
	
	Algorithms:	An	Introduc2on	

	

Sec2on	3.1	of	Rosen	
Spring	2018	

CSCE	235	Introduc6on	to	Discrete	Structures	(Honors)	
Course	web-page:	cse.unl.edu/~cse235h	

Ques2ons:	Piazza	

	
	‘Algorithm’	is	a	distor.on	of	Al-

Khawarizmi,		
a	Persian	mathema.cian	

	

Algorithms:	An	Introduc6on	CSCE	235	 2	

Outline	

•  Introduc6on	&	defini6on	
•  Algorithms	categories	&	types	
•  Pseudo-code	
•  Designing	an	algorithm	

– Example: Max

•  Greedy	Algorithms	
– Change	

Algorithms:	An	Introduc6on	CSCE	235	 3	

Computer	Science	is	About	Problem	Solving	
•  A	Problem	is	specified	by	

1.   The	givens	(a	formula6on)	
•  A	set	of	objects	
•  Rela6ons	between	them	

2.   The	query	
•  The	informa6on	one	wants	to	extract	from	the	formula6on,	the	ques6on	to	answer	

•  An	algorithm	is	a	method	or	procedure	that	solves	instances	of	a	problem	

Real	World	 ↔	 Compu2ng	World	

Objects	 represented	by…	 data	Structures,	ADTs,	Classes	

Rela6ons	 implemented	with…	 rela6ons	&	func6ons	(e.g.,	predicates)	

Ac6ons	 Implemented	with…	 algorithms:	a	sequence	of	instruc6ons	

Algorithms:	An	Introduc6on	CSCE	235	 4	

Algorithms:	Formal	Defini6on	
•  Defini2on:		An	algorithm	is	a	sequence	of	unambiguous	

instruc6ons	for	solving	a	problem.	
•  Proper6es	of	an	algorithm	

–  Finite:	the	algorithm	must	eventually	terminate	
–  Complete:	Always	give	a	solu6on	when	one	exists	
–  Correct	(sound):	Always	give	a	correct	solu6on	

•  For	an	algorithm	to	be	an	acceptable	solu6on	to	a	problem,	it	
must	also	be	effec6ve.		That	is,	it	must	give	a	solu6on	in	a	
‘reasonable’	amount	of	6me	

•  Efficient=	runs	in	polynomial	6me.		Thus,	effec2ve≠	efficient	
•  There	can	be	many	algorithms	to	solve	the	same	problem	

Algorithms:	An	Introduc6on	CSCE	235	 5	

Outline	

•  Introduc6on	&	defini6on	
•  Algorithms	categories	&	types	
•  Pseudo-code	
•  Designing	an	algorithm	

– Example: Max

•  Greedy	Algorithms	
– Change	

Algorithms:	An	Introduc6on	CSCE	235	 6	

Algorithms:	General	Techniques	

•  There	are	many	broad	categories	of	algorithms	
–  Determinis6c	versus	Randomized	(e.g.,	Monte	Carlo)	
–  Exact	versus	Approxima6on	
–  Sequen6al/serial	versus	Parallel,	etc.	

•  Some	general	styles	of	algorithms	include	
–  Brute	force	(enumera6ve	techniques,	exhaus6ve	search)	
–  Divide	&	Conquer	
–  Transform	&	Conquer	(reformula6on)	
–  Greedy	Techniques	

Algorithms:	An	Introduc6on	CSCE	235	 7	

Outline	

•  Introduc6on	&	defini6on	
•  Algorithms	categories	&	types	
•  Pseudo-code	
•  Designing	an	algorithm	

– Example: Max

•  Greedy	Algorithms	
– Change	

Algorithms:	An	Introduc6on	CSCE	235	 8	

Good	Pseudo-Code:	Example	
Intersection

Input:							Two	finite	sets	A,	B	
Output:				A	finite	set	C	such	that	C	=	A	∩	B	
1.  C←∅	
2.  	If	|A|>|B|	Then	Swap(A,B)	
3.  	For	every	x	∈	A	Do	
4.  					If	x	∈	B		Then	C	←		C	∪	{x}	 	Union(C,{x})	
5.  	End	
6.  	Return	C	

Algorithms:	An	Introduc6on	CSCE	235	 9	

Algorithms:	Pseudo-Code	
•  Algorithms	are	usually	presented	using	pseudo-code	
•  Bad	pseudo-code		

–  Gives	too	many	details	or		
–  Is	too	implementa6on	specific	(i.e.,	actual	C++	or	Java	code	or	giving	

every	step	of	a	sub-process	such	as	set	union)	

•  Good	pseudo-code		
–  Is	a	balance	between	clarity	and	detail	
–  Abstracts	the	algorithm	
–  Makes	good	use	of	mathema6cal	nota6on	
–  Is	easy	to	read	and	
–  Facilitates	implementa6on	(reproducible,	does	not	hide	away	

important	informa6on)	

Algorithms:	An	Introduc6on	CSCE	235	 10	

Wri6ng	Pseudo-Code:	Advice	
•  Input/output	must	properly	defined	
•  All	your	variables	must	be	properly	ini6alized,	introduced		
•  Variables	are	instan6ated,	assigned	using	←		
•  All	‘commands’	(while,	if,	repeat,	begin,	end)	boldface									\bf	

For	i	←	1	to	n	Do	
•  All	func6ons	in	small	caps		Union(s,t)																																					\sc		
•  All	constants	in	courier:				pi	←	3.14																																								\o	
•  All	variables	in	italic:		temperature	←	78																							\mathit{}	
•  LaTeX:	Several	algorithm	formarng	packages	exist	on	WWW	

Algorithms:	An	Introduc6on	CSCE	235	 11	

Outline	

•  Introduc6on	&	defini6on	
•  Algorithms	categories	&	types	
•  Pseudo-code	
•  Designing	an	algorithm	

– Example: Max

•  Greedy	Algorithms	
– Change	

Algorithms:	An	Introduc6on	CSCE	235	 12	

Designing	an	Algorithm	
•  A	general	approach	to	designing	algorithms	is	as	follows	

–  Understanding	the	problem,	assess	its	difficulty	
–  Choose	an	approach	(e.g.,	exact/approximate,	determinis6c/	

probabilis6c)	
–  (Choose	appropriate	data	structures)	
–  Choose	a	strategy	
–  Prove		

1.  Termina6on	
2.  Completeness	
3.  Correctness/soundness	

–  Evaluate	complexity	
–  Implement	and	test	it	
–  Compare	to	other	known	approach	and	algorithms	

Algorithms:	An	Introduc6on	CSCE	235	 13	

Algorithm	Example:	Max

•  When	designing	an	algorithm,	we	usually	give	a	
formal	statement	about	the	problem	to	solve	

•  Problem	
–  Given:	a	set	A={a1,a2,…,an}	of	integers	
–  Ques2on:	find	the	index	i	of	the	maximum	integer	ai	

•  A	straightorward	idea	is		
–  Simply	store	an	ini6al	maximum,	say	a1	
–  Compare	the	stored	maximum	to	every	other	integer	in	A	
–  Update	the	stored	maximum	if	a	new	maximum	is	ever	
encountered	

Algorithms:	An	Introduc6on	CSCE	235	 14	

Pseudo-code	of	Max	
Max

Input:							A	finite	set	A={a1,a2,…,an}	of	integers	
Output:				The	largest	element	in	the	set	
1. 	temp		←	a1	
2.  	For		i	=2	to	n	Do	
3.  							If	ai	>	temp	
4.  										Then	temp	←	ai												
5.  							End	
6.  	End	
7.  	Return	temp	

Algorithms:	An	Introduc6on	CSCE	235	 15	

Algorithms:	Other	Examples	

•  Check	Bubble	Sort	and	Inser6on	Sort	in	your	
textbooks	

•  …	which	you	should	have	seen	ad	nauseum	in	
CSE	155	and	CSE	156		

•  And	which	you	will	see	again	in	CSE	310	
•  Let	us	know	if	you	have	any	ques6ons	

Algorithms:	An	Introduc6on	CSCE	235	 16	

Outline	

•  Introduc6on	&	defini6on	
•  Algorithms	categories	&	types	
•  Pseudo-code	
•  Designing	an	algorithm	

– Example: Max

•  Greedy	Algorithms	
– Change	

Algorithms:	An	Introduc6on	CSCE	235	 17	

Greedy	Algorithms	
•  In	many	problems,	we	wish	to	not	only	find	a	solu6on,	but	to	

find	the	best	or	op6mal	solu6on	
•  A	simple	technique	that	works	for	some	op6miza6on	

problems	is	called	the	greedy	technique	
•  As	the	name	suggests,	we	solve	a	problem	by	being	greedy			

–  Choose	what	appears	now	to	be	the	best	choice	
–  Choose	the	most	immediate	best	solu6on	(i.e.,	think	locally)	

•  Greedy	algorithms	
–  Work	well	on	some	(simple)	problems	
–  Usually	they	are	not	guaranteed	to	produce	the	best	globally	op6mal	

solu6on	

Algorithms:	An	Introduc6on	CSCE	235	 18	

Change-Making	Problem	
•  We	want	to	give	change	to	a	customer	but	we	
want	to	minimize	the	number	of	total	coins	
we	give	them	

•  Problem	
– Given:	An	integer	n	an	a	set	of	coin	
denomina6ons	(c1,c2,…,cr)	with	c1>c2>…>cr	

– Query:	Find	a	set	of	coins	d1,d2,…,dk	such	that	
Σi=1

k		cidi	=	n	and	k	is	minimized	

Algorithms:	An	Introduc6on	CSCE	235	 19	

Greedy	Algorithm:	Change

Change

Input:				An	integer	n	and	a	set	of	coin	denomina6ons	{c1,c2,…,cr}		
															with	c1	>	c2>	…	>cr	
Output:		A	set	of	coins	d1,d2,…,dr	such	that		Σi=1

r		di·ci	=	n	and		Σi=1
r		di	is	minimized	

1.  	For		i	=1	to	r	Do	
2.  				di	←	0	
3.  				While	n	≥	ci	Do		
4.  																		di	←	di		+	1	
5.  																		n	←	n	-	ci												
6.  							End	
7.  	Return	{di}	

Algorithms:	An	Introduc6on	CSCE	235	 20	

Change:	Analysis	(1)	

•  Will	the	algorithm	always	produce	an	op6mal	
answer?	

•  Example	
–  Consider	a	coinage	system	where	c1=20,	c2=15,	c3=7,	c4=1	
–  We	want	to	give	22	‘cents’	in	change	

	•  What	is	the	output	of	the	algorithm?	

•  Is	it	op6mal?	

	
	
•  It	is	not	op6mal	because	it	would	give	us	two	c4	and	one	c1	(3	

coins).		The	op6mal	change	is	one	c2	and	one	c3	(2	coins)	

Algorithms:	An	Introduc6on	CSCE	235	 21	

Change:	Analysis	(2)	

•  What	about	the	US	currency	system:	is	the	
algorithm	correct	in	this	case?	

•  Yes,	in	fact	it	is.		We	can	prove	it	by	
contradic6on.	

•  For	simplicity,	let	us	consider	
c1=25,	c2=10,	c3=5,	c4=1	

Algorithms:	An	Introduc6on	CSCE	235	 22	

Op6mality	of	Change (1)	
•  But,	how	about	the	previous	counterexample?		Why	(and	

where)	does	this	proof?	
•  We	need	the	following	lemma:	
	If	n	is	a	posi6ve	integer,	then	n	cents	in	change	using	
quarters,	dimes,	nickels,	and	pennies	using	the	fewest	coins	
possible	
–  Has	at	most	two	dimes	
–  Has	at	most	one	nickel	
–  Has	at	most	four	pennies,	and	
–  Cannot	have	two	dimes	and	a	nickel	

The	amount	of	change	in	dimes,	nickels,	and	pennies	cannot	
exceed	24	cents	

Algorithms:	An	Introduc6on	CSCE	235	 23	

Op6mality	of	Change (2)	
•  Let	C={d1,d2,…,dk}	be	the	solu6on	given	by	the	greedy	algorithm	for	some	

integer	n.	
•  By	way	of	contradic6on,	assume	there	is	a	beoer	solu6on	C’={d1’,d2’,

…,dl’}	with	l<k	

•  Consider	the	case	of	quarters.	Say there are q quarters in C and q’ in C’.		
1.  If	q’>q,	the	greedy	algorithm	would	have	used	q’	by	construc6on.	Thus,	it	is	

impossible	that	the	greedy	uses	q<q’.	

2.  Since	the	greedy	algorithms	uses	as	many	quarters	as	possible,	n=q(25)+r,	
where	r<25.	If	q’<q,	then,	n=q’(25)+r’	where	r’≥25.		C’	will	have	to	use	
more	smaller	coins	to	make	up	for	the	large	r’.		Thus	C’	is	not	the	op6mal	
solu6on.		

3.  If	q=q’,	then	we	con6nue	the	argument	on	the	smaller	denomina6on	(e.g.,	
dimes).		Eventually,	we	reach	a	contradic6on.	

•  Thus,	C=C’	is	our	op6mal	solu6on	

Algorithms:	An	Introduc6on	CSCE	235	 24	

Greedy	Algorithm:	Another	Example	

•  Check	the	problem	of	Scenario	I,	page	25	in	the	
slides	Introduc6ontoCSE235.ppt	

•  We	discussed	then	(remember?)	a	greedy	algorithm	
for	accommoda6ng	the	maximum	number	of	
customers.	The	algorithm		
–  terminates,	is	complete,	sound,	and	sa6sfies	the	maximum	
number	of	customers	(finds	an	op6mal	solu6on)	

–  runs	in	6me	linear	in	the	number	of	customers	

Algorithms:	An	Introduc6on	CSCE	235	 25	

Summary	

•  Introduc6on	&	defini6on	
•  Algorithms	categories	&	types	
•  Pseudo-code	
•  Designing	an	algorithm	

– Example:	Max

•  Greedy	Algorithms	
– Example:	Change

