Algorithms: An Introduction

'Algorithm' is a distortion of Al-Khawarizmi, a Persian mathematician

Section 3.1 of Rosen

Spring 2018

CSCE 235 Introduction to Discrete Structures (Honors)

Course web-page: cse.unl.edu/~cse235h

Questions: Piazza

- Introduction & definition
- Algorithms categories & types
- Pseudo-code
- Designing an algorithm
 - Example: MAX
- Greedy Algorithms
 - CHANGE

Computer Science is About Problem Solving

- A Problem is specified by
 - **1.** The givens (a formulation)
 - A set of objects
 - Relations between them

2. The query

• The information one wants to extract from the formulation, the question to answer

Real World	↔	Computing World
Objects	represented by	data Structures, ADTs, Classes
Relations	implemented with	relations & functions (e.g., predicates)
Actions	Implemented with	algorithms: a sequence of instructions

• An algorithm is a method or procedure that solves instances of a problem

Algorithms: Formal Definition

- Definition: An algorithm is a sequence of unambiguous instructions for solving a problem.
- Properties of an algorithm
 - Finite: the algorithm must eventually terminate
 - Complete: Always give a solution when one exists
 - Correct (sound): Always give a correct solution
- For an algorithm to be an acceptable solution to a problem, it must also be <u>effective</u>. That is, it must give a solution in a 'reasonable' amount of time
- Efficient= runs in polynomial time. Thus, effective≠ efficient
- There can be many algorithms to solve the same problem

- Introduction & definition
- Algorithms categories & types
- Pseudo-code
- Designing an algorithm
 - Example: MAX
- Greedy Algorithms
 - CHANGE

Algorithms: General Techniques

- There are many broad categories of algorithms
 - Deterministic versus Randomized (e.g., Monte Carlo)
 - Exact versus Approximation
 - Sequential/serial versus Parallel, etc.
- Some general styles of algorithms include
 - Brute force (enumerative techniques, exhaustive search)
 - Divide & Conquer
 - Transform & Conquer (reformulation)
 - Greedy Techniques

- Introduction & definition
- Algorithms categories & types
- Pseudo-code
- Designing an algorithm
 - Example: MAX
- Greedy Algorithms
 - CHANGE

Good Pseudo-Code: Example

INTERSECTION

Input: Two finite sets *A*, *B*

Output: A finite set C such that $C = A \cap B$

- *1. C*←∅
- 2. If |A| > |B| Then SWAP(A,B)
- 3. For every $x \in A$ Do
- 4. If $x \in B$ Then $C \leftarrow C \cup \{x\}$

UNION(C,{x})

- 5. **End**
- 6. **Return** *C*

Algorithms: Pseudo-Code

- Algorithms are usually presented using <u>pseudo-code</u>
- Bad pseudo-code
 - Gives too many details or
 - Is too implementation specific (i.e., actual C++ or Java code or giving every step of a sub-process such as set union)
- Good pseudo-code
 - Is a balance between clarity and detail
 - Abstracts the algorithm
 - Makes good use of mathematical notation
 - Is easy to read and
 - Facilitates implementation (reproducible, does not hide away important information)

Writing Pseudo-Code: Advice

- Input/output must properly defined
- All your variables must be properly initialized, introduced
- Variables are instantiated, assigned using ←
- All 'commands' (while, if, repeat, begin, end) boldface \bf

For $i \leftarrow 1$ to n Do

- All functions in small caps UNION(s,t) \sc
- All constants in courier: pi ← 3.14 \tt
- All variables in italic: temperature ← 78 \mathit{}
- LaTeX: Several algorithm formatting packages exist on WWW

- Introduction & definition
- Algorithms categories & types
- Pseudo-code
- Designing an algorithm
 - Example: MAX
- Greedy Algorithms
 - CHANGE

Designing an Algorithm

- A general approach to designing algorithms is as follows:
 - Understanding the problem, assess its difficulty
 - Choose an approach (e.g., exact/approximate, deterministic/ probabilistic)
 - (Choose appropriate data structures)
 - Choose a strategy
 - Prove
 - 1. Termination
 - 2. Completeness
 - 3. Correctness/soundness
 - Evaluate complexity
 - Implement and test it
 - Compare to other known approach and algorithms

Algorithm Example: MAX

 When designing an algorithm, we usually give a formal statement about the problem to solve

Problem

- **Given**: a set $A=\{a_1,a_2,...,a_n\}$ of integers
- Question: find the index i of the maximum integer a_i
- A straightforward idea is
 - Simply store an initial maximum, say a₁
 - Compare the stored maximum to every other integer in A
 - Update the stored maximum if a new maximum is ever encountered

Pseudo-code of Max

MAX

Input: A finite set $A = \{a_1, a_2, ..., a_n\}$ of integers

Output: The largest element in the set

- 1. $temp \leftarrow a_1$
- 2. **For** i = 2 **to** n **Do**
- 3. **If** a_i > temp
- 4. Then $temp \leftarrow a_i$
- 5. **End**
- 6. **End**
- 7. **Return** *temp*

Algorithms: Other Examples

- Check Bubble Sort and Insertion Sort in your textbooks
- ... which you should have seen ad nauseum in CSE 155 and CSE 156
- And which you will see again in CSE 310
- Let us know if you have any questions

- Introduction & definition
- Algorithms categories & types
- Pseudo-code
- Designing an algorithm
 - Example: MAX
- Greedy Algorithms
 - CHANGE

Greedy Algorithms

- In many problems, we wish to not only find a solution, but to find the best or optimal solution
- A simple technique that works for some optimization problems is called the greedy technique
- As the name suggests, we solve a problem by being greedy
 - Choose what appears now to be the best choice
 - Choose the most immediate best solution (i.e., think locally)
- Greedy algorithms
 - Work well on some (simple) problems
 - Usually they are not guaranteed to produce the best globally optimal solution

Change-Making Problem

 We want to give change to a customer but we want to minimize the number of total coins we give them

Problem

- **Given**: An integer n an a set of coin denominations $(c_1, c_2, ..., c_r)$ with $c_1 > c_2 > ... > c_r$
- **Query**: Find a set of coins $d_1, d_2, ..., d_k$ such that $\sum_{i=1}^k c_i d_i = n$ and k is minimized

Greedy Algorithm: CHANGE

CHANGE

Input: An integer n and a set of coin denominations $\{c_1, c_2, ..., c_r\}$ with $c_1 > c_2 > ... > c_r$

Output: A set of coins $d_1, d_2, ..., d_r$ such that $\sum_{i=1}^r d_i \cdot c_i = n$ and $\sum_{i=1}^r d_i$ is minimized

- 1. For i = 1 to r Do
- 2. di ← 0
- 3. While $n \ge c_i$ Do
- 4. $d_i \leftarrow d_i + 1$
- 5. $n \leftarrow n c_i$
- 6. **End**
- 7. Return $\{d_i\}$

CHANGE: Analysis (1)

- Will the algorithm <u>always</u> produce an optimal answer?
- Example
 - Consider a coinage system where $c_1=20$, $c_2=15$, $c_3=7$, $c_4=1$
 - We want to give 22 'cents' in change
- What is the output of the algorithm?
- Is it optimal?
- It is not optimal because it would give us two c_4 and one c_1 (3 coins). The optimal change is one c_2 and one c_3 (2 coins)

CHANGE: Analysis (2)

- What about the US currency system: is the algorithm correct in this case?
- Yes, in fact it is. We can prove it by contradiction.
- For simplicity, let us consider

$$c_1=25$$
, $c_2=10$, $c_3=5$, $c_4=1$

Optimality of CHANGE (1)

- But, how about the previous counterexample? Why (and where) does this proof?
- We need the following lemma:

If n is a positive integer, then n cents in change using quarters, dimes, nickels, and pennies using the fewest coins possible

- Has at most two dimes
- Has at most one nickel
- Has at most four pennies, and
- Cannot have two dimes and a nickel

The amount of change in dimes, nickels, and pennies cannot exceed 24 cents

Optimality of CHANGE (2)

- Let $C=\{d_1,d_2,...,d_k\}$ be the solution given by the greedy algorithm for some integer n.
- By way of contradiction, assume there is a better solution C' ={d₁',d₂', ...,d₁'} with I<k
- Consider the case of quarters. Say there are q quarters in C and q' in C'.
 - 1. If q' > q, the greedy algorithm would have used q' by construction. Thus, it is impossible that the greedy uses q < q'.
 - 2. Since the greedy algorithms uses as many quarters as possible, n=q(25)+r, where r<25. If q'<q, then, n=q'(25)+r' where $r'\geq25$. C' will have to use more smaller coins to make up for the large r'. Thus C' is not the optimal solution.
 - 3. <u>If q=q'</u>, then we continue the argument on the smaller denomination (e.g., dimes). Eventually, we reach a contradiction.
- Thus, C=C' is our optimal solution

Greedy Algorithm: Another Example

- Check the problem of Scenario I, page 25 in the slides <u>IntroductiontoCSE235.ppt</u>
- We discussed then (remember?) a greedy algorithm for accommodating the maximum number of customers. The algorithm
 - terminates, is complete, sound, and satisfies the maximum number of customers (finds an optimal solution)
 - runs in time linear in the number of customers

Summary

- Introduction & definition
- Algorithms categories & types
- Pseudo-code
- Designing an algorithm
 - Example: MAX
- Greedy Algorithms
 - Example: CHANGE