Predicate Logic and Quantifies

Sections 1.4, and 1.5 of Rosen

Spring 2018 CSCE 235H Introduction to Discrete Structures (Honors) Course web-page: cse.unl.edu/~cse235h All questions: Piazza

Outline

- Introduction
- Terminology:
 - Propositional functions; arguments; arity; universe of discourse
- Quantifiers
 - Definition; using, mixing, negating them
- Logic Programming (Prolog)
- Transcribing English to Logic
- More exercises

Introduction

• Consider the statements:

- The symbols >, +, = denote relations between x and 3, x, y, and 4, and x, y, and z, respectively
- These relations may hold or not hold depending on the values that *x*, *y*, and *z* may take.
- A <u>predicate</u> is a property that is affirmed or denied about the subject (in logic, we say 'variable' or 'argument') of a statement
- Consider the statement : 'x is greater than 3'
 - \dot{x}' is the subject

– 'is greater than 3' is the predicate
 CSCE 235H
 Predicate Logic and Quantifiers

Propositional Functions (1)

- To write in Predicate Logic 'x is greater than 3'
 - We introduce a functional symbol for the **predicate** and
 - Put the subject as an **argument** (to the functional symbol):
 P(x)
- Terminology
 - -P(x) is a statement
 - *P* is a predicate or propositional function
 - x as an argument
 - P(Bob) is a proposition

Propositional Functions (2)

- Examples:
 - Father(x): unary predicate
 - Brother(x,y): binary predicate
 - Sum(x,y,z): ternary predicate
 - P(x,y,z,t): n-ary predicate

Propositional Functions (3)

- **Definition:** A statement of the form $P(x_1, x_2, ..., x_n)$ is the value of the propositional symbol *P*.
- Here: $(x_1, x_2, ..., x_n)$ is an *n*-tuple and *P* is a predicate
- We can think of a propositional function as a function that
 - Evaluates to true or false
 - Takes one or more arguments
 - Expresses a predicate involving the argument(s)
 - Becomes a proposition when values are assigned to the arguments

Propositional Functions: Example

- Let Q(x,y,z) denote the statement $x^2+y^2=z^2$
 - What is the truth value of Q(3,4,5)?

Q(3,4,5) is true

- What is the truth value of Q(2,2,3)?

Q(2,3,3) is false

– How many values of (x,y,z) make the predicate true?

There are infinitely many values that make the proposition true, how many right triangles are there?

Universe of Discourse

- Consider the statement 'x>3', does it make sense to assign to x the value 'blue'?
- Intuitively, the <u>universe of discourse</u> is the set of all things we wish to talk about; that is the set of all objects that we can sensibly assign to a variable in a propositional function.
- What would be the universe of discourse for the propositional function below be:

EnrolledCSE235(x)= 'x is enrolled in CSE235'

Universe of Discourse: Multivariate functions

- Each variable in an *n*-tuple (i.e., each argument) may have a different universe of discourse
- Consider an *n*-ary predicate *P*:
 P(*r*,*g*,*b*,*c*)= 'The *rgb*-values of the color *c* is (*r*,*g*,*b*)'
- Example, what is the truth value of
 - *P*(255,0,0,*red*)
 - P(<u>0,0,255,</u>green)
- What are the universes of discourse of (*r*,*g*,*b*,*c*)?

Alert

- Propositional Logic (PL)
 - Sentential logic
 - Boolean logic
 - Zero order logic
- First Order Logic (FOL)

Predicate logic (PL)

Outline

- Introduction
- Terminology:
 - Propositional functions; arguments; arity; universe of discourse
- Quantifiers
 - Definition; using, mixing, negating them
- Logic Programming (Prolog)
- Transcribing English to Logic
- More exercises

Quantifiers: Introduction

- The statement 'x>3' is not a proposition
- It becomes a proposition
 - When we assign values to the argument: '4>3' is true, '2<3' is false, or
 - When we quantify the statement
- Two quantifiers
 - Universal quantifier ∀ \$\forall\$
 the proposition is true for all possible values in the universe of discourse
 - − Existential quantifier ∃ \$\exists\$

the proposition is true for some value(s) in the universe of discourse

Universal Quantifier: Definition

- **Definition**: The universal quantification of a predicate P(x) is the proposition P(x) is true for all values of x in the universe of discourse. We use the notation: $\forall x P(x)$, which is read 'for all x'.
- If the universe of discourse is finite, say $\{n_1, n_2, ..., n_k\}$, then the universal quantifier is simply the conjunction of the propositions over all the elements $\forall x P(x) \Leftrightarrow P(n_1) \land P(n_2) \land ... \land P(n_k)$

Universal Quantifier: Example 1

• Let

- P(x): 'x must take a discrete mathematics course' and
- Q(x): 'x is a CS student.'
- The universe of discourse for both *P*(*x*) and *Q*(*x*) is all UNL students.
- Express the statements:
 - "Every CS student must take a discrete mathematics course." $\forall x \ Q(x) \rightarrow P(x)$
 - "Everybody must take a discrete mathematics course or be a CS student." $\forall x \ (P(x) \lor Q(x))$
 - "Everybody must take a discrete mathematics course and be a CS student." $\forall x (P(x) \land Q(x))$

Are these statements true or false at UNL?

Universal Quantifier: Example 2

Express in FOL the statement

'for every x and every y, x+y>10'

- Answer:
 - 1. Let P(x,y) be the statement x+y>10
 - 2. Where the universe of discourse for *x*, *y* is the set of integers
 - 3. The statement is: $\forall x \forall y P(x,y)$
- Shorthand: $\forall x, y P(x, y)$

Existential Quantifier: Definition

- Definition: The existential quantification of a predicate P(x) is the proposition '<u>There exists a value</u> x in the universe of discourse such that P(x) is true'
 - Notation: $\exists x P(x)$
 - Reads: 'there exists x'
- If the universe of discourse is finite, say {n₁, n₂,...,n_k}, then the existential quantifier is simply the <u>disjunction</u> of the propositions over all the elements

$$\exists x P(x) \Leftrightarrow P(n_1) \lor P(n_2) \lor \ldots \lor P(n_k)$$

Existential Quantifier: Example 1

- Let P(x,y) denote the statement 'x+y=5'
- What does the expression $\exists x \exists y P(x,y)$ mean?
- Which universe(s) of discourse make it true?

Existential Quantifier: Example 2

• Express formally the statement

'there exists a real solution to $ax^2+bx-c=0$ '

- Answer:
 - 1. Let P(x) be the statement $x = (-b \pm \sqrt{(b^2 4ac)})/2a$
 - 2. Where the universe of discourse for *x* is the set of <u>real numbers</u>. Note here that *a*, *b*, *c* are fixed constants.
 - 3. The statement can be expressed as $\exists x P(x)$
- What is the truth value of $\exists x P(x)$, where UoD is **R**?
 - It is false. When b²<4ac, there are no real number x that can satisfy the predicate
- What can we do so that $\exists x P(x)$ is true?
 - Change the universe of discourse to the complex numbers, $\, {m {\cal C}}$

Quantifiers: Truth values

 In general, when are quantified statements true or false?

Statement	True when	False when
$\forall x P(x)$	<i>P</i> (<i>x</i>) is true for every <i>x</i>	There is an x for which P(x) is false
∃ <i>x P</i> (<i>x</i>)	There is an <i>x</i> for which <i>P</i> (<i>x</i>) is true	<i>P</i> (<i>x</i>) is false for every <i>x</i>

Mixing quantifiers (1)

• Existential and universal quantifiers can be used together to quantify a propositional predicate. For example:

$$\forall x \exists y P(x,y)$$

is perfectly valid

- Alert:
 - The quantifiers must be read from left to right
 - The order of the quantifiers is important
 - $\forall x \exists y P(x,y)$ is not equivalent to $\exists y \forall x P(x,y)$

Mixing quantifiers (2)

- Consider
 - $\forall x \exists y \ Loves \ (x,y)$: Everybody loves somebody
 - $\exists y \forall x Loves(x,y)$: There is someone loved by everyone
- The two expressions do not mean the same thing
- (∃y ∀x Loves(x,y)) → (∀x ∃y Loves (x,y))
 but the converse does not hold
- However, you can commute similar quantifiers
 - $\forall x \forall y P(x,y)$ is equivalent to $\forall y \forall x P(x,y)$ (thus, $\forall x, y P(x,y)$)

 $- \exists x \exists y P(x,y)$ is equivalent to $\exists y \exists x P(x,y)$ (thus $\exists x,y P(x,y)$)

Mixing Quantifiers: Truth values

Statement	True when	False when
$\forall x \forall y P(x,y)$	<i>P</i> (<i>x,y</i>) is true for every pair <i>x,y</i>	There is at least one <i>pair</i> <i>x,y</i> for which <i>P</i> (<i>x,y</i>) is false
$\forall x \exists y P(x,y)$	For every x, there is a y for which <i>P</i> (<i>x</i> , <i>y</i>) is true	There is an <i>x</i> for which <i>P</i> (<i>x</i> , <i>y</i>) is false for every <i>y</i>
$\exists x \forall y P(x,y)$	There is an <i>x</i> for which <i>P</i> (<i>x</i> , <i>y</i>) is true for every <i>y</i>	For every <i>x</i> , there is a <i>y</i> for which <i>P</i> (<i>x</i> , <i>y</i>) is false
∃x∃y <i>P(x,y</i>)	There is at least one pair <i>x</i> , <i>y</i> for which <i>P</i> (<i>x</i> , <i>y</i>) is true	<i>P</i> (<i>x</i> , <i>y</i>) is false for every pair <i>x</i> , <i>y</i>

Mixing Quantifiers: Example (1)

- Express, in predicate logic, the statement that there is an infinite number of integers
- Answer:
 - 1. Let P(x,y) be the statement that x < y
 - 2. Let the universe of discourse be the integers, *Z*
 - 3. The statement can be expressed by the following

 $\forall x \exists y P(x,y)$

Mixing Quantifiers: Example (2)

- Express the *commutative law of addition* for *R*
- We want to express that for every pair of reals, x,y, the following holds: x+y=y+x
- Answer:
 - 1. Let P(x,y) be the statement that x+y
 - 2. Let the universe of discourse be the reals, R
 - 3. The statement can be expressed by the following

 $\forall x \; \forall y \; (P(x,y) \Leftrightarrow P(y,x))$

```
Alternatively, \forall x \forall y (x+y = y+x)
```

Predicate Logic and Quantifiers

Mixing Quantifiers: Example (3)

- Express the multiplicative *law* for nonzero reals *R* \ {0} (i.e., every nonzero real has an inverse)
- We want to express that for every real number x, there exists a real number y such that xy=1
- Answer:

$$\forall x \exists y (xy = 1)$$

Mixing Quantifiers: Example (4)

false mathematical statement

- Does commutativity for substraction hold over the reals?
- That is: does x-y=y-x for all pairs x,y in R?
- Express using quantifiers

$$\forall x \; \forall y \; (x - y = y - x)$$

Mixing Quantifiers: Example (5)

- Express the statement as a logical expression:
 - "There is a number x such that
 - when it is added to any number, the result is that number and
 - if it is multiplied by any number, the result is x"
 - Answer:
 - Let P(x,y) be the expression "x+y=y"
 - Let Q(x,y) be the expression "xy=x"
 - The universe of discourse is *N*,*Z*,*R*,*Q* (but not *Z*⁺)
 - Then the expression is:

 $\exists x \forall y P(x,y) \land Q(x,y)$ elv: $\exists x \forall y (x+y=y) \land (xy=y)$

Predicate Logic and Quantifiers

Outline

- Introduction
- Terminology:
 - Propositional functions; arguments; arity; universe of discourse

Quantifiers

- Definition; using, mixing, **biding**, negating them
- Logic Programming (Prolog)
- Transcribing English to Logic
- More exercises

Binding Variables

- When a quantifier is used on a variable x, we say that x is <u>bound</u>
- If no quantifier is used on a variable in a predicate statement, the variable is called <u>free</u>
- Examples
 - In $\exists x \forall y P(x,y)$, both x and y are bound
 - In $\forall x P(x,y), x$ is bound but y is free
- A statement is called a <u>well-formed formula</u>, when all variables are properly quantified

Binding Variables: Scope

- The set of all variables bound by a common quantifier is called the <u>scope</u> of the quantifier
- For example, in the expression $\exists x, y \forall z P(x, y, z, c)$
 - What is the scope of existential quantifier?
 - What is the scope of universal quantifier?
 - What are the bound variables?
 - What are the free variables?
 - Is the expression a well-formed formula?

Negation

- We can use negation with quantified expressions as we used them with propositions
- Lemma: Let *P*(*x*) be a predicate. Then the followings hold:

$$\neg (\forall x P(x)) \equiv \exists x \neg P(x) \neg (\exists x P(x)) \equiv \forall x \neg P(x)$$

 This is essentially the quantified version of De Morgan's Law (when the universe of discourse is finite, this is exactly De Morgan's Law)

Negation: Truth

Truth Values of Negated Quantifiers

Statement	True when	False when
$\neg \exists x P(x) \equiv \forall x \neg P(x)$	<i>P</i> (<i>x</i>) is false for every <i>x</i>	There is an <i>x</i> for which <i>P</i> (<i>x</i>) is true
× 7	There is an <i>x</i> for which <i>P</i> (<i>x</i>) is false	<i>P</i> (<i>x</i>) is true for every <i>x</i>

Negation: Example

• Rewrite the following expression, pushing negation inward:

 $\neg \forall x (\exists y \forall z P(x,y,z) \land \exists z \forall y P(x,y,z))$

• Answer:

 $\exists x \ (\forall y \ \exists z \neg P(x,y,z) \lor \forall z \ \exists y \neg P(x,y,z))$

Outline

- Introduction
- Terminology:
 - Propositional functions; arguments; arity; universe of discourse
- Quantifiers

Definition; using, mixing, negating them

- Logic Programming (Prolog)
- Transcribing English to Logic
- More exercises

Prolog (1)

- Prolog (Programming in Logic)
 - is a programming language
 - based on (a restricted form of) Predicate Logic (a.k.a. Predicate Calculus and FOL)
- It was developed
 - by the logicians of the Artificial Intelligence community
 - for symbolic reasoning

Prolog (2)

- Prolog allows the users to express facts and rules
- Facts are propositional functions:
 - student(mia),
 - enrolled(mia,cse235),
 - instructor(patel,cse235), etc.
- Rules are implications with conjunctions: teaches(X,Y) :- instructor(X,Z), enrolled(Y,Z)
- Prolog answers queries such as:
 - ?enrolled(mia,cse235)
 - ?enrolled(X,cse476)
 - ?teaches(X,mia)

by binding variables and doing theorem proving (i.e., applying inference rules) as we will see in Section 1.5

English into Logic

- Logic is more precise than English
- Transcribing English into Logic and vice versa can be tricky
- When writing statements with quantifiers, usually the correct meaning is conveyed with the following combinations:

Use \forall with \Rightarrow

 $\forall x \ Lion(x) \Rightarrow Fierce(x)$: Every lion is fierce

 $\forall x Lion(x) \land Fierce(x)$: Everyone is a lion and everyone is fierce

Use \exists with \land

 $\exists x Lion(x) \land Vegan(x)$: Holds when you have at least one vegan lion

 $\exists x Lion(x) \Rightarrow Vegan(x)$: Holds when you have vegan people in the universe of discourse (even though there is no vegan lion in the universe of discourse)

More Exercises (1)

- Let P(x,y) denote 'x is a factor of y' where $-x \in \{1,2,3,...\}$ and $y \in \{2,3,4,...\}$
- Let Q(x,y) denote: $- \forall x,y \ [P(x,y) \rightarrow (x=y) \lor (x=1)]$
- Question: When is Q(x,y) true?

Alert...

• Some students wonder if:

$$\forall x, y \ P(x, y) \ \equiv (\forall x \ P(x, y)) \land (\forall y \ P(x, y))$$

- This is certainly not true.
 - In the left-hand side, both x,y are bound.
 - In the right-hand side,
 - In the first predicate, x is bound and y is free
 - In the second predicate, y is bound and x is free
 - Thus, the left-hand side is a proposition, but the right-hand side is not. They cannot be equivalent
- All variables that occur in a propositional function must be bound to turn it into a proposition