Asymptotics

Section 3.2 of Rosen

Spring 2018
CSCE 235H Introduction to Discrete Structures (Honors)
Course web-page: cse.unl.edu/~cse235h
Questions: Piazza

Outline

- Introduction
- Asymptotic
- Definitions (Big O, Omega, Theta), properties
- Proof techniques
- 3 examples, trick for polynomials of degree 2,
- Limit method (l'Hôpital Rule), 2 examples
- Limit Properties
- Complexity of algorithms
- Conclusions

Introduction (1)

- We are interested only in the Order of Growth of an algorithm's complexity
- How well does the algorithm perform as the size of the input grows: $\mathrm{n} \rightarrow \infty$
- We have seen how to mathematically evaluate the cost functions of algorithms with respect to
- their input size n and
- their elementary operations
- However, it suffices to simply measure a cost function's asymptotic behavior

Introduction (2): Magnitude Graph

FIGURE 3 A Display of the Growth of Functions Commonly Used in Big-O Estimates.

Introduction (3)

- In practice, specific hardware, implementation, languages, etc. greatly affect how the algorithm behave
- Our goal is to study and analyze the behavior of algorithms in and of themselves, independently of such factors
- For example
- An algorithm that executes its elementary operation 10n times is better than one that executes it $0.005 n^{2}$ times
- Also, algorithms that have running time n^{2} and $2000 n^{2}$ are considered asymptotically equivalent

Outline

- Introduction
- Asymptotic
- Definitions (Big-O, Omega, Theta), properties
- Proof techniques
- Limit Properties
- Efficiency classes
- Conclusions

Big-O Definition

- Definition: Let f and g be two functions $f, g: N \rightarrow R^{+}$. We say that

$$
f(\mathrm{n}) \in \mathrm{O}(g(\mathrm{n}))
$$

(read: f is Big-O of g) if there exists a constant $c \in R^{+}$and an $\mathrm{n}_{0} \in N$ such that for every integer $\mathrm{n} \geq \mathrm{n}_{0}$ we have

$$
f(n) \leq c g(n)
$$

- Big-O is actually Omicron, but it suffices to write "O" Intuition: f is asymptotically less than or equal to g
- Big-O gives an asymptotic upper bound \backslash mathcal $\{0\}$

Big-Omega Definition

- Definition: Let f and g be two functions $f, g: N \rightarrow R^{+}$. We say that

$$
f(n) \in \Omega(g(n))
$$

(read: f is Big-Omega of g) if there exists a constant $c \in R^{+}$ and an $n_{0} \in N$ such that for every integer $n \geq n_{0}$ we have

$$
f(n) \geq c g(n)
$$

- Intuition: f is asymptotically greater than or equal to g
- Big-Omega gives an asymptotic lower bound

Big-Theta Definition

- Definition: Let f and g be two functions $f, g: N \rightarrow R^{+}$. We say that

$$
f(n) \in \Theta(g(n))
$$

(read: f is Big-Omega of g) if there exists a constant $\mathrm{c}_{1}, \mathrm{c}_{2} \in R^{+}$ and an $n_{0} \in N$ such that for every integer $n \geq n_{0}$ we have

$$
\mathrm{c}_{1} g(\mathrm{n}) \leq f(\mathrm{n}) \leq \mathrm{c}_{2} g(\mathrm{n})
$$

- Intuition: f is asymptotically equal to g
- f is bounded above and below by g
- Big-Theta gives an asymptotic equivalence

Asymptotic Properties (1)

- Theorem: For $f_{1}(\mathrm{n}) \in \mathrm{O}\left(g_{1}(\mathrm{n})\right)$ and $f_{2}(\mathrm{n}) \in \mathrm{O}\left(g_{2}(\mathrm{n})\right)$, we have

$$
f_{1}(\mathrm{n})+f_{2}(\mathrm{n}) \in \mathrm{O}\left(\max \left\{g_{1}(\mathrm{n}), g_{2}(\mathrm{n})\right\}\right)
$$

- This property implies that we can ignore lower order terms. In particular, for any polynomial with degree k such as $p(n)=a n^{k}+b n^{k-1}+c n^{k-2}+\ldots$,

$$
\mathrm{p}(\mathrm{n}) \in \mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)
$$

- In addition, this theorem gives us a justification for ignoring constant coefficients. That is for any function $f(\mathrm{n})$ and a positive constant c

$$
c f(\mathrm{n}) \in \Theta(f(\mathrm{n}))
$$

Asymptotic Properties (2)

- Some obvious properties also follow from the definitions
- Corollary: For positive functions $f(n)$ and $g(n)$ the following hold:
$-f(\mathrm{n}) \in \Theta(g(\mathrm{n})) \Leftrightarrow f(\mathrm{n}) \in \mathrm{O}(g(\mathrm{n})) \wedge f(\mathrm{n}) \in \Omega(g(\mathrm{n}))$
$-f(\mathrm{n}) \in \mathrm{O}(\mathrm{g}(\mathrm{n})) \Leftrightarrow g(\mathrm{n}) \in \Omega(f(\mathrm{n}))$
The proof is obvious and left as an exercise

Outline

- Introduction
- Asymptotic
- Definitions (big O, Omega, Theta), properties
- Proof techniques
- 3 examples, trick for polynomials of degree 2,
- Limit method (I'Hôpital Rule), 2 examples
- Limit Properties
- Efficiency classes
- Conclusions

Asymptotic Proof Techniques

- Proving an asymptotic relationship between two given function $f(\mathrm{n})$ and $g(\mathrm{n})$ can be done intuitively for most of the functions you will encounter; all polynomials for example
- However, this does not suffice as a formal proof
- To prove a relationship of the form $f(n) \in \Delta(g(n))$, where Δ is
O, Ω, or Θ, can be done using the definitions, that is
- Find a value for c (or c_{1} and c_{2})
- Find a value for n_{0}
(But the above is not the only way.)

Asymptotic Proof Techniques: Example A

Example: Let $\mathrm{f}(\mathrm{n})=21 \mathrm{n}^{2}+\mathrm{n}$ and $\mathrm{g}(\mathrm{n})=\mathrm{n}^{3}$

- Our intuition should tell us that $f(n) \in O(g(n))$
- Simply using the definition confirms this:

$$
21 n^{2}+n \leq c n^{3}
$$

holds for say $\mathrm{c}=3$ and for all $\mathrm{n} \geq \mathrm{n}_{0}=8$

- So we found a pair $\mathrm{c}=3$ and $\mathrm{n}_{0}=8$ that satisfy the conditions required by the definition
- In fact, an infinite number of pairs can satisfy this equation

Asymptotic Proof Techniques: Example B (1)

- Example: Let $f(n)=n^{2}+n$ and $g(n)=n^{3}$. Find a tight bound of the form

$$
\mathrm{f}(\mathrm{n}) \in \Delta(\mathrm{g}(\mathrm{n}))
$$

- Our intuition tells us that $\mathrm{f}(\mathrm{n}) \in \mathrm{O}(\mathrm{g}(\mathrm{n}))$
- Let's prove it formally

Example B: Proof

- If $n \geq 1$ it is clear that

1. $n \leq n^{3}$ and
2. $n^{2} \leq n^{3}$

- Therefore, we have, as 1. and 2.:

$$
n^{2}+n \leq n^{3}+n^{3}=2 n^{3}
$$

- Thus, for $n_{0}=1$ and $c=2$, by the definition of Big-O we have that $f(n)=n^{2}+n \in O\left(g\left(n^{3}\right)\right)$

Asymptotic Proof Techniques: Example C (1)

- Example: Let $f(n)=n^{3}+4 n^{2}$ and $g(n)=n^{2}$. Find a tight bound of the form

$$
f(n) \in \Delta(g(n))
$$

- Here, Our intuition tells us that $\mathrm{f}(\mathrm{n}) \in \Omega(\mathrm{g}(\mathrm{n}))$
- Let's prove it formally

Example C: Proof

- For $n \geq 1$, we have $n^{2} \leq n^{3}$
- For $n \geq 0$, we have $n^{3} \leq n^{3}+4 n^{2}$
- Thus $n \geq 1$, we have $n^{2} \leq n^{3} \leq n^{3}+4 n^{2}$
- Thus, by the definition of $\operatorname{Big}-\Omega$, for $n_{0}=1$ and $c=1$ we have that $f(n)=n^{3}+4 n^{2} \in \Omega\left(g\left(n^{2}\right)\right)$

Asymptotic Proof Techniques:

Trick for polynomials of degree 2

- If you have a polynomial of degree 2 such as

$$
a n^{2}+b n+c
$$

you can prove that it is $\Theta\left(\mathrm{n}^{2}\right)$ using the following values

1. $c_{1}=a / 4$
2. $c_{2}=7 a / 4$
3. $\mathrm{n}_{0}=2 \max (|\mathrm{~b}| / \mathrm{a}, \operatorname{sqrt}(|c|) / a)$

Outline

- Introduction
- Asymptotic
- Definitions (big O, Omega, Theta), properties
- Proof techniques
- 3 examples, trick for polynomials of degree 2,
- Limit method (l'Hôpital Rule), 2 examples
- Limit Properties
- Efficiency classes
- Conclusions

Limit Method: Motivation

- Now try this one:

$$
\begin{aligned}
f(n)= & n^{50}+12 n^{3} \log ^{4} n-1243 n^{12} \\
& +245 n^{6} \log n+12 \log ^{3} n-\log n \\
g(n)= & 12 n^{50}+24 \log ^{14} n^{43}-\log n / n^{5}+12
\end{aligned}
$$

- Using the formal definitions can be very tedious especially one has very complex functions
- It is much better to use the Limit Method, which uses concepts from Calculus

Limit Method: The Process

- Say we have functions $f(n)$ and $g(n)$. We set up a limit quotient between f and g as follows

$$
\lim _{n \rightarrow \infty} f(n) / g(n)= \begin{cases}0 & \text { Then } f(n) \in O(g(n)) \\ c>0 & \text { Then } f(n) \in \Theta(g(n)) \\ \infty & \text { Then } f(n) \in \Omega(g(n))\end{cases}
$$

- The above can be proven using calculus, but for our purposes, the limit method is sufficient for showing asymptotic inclusions
- Always try to look for algebraic simplifications first
- If f and g both diverge or converge on zero or infinity, then you need to apply the l'Hôpital Rule

(Guillaume de) L’Hôpital Rule

- Theorem (L'Hôpital Rule):
- Let f and g be two functions,
- if the limit between the quotient $f(n) / g(n)$ exists,
- Then, it is equal to the limit of the derivative of the numerator and the denominator $\lim _{n \rightarrow \infty} f(n) / g(n)=\lim _{n \rightarrow \infty} f^{\prime}(n) / g^{\prime}(n)$

Useful Identities \& Derivatives

- Some useful derivatives that you should memorize
$-\left(n^{k}\right)^{\prime}=k n^{k-1}$
$-\left(\log _{\mathrm{b}}(\mathrm{n})\right)^{\prime}=1 /(\mathrm{n} \ln (\mathrm{b}))$
$-\left(\mathrm{f}_{1}(\mathrm{n}) \mathrm{f}_{2}(\mathrm{n})\right)^{\prime}=\mathrm{f}_{1}{ }^{\prime}(\mathrm{n}) \mathrm{f}_{2}(\mathrm{n})+\mathrm{f}_{1}(\mathrm{n}) \mathrm{f}_{2}{ }^{\prime}(\mathrm{n}) \quad$ (product rule)
$-\left(\log _{b}(f(n))^{\prime}=f^{\prime}(n) /(f(n) \cdot \operatorname{lnb})\right.$
- ($\left.c^{n}\right)^{\prime}=\ln (c) c^{n} \quad \leftarrow$ careful!
- Log identities
- Change of base formula: $\log _{b}(n)=\log _{c}(n) / \log _{c}(b)$
$-\log \left(n^{k}\right)=k \log (n)$
$-\log (a b)=\log (a)+\log (b)$

L’Hôpital Rule: Justification (1)

- Why do we have to use L'Hôpital's Rule?
- Consider the following function

$$
f(x)=(\sin x) / x
$$

- Clearly $\sin 0=0$. So you may say that when $x \rightarrow 0, f(x) \rightarrow 0$
- However, the denominator is also $\rightarrow 0$, so you may say that $f(x) \rightarrow \infty$
- Both are wrong

L’Hôpital Rule: Justification (2)

- Observe the graph of $f(x)=(\sin x) / x=\operatorname{sinc} x$

L’Hôpital Rule: Justification (3)

- Clearly, though $f(x)$ is undefined at $x=0$, the limit still exists
- Applying the L'Hôpital Rule gives us the correct answer

$$
\lim x \rightarrow 0((\sin x) / x)=\lim x \rightarrow 0(\sin x)^{\prime} / x^{\prime}=\cos x / 1=1
$$

Limit Method: Example 1

- Example: Let $f(n)=2^{n}, g(n)=3^{n}$. Determine a tight inclusion of the form $f(n) \in \Delta(g(n))$
- What is your intuition in this case? Which function grows quicker?

Limit Method: Example 1—Proof A

- Proof using limits
- We set up our limit:

$$
\lim _{n \rightarrow \infty} f(n) / g(n)=\lim _{n \rightarrow \infty} 2^{n} / 3^{n}
$$

- Using L' Hôpital Rule gets you no where $\lim _{n \rightarrow \infty} 2^{n} / 3^{n}=\lim _{n \rightarrow \infty}\left(2^{n}\right)^{\prime} /\left(3^{n}\right)^{\prime}=\lim _{n \rightarrow \infty}(\ln 2)\left(2^{n}\right) /(\ln 3)\left(3^{n}\right)$
- Both the numerator and denominator still diverge. We'll have to use an algebraic simplification

Limit Method: Example 1—Proof B

- Using algebra

$$
\lim _{n \rightarrow \infty} 2^{n} / 3^{n}=\lim _{n \rightarrow \infty}(2 / 3)^{n}
$$

- Now we use the following Theorem w/o proof

$$
\lim _{n \rightarrow \infty} \alpha^{n}=\left\{\begin{array}{cl}
0 & \text { if } \alpha<1 \\
1 & \text { if } \alpha=1 \\
\infty & \text { if } \alpha>1
\end{array}\right.
$$

- Therefore we conclude that the $\lim _{n \rightarrow \infty}(2 / 3)^{n}$ converges to zero thus $2^{n} \in O\left(3^{n}\right)$

Limit Method: Example 2 (1)

- Example: Let $f(n)=\log _{2} n, g(n)=\log _{3} n^{2}$. Determine a tight inclusion of the form

$$
\mathrm{f}(\mathrm{n}) \in \Delta(\mathrm{g}(\mathrm{n}))
$$

- What is your intuition in this case?

Limit Method: Example 2 (2)

- We prove using limits
- We set up out limit

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f(n) / g(n) & =\lim _{n \rightarrow \infty} \log _{2} n / \log _{3} n^{2} \\
& =\lim _{n \rightarrow \infty} \log _{2} n /\left(2 \log _{3} n\right)
\end{aligned}
$$

- Here we use the change of base formula for logarithms: $\log _{x} n=\log _{y} n / \log _{y} x$
- Thus: $\log _{3} n=\log _{2} n / \log _{2} 3$

Limit Method: Example 2 (3)

- Computing our limit:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \log _{2} n /\left(2 \log _{3} n\right) & =\lim _{n \rightarrow \infty} \log _{2} n \log _{2} 3 /\left(2 \log _{2} n\right) \\
& =\lim _{n \rightarrow \infty}\left(\log _{2} 3\right) / 2 \\
& =\left(\log _{2} 3\right) / 2 \\
& \approx 0.7924, \text { which is a positive constant }
\end{aligned}
$$

- So we conclude that $\mathrm{f}(\mathrm{n}) \in \Theta(\mathrm{g}(\mathrm{n}))$

Outline

- Introduction
- Asymptotic
- Definitions (big O, Omega, Theta), properties
- Proof techniques
- 3 examples, trick for polynomials of degree 2,
- Limit method (I'Hôpital Rule), 2 examples
- Limit Properties
- Efficiency classes
- Conclusions

Limit Properties

- A useful property of limits is that the composition of functions is preserved
- Lemma: For the composition ${ }^{\circ}$ of addition, subtraction, multiplication and division, if the limits exist (that is, they converge), then

$$
\lim _{n \rightarrow \infty} f_{1}(n)^{\circ} \lim _{n \rightarrow \infty} f_{2}(n)=\lim _{n \rightarrow \infty}\left(f_{1}(n)^{\circ} f_{2}(n)\right)
$$

Complexity of Algorithms-Table 1, page 226

- Constant
- Logarithmic
- Linear
- Polylogarithmic
- Quadratic
- Cubic
- Polynominal
- Exponential
- Factorial

Conclusions

- Evaluating asymptotics is easy, but remember:
- Always look for algebraic simplifications
- You must always give a rigorous proof
- Using the limit method is (almost) always the best
- Use L'Hôpital Rule if need be
- Give as simple and tight expressions as possible

Summary

- Introduction
- Asymptotic
- Definitions (big O, Omega, Theta), properties
- Proof techniques
- 3 examples, trick for polynomials of degree 2,
- Limit method (l'Hôpital Rule), 2 examples
- Limit Properties
- Efficiency classes
- Conclusions

