Sequences & Summations

Section 2.4 of Rosen

Spring 2017

CSCE 235H Introduction to Discrete Structures (Honors)

Course web-page: cse.unl.edu/~cse235h

Questions: Piazza

Outline

Although you are (more or less) familiar with sequences and summations, we give a quick review

- Sequences
 - Definition, 2 examples
- Progressions: Special sequences
 - Geometric, arithmetic
- Summations
 - Careful when changing lower/upper limits
- Series: Sum of the elements of a sequence
 - Examples, infinite series, convergence of a geometric series

Sequences

• **Definition**: A <u>sequence</u> is a function from a subset of integers to a set S. We use the notation(s):

$$\{a_n\}$$
 $\{a_n\}_{n=0}^{\infty}$ $\{a_n\}_{n=0}^{\infty}$

- Each a_n is called the nth term of the sequence
- We rely on the context to distinguish between a sequence and a set, although they are distinct structures

Sequences: Example 1

Consider the sequence

$$\{(1 + 1/n)^n\}_{n=1}^{\infty}$$

The terms of the sequence are:

$$a_1 = (1 + 1/1)^1 = 2.00000$$
 $a_2 = (1 + 1/2)^2 = 2.25000$
 $a_3 = (1 + 1/3)^3 = 2.37037$
 $a_4 = (1 + 1/4)^4 = 2.44140$
 $a_5 = (1 + 1/5)^5 = 2.48832$

- What is this sequence?
- The sequence corresponds to Euler number, Napier number $\lim_{n\to\infty} \{(1+1/n)^n\}_{n=1}^{\infty} = e = 2.71828..$

Sequences: Example 2

- The sequence: $\{h_n\}_{n=1}^{\infty} = 1/n$ is known as the <u>harmonic</u> sequence
- The sequence is simply:

 This sequence is particularly interesting because its summation is divergent:

$$\sum_{n=1}^{\infty} (1/n) = \infty$$

Progressions: Geometric

 Definition: A geometric progression is a sequence of the form

Where:

- a∈R is called the <u>initial term</u>
- r∈R is called the <u>common ratio</u>
- A geometric progression is a <u>discrete</u> analogue of the exponential function

$$f(x) = ar^x$$

Geometric Progressions: Examples

 A common geometric progression in Computer Science is:

$$\{a_n\} = 1/2^n$$

with a=1 and r=1/2

- Give the initial term and the common ratio of
 - $-\{b_n\}$ with $b_n = (-1)^n$
 - $-\{c_n\}$ with $c_n = 2(5)^n$
 - $\{d_n\}$ with $d_n = 6(1/3)^n$

Progressions: Arithmetic

 Definition: An <u>arithmetric progression</u> is a sequence of the form

Where:

- $-a \in R$ is called the <u>initial term</u>
- $-d \in R$ is called the common difference
- An arithmetic progression is a <u>discrete</u> analogue of the linear function

$$f(x) = dx+a$$

Arithmetic Progressions: Examples

- Give the initial term and the common difference of
 - $-\{s_n\}$ with $s_n = -1 + 4n$
 - $-\{t_n\}$ with $s_n = 7 3n$

More Examples

 Table 1 on Page 162 (Rosen) has some useful sequences:

$$\{n^2\}_{n=1}^{\infty}$$
, $\{n^3\}_{n=1}^{\infty}$, $\{n^4\}_{n=1}^{\infty}$, $\{2^n\}_{n=1}^{\infty}$, $\{3^n\}_{n=1}^{\infty}$, $\{n!\}_{n=1}^{\infty}$

Outline

Although you are (more or less) familiar with sequences and summations, we give a quick review

- Sequences
 - Definition, 2 examples
- Progressions: Special sequences
 - Geometric, arithmetic
- Summations
 - Careful when changing lower/upper limits
- Series: Sum of the elements of a sequence
 - Examples, infinite series, convergence of a geometric series

Summations (1)

You should be by now familiar with the summation notation:

$$\Sigma_{j=m}^{n} (a_j) = a_m + a_{m+1} + ... + a_{n-1} + a_n$$

Here

- j is the index of the summation
- m is the lower limit
- n is the upper limit
- Often times, it is useful to change the lower/upper limits, which can be done in a straightforward manner (although we must be very careful):

$$\sum_{j=1}^{n} (a_j) = \sum_{i=0}^{n-1} (a_{i+1})$$

Summations (2)

- Sometimes we can express a summation in <u>closed</u> form, as for geometric series
- **Theorem**: For a, $r \in \mathbb{R}$, $r \neq 0$

$$\Sigma_{i=0}^{n} (ar^{i}) = \begin{cases} (ar^{n+1}-a)/(r-1) & \text{if } r \neq 1 \\ (n+1)a & \text{if } r = 1 \end{cases}$$

• Closed form = analytical expression using a bounded number of well-known functions, does not involved an infinite series or use of recursion

Summations (3)

Double summations often arise when analyzing an algorithm

$$\Sigma_{i=1}^{n} \Sigma_{j=1}^{i}(a_{j}) = a_{1} + a_{1} + a_{2} + a_{3} + a_{2} + a_{3} + a_{2} + a_{3} + a_{1} + a_{2} + a_{3} + a_{2} + a_{3} + a_{1} + a_{2} + a_{3} + a_{2} + a_{3} + a_{3} + a_{4} + a_{4} + a_{5} + a_{$$

Summations can also be indexed over elements in a set:

$$\Sigma_{s \in S} f(s)$$

 Table 2 on Page 166 (Rosen) has very useful summations. Exercises 2.4.30—34 (edition 7th) are great material to practice on.

Outline

Although you are (more or less) familiar with sequences and summations, we give a quick review

- Sequences
 - Definition, 2 examples
- Progressions: Special sequences
 - Geometric, arithmetic
- Summations
 - Careful when changing lower/upper limits
- Series: Sum of the elements of a sequence
 - Examples, infinite series, convergence of a geometric series

Series

- When we take the <u>sum of a sequence</u>, we get a <u>series</u>
- We have already seen a closed form for geometric series
- Some other useful closed forms include the following:

$$-\sum_{i=k}^{u} 1 = u-k+1$$
, for k≤u

$$-\Sigma_{i=0}^{n} i = n(n+1)/2$$

$$-\sum_{i=0}^{n} (i^2) = n(n+1)(2n+1)/6$$

$$-\sum_{i=0}^{n} (i^{k}) \approx n^{k+1}/(k+1)$$

Infinite Series

- Although we will mostly deal with finite series (i.e., an upper limit of n for fixed integer), inifinite series are also useful
- Consider the following geometric series:
 - $-\sum_{n=0}^{\infty} (1/2^n) = 1 + 1/2 + 1/4 + 1/8 + \dots$ converges to 2
 - $-\sum_{n=0}^{\infty} (2^n) = 1 + 2 + 4 + 8 + \dots$ does not converge
- However note: $\Sigma_{n=0}^{n}(2^{n}) = 2^{n+1} 1$ (a=1,r=2)

Infinite Series: Geometric Series

- In fact, we can generalize that fact as follows
- Lemma: A geometric series converges <u>if and</u> only <u>if</u> the absolute value of the common ratio is less than 1

When |r| < 1,

$$\lim_{n \to \infty} \sum_{i=0}^{n} (ar^{i}) = \lim_{n \to \infty} \sum_{i=0}^{n} \frac{(ar^{n+1} - a)}{r - 1} = \frac{a}{1 - r}$$