Rightarrow 3x_1^3 - 3x_2^3 = x_1 - x_2$ $\Rightarrow 3 (x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2) = (x_1 - x_2)$ \Rightarrow (x₁² +x₁x₂+x₂²)= 1/3 which is impossible because $x_1, x_2 \in \mathbb{Z}$ thus, f is one-to-one

Exercice 5: *f* is <u>not</u> onto

- Consider the counter example *f*(a)=1
- If this were true, we would have $3a^3 - a = 1 \Rightarrow a(3a^2 - 1) = 1$ where a and $(3a^2 - 1) \in \mathbb{Z}$
- The only time we can have the product of two integers equal to 1 is when they are both equal to 1 or -1
- Neither 1 nor -1 satisfy the above equality
 - Thus, we have identified 1∈Z that does not have an antecedent and *f* is not onto (surjective)

Outline

- Definitions & terminology
 - function, domain, co-domain, image, preimage (antecedent), range, image of a set, strictly increasing, strictly decreasing, monotonic
- Properties
 - One-to-one (injective), onto (surjective), one-to-one correspondence (bijective)
 - Exercices (5)
- Inverse functions (examples)
- Operators
 - Composition, Equality
- Important functions
 - identity, absolute value, floor, ceiling, factorial

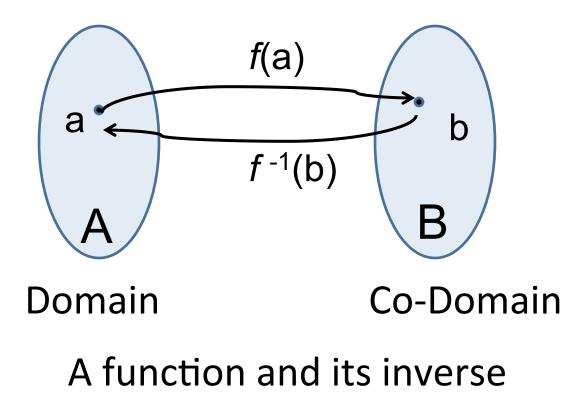
Inverse Functions (1)

- Definition: Let f: A→B be a bijection. The inverse function of f is the function that assigns to an element b∈B the unique element a∈A such that f(a)=b
- The inverse function is denote f^1 .
- When f is a bijection, its inverse exists and $f(a)=b \iff f^1(b)=a$

Inverse Functions (2)

- Note that by definition, a function can have an inverse if and only if it is a bijection. Thus, we say that a bijection is <u>invertible</u>
- Why must a function be bijective to have an inverse?
 - Consider the case where f is not one-to-one (not injective). This means that some element b∈B has more than one antecedent in A, say a₁ and a₂. How can we define an inverse? Does f¹(b)=a₁ or a₂?
 - Consider the case where f is not onto (not surjective). This means that there is some element b∈B that does not have any preimage a∈A. What is then f⁻¹(b)?

Inverse Functions: Representation



Inverse Functions: Example 1

• Let $f: R \rightarrow R$ be defined by

$$f(\mathbf{x}) = 2\mathbf{x} - 3$$

- What is f^1 ?
 - We must verify that f is invertible, that is, is a bijection. We prove that is one-to-one (injective) and onto (surjective). It is.
 - 2. To find the inverse, we use the substitution
 - Let *f*⁻¹(y)=x
 - And y=2x-3, which we solve for x. Clearly, x=(y+3)/2
 - So, *f*⁻¹(y)= (y+3)/2

Inverse Functions: Example 2

- Let $f(x)=x^2$. What is f^1 ?
- No domain/codomain has been specified.
- Say *f*:*R*→*R*
 - Is f a bijection? Does its inverse exist?
 - Answer: No
- Say we specify that $f: A \rightarrow B$ where

A={x $\in R \mid x \le 0$ } and B={y $\in R \mid y \ge 0$ }

- Is f a bijection? Does its inverse exist?
- Answer: Yes, the function <u>becomes</u> a bijection and thus, has an inverse

Inverse Functions: Example 2 (cont')

- To find the inverse, we let
 - $f^{-1}(y) = x$
 - $y=x^2$, which we solve for x
- Solving for x, we get $x=\pm\sqrt{y}$, but which one is it?
- Since dom(f) is all nonpositive and rng(f) is nonnegative, thus x must be nonpositive and

$$f^1(y) = -\sqrt{y}$$

• From this, we see that <u>the domains/codomains are just as</u> <u>important to a function as the definition of the function itself</u>

Inverse Functions: Example 3

- Let $f(x)=2^x$
 - What should the domain/codomain be for this function to be a bijection?
 - What is the inverse?
- The function should be $f: R \rightarrow R^+$
- Let f¹(y)=x and y=2^x, solving for x we get x=log₂(y). Thus, f¹(y)=log₂(y)
- What happens when we include 0 in the codomain?
- What happens when restrict either sets to Z?

Function Composition (1)

- The value of functions can be used as the input to other functions
- **Definition**: Let $g:A \rightarrow B$ and $f:B \rightarrow C$. The <u>composition</u> of the functions f and g is

 $(f \circ g) (x) = f(g(x))$

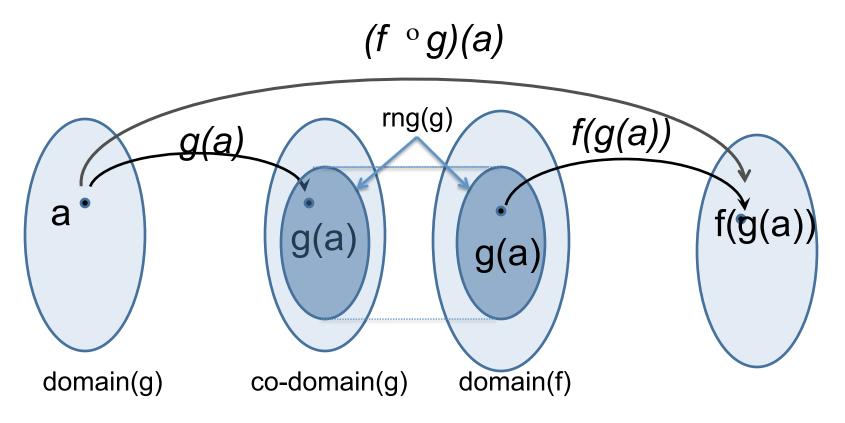
- f°g is read as 'f circle g', or 'f composed with g', 'f following g', or just 'f of g'
- In LaTeX: \$\circ\$

Function Composition (2)

 $f \circ g$ is defined \Leftrightarrow rng(g) \subseteq dom(f)

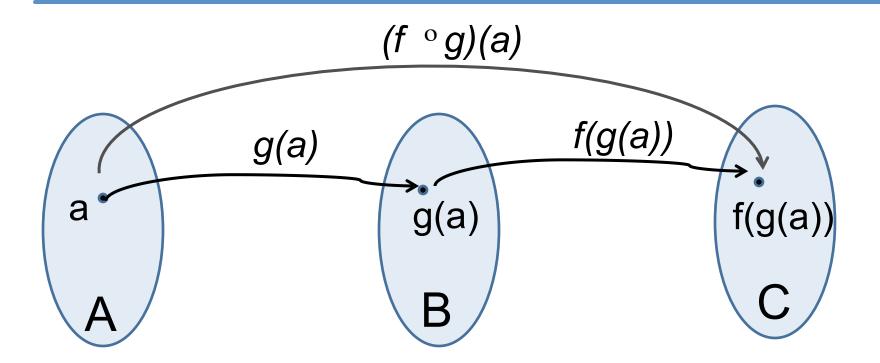
- The <u>order</u> in which you apply a function matters: you go from the inner most to the outer most
- It follows that $f \circ g$ is in general <u>not</u> the same as $g \circ f$

Composition: Graphical Representation



The composition of two functions

Composition: Graphical Representation



The composition of two functions

Composition: Example 1

• Let f, g be two functions on $R \rightarrow R$ defined by

f(x) = 2x - 3 $g(x) = x^2 + 1$

- What are $f \circ g$ and $g \circ f$?
- We note that
 - f is bijective, thus dom(f)=rng(f)= codomain(f)= R
 - − For *g*, dom(*g*)= *R* but rng(*g*)={ $x \in R | x \ge 1$ } ⊆ *R*⁺
 - Since rng(g)={x∈R | x≥1} ⊆R⁺ ⊆ dom(f) =R, $f \circ g$ is defined
 - Since $rng(f) = R \subseteq dom(g) = R$, $g \circ f$ is defined

Composition: Example 1 (cont')

- Given f(x) = 2x 3 and $g(x) = x^2 + 1$
- $(f \circ g)(x) = f(g(x)) = f(x^2+1) = 2(x^2+1)-3$ = $2x^2 - 1$
- $(g \circ f)(x) = g(f(x)) = g(2x-3) = (2x-3)^2 + 1$ = $4x^2 - 12x + 10$

Function Equality

- Although it is intuitive, we formally define what it means for two functions to be equal
- Lemma: Two functions f and g are equal if and only
 - $-\operatorname{dom}(f) = \operatorname{dom}(g)$
 - $\forall a \in dom(f) (f(a) = g(a))$

Associativity

- The composition of function is not commutative (f ∘ g ≠ g ∘ f), it is associative
- Lemma: The composition of functions is an associative operation, that is

$$(f \circ g) \circ h = f \circ (g \circ h)$$

Outline

- Definitions & terminology
 - function, domain, co-domain, image, preimage (antecedent), range, image of a set, strictly increasing, strictly decreasing, monotonic
- Properties
 - One-to-one (injective), onto (surjective), one-to-one correspondence (bijective)
 - Exercices (5)
- Inverse functions (examples)
- Operators
 - Composition, Equality
- Important functions
 - identity, absolute value, floor, ceiling, factorial

Important Functions: Identity

• **Definition**: The <u>identity</u> function on a set A is the function

defined by $\iota(a)=a$ for all $a \in A$.

• One can view the identity function as a composition of a function and its inverse:

 $\iota(a) = (f \circ f^1)(a) = (f^1 \circ f)(a)$

 Moreover, the composition of any function f with the identity function is itself f:

$$(f \circ \iota)(a) = (\iota \circ f)(a) = f(a)$$

Inverses and Identity

- The identity function, along with the composition operation, gives us another characterization of <u>inverses</u> when a function has an inverse
- Theorem: The functions *f*: A→B and *g*: B→A are inverses if and only if

$$(g \circ f) = \iota_A \text{ and } (f \circ g) = \iota_B$$

where the ι_A and ι_B are the identity functions on sets A and B. That is,

 $\forall a \in A, b \in B ((g(f(a)) = a) \land (f(g(b)) = b))$

Important Functions: Absolute Value

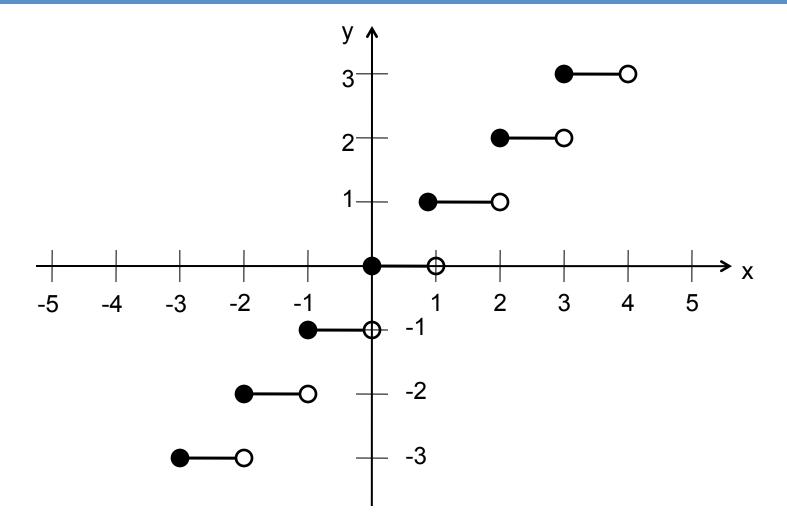
• **Definition**: The <u>absolute value</u> function, denoted |x|, ff: $R \rightarrow \{y \in R \mid y \ge 0\}$. Its value is defined by

$$|\mathbf{x}| = -\begin{bmatrix} \mathbf{x} & \text{if } \mathbf{x} \ge \mathbf{0} \\ \\ -\mathbf{x} & \text{if } \mathbf{x} \le \mathbf{0} \end{bmatrix}$$

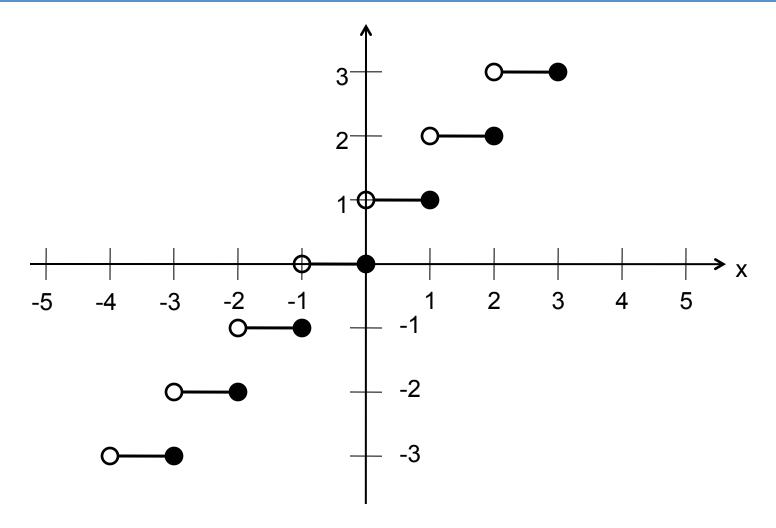
Important Functions: Floor & Ceiling

- Definitions:
 - The <u>floor function</u>, denoted $\lfloor x \rfloor$, is a function $R \rightarrow Z$. Its values is the <u>largest integer</u> that is less than or equal to x
 - The ceiling function, denoted [x], is a function R→Z. Its values is the smallest integer that is greater than or equal to x
- In LaTex: \$\lceil\$, \$\rceil\$, \$\rfloor\$, \$\lfloor\$

Important Functions: Floor



Important Functions: Ceiling



Important Function: Factorial

- The factorial function gives us the number of permutations (that is, uniquely ordered arrangements) of a collection of n objects
- **Definition**: The <u>factorial</u> function, denoted n!, is a function $N \rightarrow N^+$. Its value is the <u>product</u> of the n positive integers

$$n! = \prod_{i=1}^{n} i = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (n-1) \cdot n$$

Factorial Function & Stirling's Approximation

- The factorial function is defined on a discrete domain
- In many applications, it is useful a continuous version of the function (say if we want to differentiate it)
- To this end, we have the Stirling's formula

$$n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$$

Summary

- Definitions & terminology
 - function, domain, co-domain, image, preimage (antecedent), range, image of a set, strictly increasing, strictly decreasing, monotonic
- Properties
 - One-to-one (injective), onto (surjective), one-to-one correspondence (bijective)
 - Exercices (5)
- Inverse functions (examples)
- Operators
 - Composition, Equality
- Important functions
 - identity, absolute value, floor, ceiling, factorial