Recitation 10

Created by Taylor Spangler, Adapted by Beau Christ

April 3, 2017

- Induction: Example using triominoes for $2^n \times 2^n$ checkerboard missing one corner, see page 326.
- Problem 5.1.5: Using induction, prove:

$$\forall n \ge 0 \ 1^2 + 3^2 + \ldots + (2n+1)^2 = \frac{(n+1)(2n+1)(2n+3)}{3}$$

We prove the property using mathematical induction:

1. Let's state the property to prove:

$$P(n): 1^2 + 3^2 + \ldots + (2n+1)^2 = \frac{(n+1)(2n+1)(2n+3)}{3}$$

2. We take $n_0 = 0$ and prove P(0):

$$P(0) = 1 = \frac{(1)(1)(3)}{3}$$

We show that P(0) holds: $1 = 1 \cdot \frac{1 \cdot 1 \cdot 3}{3} = 1$. Therefore, P(0) is true. 3. What is the inductive hypothesis?

$$P(k): 1^{2} + 3^{2} + \ldots + (2k+1)^{2} = \frac{(k+1)(2k+1)(2k+3)}{3}$$

4. Assuming the base case and the inductive hypothesis, we want to prove:

$$P(k+1): 1^2 + 3^2 + \ldots + (2k+3)^2 = \frac{(k+2)(2k+3)(2k+5)}{3}$$

5. We start from $1^2 + 3^2 + \ldots + (2k+1)^2 + (2k+3)^2$. $1^2 + 3^2 + \ldots + (2k+1)^2 + (2k+3)^2$ $= (1^2 + 3^2 + \ldots + (2k+1)^2) + (2k+3)^2$ $= \frac{(k+1)(2k+1)(2k+3)}{3} + (2k+3)^2$ using the inductive hypothesis $= (2k+3) \cdot (\frac{(k+1)(2k+1)+6k+9}{3})$ $= (2k+3) \cdot (\frac{2k^2+9k+10}{3})$ $= \frac{(k+2)(2k+3)(2k+5)}{3}$ Thus, P(k+1) holds. Consequently, by the PMI, $\forall n \ge 0 \ 1^2 + 3^2 + \ldots + (2n+1)^2 = \frac{(n+1)(2n+1)(2n+3)}{3}$

- Now, prove the following: $3 \mid 2^{2n} 1$ for $n \ge 1$.
 - 1. First, we state the property to prove: $P(n): 3 \mid 2^{2n} 1$.
 - 2. Base case is $n_0 = 1$. So $P(1) = 3 \mid 2^{2(1)} 1$. Clearly, $2^{2(1)} 1 = 4 1 = 3$, $3 \mid 3$, which is obvious. So, P(1) holds.
 - 3. Next, we state the inductive hypothesis: $P(k) : 3 \mid 2^{2k} 1$ and assume that P(k) holds.
 - 4. Now, we have to prove that $P(k+1): 3 \mid 2^{2k+2} 1$ holds. We start from $2^{2k+2} 1$. $2^{2k+2} - 1 = 4 \cdot 2^k - 1 = 4 \cdot (2^k - 1 + 1) - 1$. The inductive hypothesis gives that $3 \mid 2^{2k} - 1$ This, there is an integer t such that $2^{2k} - 1 = 3t$. Thus, $2^{2k+2} - 1 = 4 \cdot (3t+1) - 1 = 12t + 4 - 1 = 12t + 3 = 3 \cdot (4t+1)$. Thus, $2^{2k+2} - 1$ is a multiple of 3. Hence, P(k+1) holds.

Consequently, by the PMI, $\forall n \geq 1, 3 \mid 2^{2n} - 1$.

• A proof by strong induction.

Show that $\forall n \in \mathbb{N}, 12 \mid (n^4 - n^2).$

1. First, we state the property:

$$P(n): 12 \mid (n^4 - n^2)$$

- 2. Base Case:
 - (a) For n = 1: $1^4 1^2 = 0 = 12 \cdot 0$, so P(1) is true.
 - (b) For n = 2: $2^4 2^2 = 16 4 = 12 = 12 \cdot 1$, so P(2) is true.
 - (c) For n = 3: $3^4 3^2 = 81 9 = 72 = 12 \cdot 6$, so P(3) is true.
 - (d) For n = 4: $4^4 4^2 = 256 16 = 240 = 12 \cdot 20$, so P(4) is true.
 - (e) For n = 5: $5^4 5^2 = 625 25 = 600 = 12 \cdot 50$, so P(5) is true.
 - (f) For n = 6: $6^4 6^2 = 1296 36 = 1260 = 12 \cdot 105$, so P(6) is true.
- 3. Strong Inductive Hypothesis Let $k \ge 6 \in \mathbb{N}$ and assume that $12 \mid (m^4 m^2)$ for $1 \le m < k$ where $m \in \mathbb{N}$.
- 4. We need to estalish P(k). Let i = k - 5. Because i < k, we can assume that P(i) holds. Clearly i + 6 = k + 1. $(i + 6)^4 - (i + 6)^2$ $= (i^4 + 24i^3 + 180i^2 + 864i + 1296) - (i^2 + 12i + 36)$ $= (i^4 - i^2) + 24i^3 + 180i^2 + 852i + 1260$ Because P(i) holds, we have $i^4 - i^2 = 12 \cdot t$.

Further, $24i^3 + 180i^2 + 852i + 1260 = 12(2i^3 + 15i^2 + 71i + 105)$. Thus, $(i+6)^4 - (i+6)^2 = 12 \cdot t + 12(2i^3 + 15i^2 + 71i + 105) = 12(t+2i^3 + 15i^2 + 71i + 105)$. Hence, $(i+6)^4 - (i+6)^2$ is a multiple of 12 and $12 \mid (k+1)^4 - (k+1)^2$.

We can finally state that by the principle of strong induction, $\forall n \in \mathbb{N}, 12 \mid (n^4 - n^2).$