Clause Learning and Intelligent Backtracking in MiniSAT

Daniel Geschwender

CSCE 235H Introduction to Discrete Structures (Honors) Spring 2017 URL: cse.unl.edu/~cse235h All questions: Piazza

Clause Learning

- At every conflict, determine the cause of the conflict
- Create a new clause to prevent the conflict from being reached in the future
- Tools
 - Implication graph to determine cause of conflicts
 - Added clause is a "learnt" no-good

Implication Graph (1)

- Nodes correspond to assignments
- Nodes with no incoming edges are decision variables (assignments)
- Nodes with incoming edges were assigned through propagation

$$\begin{array}{ll}
x_1 \leftarrow 0 & (x_1 \lor \neg x_2 \lor \neg x_4) \land \\
x_2 \leftarrow 1 & (x_4 \lor \neg x_5 \lor \neg x_7) \land \\
x_3 \leftarrow 0 & (x_3 \lor \neg x_6) \land \\
(\neg x_2 \lor x_5)
\end{array}$$

Implication Graph (2)

 $x_1 = 0$

 A node and its immediate predecessors correspond to a clause

 X_A

Clause Learning and Intelligent Backtracking

Trail

- Series of assignments made up to current point in search
- Broken up by 'decision levels'
- Each decision level includes propagations

Decision level	Assignment
1	$x_1 = 0$
2	$x_2 = 1$
	$x_4 = 0$
	$x_5 = 1$
	$x_7 = 0$
3	$x_3 = 0$
	$x_6 = 0$

Clause Learning Example (1)

	DL	Assignment	
	1	$x_1 = 0$	$(x_5 \lor x_6 \lor x_{10} \lor \neg x_{12}) \land$
	2	$x_2 = 1$	$(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_2 \lor x_5 \lor x_{12}) \land$
		$x_3 = 1$	$- \qquad (\neg x_3 \lor x_6 \lor \neg x_{10}) \land$
	3	$x_4 = 0$	$(\neg x_7 \lor x_9) \land$
		$x_{5} = 0$	$(\neg x_7 \lor \neg x_8) \land$
		$x_6 = 0$	$(x_4 \vee \neg x_5) \land$
	4	$x_7 = 1$	$(x_4 \lor \neg x_6) \land$
		$x_8 = 0$	$(x_{10} \lor x_{11})$
		$x_9 = 1$	
	5	$x_{10} = 0$	
		$x_{11} = 1$	
CSCE 2	235H	$x_{12} = 0$	Clause Learning and Intelligent Backtracking

Clause Learning Example (2)

	1	
DL	Assignment	$x_0 = 1$
1	$x_1 = 0$	$x_7 = 1$
2	$x_2 = 1$	
	$x_3 = 1$	$x_{8} = 0$
3	$x_4 = 0$	$ x_1 - 0$
	$x_5 = 0$	$x_3 = 1$
	$x_6 = 0$	$x_2 = 1$
4	$x_7 = 1$	$x_{c} = 0$
	$x_8 = 0$	$x_4 = 0$
	$x_9 = 1$	
5	$x_{10} = 0$	$x_{10} = 0$
	$x_{11} = 1$	×10 v
CE 235H	$x_{12} = 0$	Clause Learning and Intelligent $x_{11} = 1$ Backtracking

Clause Learning Example (3)

Intelligent Backtracking

- When reaching a conflict, we
 - Consider conflicted clauses
 - Draw the implication graph
 - Identify the decision variables
 - Generate the learnt no-good
 - Add learned clause to the formula
- Undo assignments until the learned clause becomes a unit clause

Intelligent Backtracking Example (1)

	DL	Assignment	
-	1	$x_1 = 0$	$= (x_5 \lor x_6 \lor x_{10} \lor \neg x_{12}) \land$
-	2	$x_2 = 1$	$- (x_1 \lor \neg x_2 \lor x_3) \land \\ (-x \lor \land x \lor \land x \to \land x \to \land \land$
		$x_3 = 1$	$(\neg x_3 \lor x_5 \lor x_{12}) \land \\ (\neg x_2 \lor x_6 \lor \neg x_{10}) \land \\ (\neg x_2 \lor x_{10}) \land \\ (\neg x_1 \lor x_{10}) \land $
	3	$x_4 = 0$	$(\neg x_3 \lor x_6 \lor \neg x_{10}) \land$
		$x_5 = 0$	$(\neg x_7 \lor \neg x_8) \land$
-		$x_6 = 0$	$(x_4 \vee \neg x_5) \wedge$
	4	$x_7 = 1$	$(x_4 \lor \neg x_6) \land$
		$x_8 = 0$	$(x_{10} \lor x_{11}) \land$
_		$x_9 = 1$	$(x_1 \lor \neg x_2 \lor x_4 \lor x_{10})$
	5	$x_{10} = 0$	
		$x_{11} = 1$	x_{10} deepest decision variable
CSCE 2	235H	$x_{12} = 0$	Clause Learning and Intelligent Backtracking

Intelligent Backtracking Example (2)

	I		1	
DL	Assgn	DL	Assgn	$x_0 = 1$
1	$x_1 = 0$	1	$x_1 = 0$	$x_7 = 1$
2	$x_2 = 1$	2	$x_2 = 1$	
	$x_3 = 1$		$x_3 = 1$	$x_8 = 0$
3	$x_4 = 0$	3	$x_4 = 0$	
	$x_5 = 0$		$x_5 = 0$	• $x_3 = 1$
	$x_6 = 0$		$x_6 = 0$	$x_2 = 1$
4	$x_7 = 1$	4	$x_7 = 1$	$x_5 = 0$
	$x_8 = 0$		$x_8 = 0$	$x_4 = 0$
	$x_9 = 1$		$x_9 = 1$	$x_c = 0$
5	$x_{10} = 0$		$x_{10} = 1$	
	$x_{11} = 1$			$x_{10} = 1$
CSCE	235 $H_2 = 0$		Claus	e Learning and Intelligent Backtracking

Intelligent Backtracking Example (3)

Intelligent Backtracking Example (4)

DL	Assgn	
1	$x_1 = 0$	$(x_5 \lor x_6 \lor x_{10} \lor \neg x_{12}) \land$
2	$x_2 = 1$	$(x_1 \lor \neg x_2 \lor x_3) \land \\ (\neg x_2 \lor x_2 \lor x_{12}) \land$
	$x_3 = 1$	$(\neg x_3 \lor x_5 \lor x_{12}) \land \\ (\neg x_3 \lor x_6 \lor \neg x_{10}) \land$
3	$x_4 = 0$	$(\neg x_7 \lor x_9) \land$
	$x_5 = 0$	$(\neg x_7 \lor \neg x_8) \land$
	$x_6 = 0$	$(x_4 \vee \neg x_5) \wedge$
4	$x_7 = 1$	$(x_4 \vee \neg x_6) \wedge$
	$x_8 = 0$	$(x_{10} \lor x_{11}) \land$
	$x_9 = 1$	$(x_1 \lor \neg x_2 \lor x_4 \lor x_{10}) \land$
	$x_{10} = 1$	$(x_1 \vee \neg x_2 \vee x_4)$

Т

Clause Learning and Intelligent Backtracking

Intelligent Backtracking Example (5)

DL	Assgn	DL	Assgn
1	$x_1 = 0$	1	$x_1 = 0$
2	$x_2 = 1$	2	$x_2 = 1$
	$x_3 = 1$		$x_3 = 1$
3	$x_4 = 0$	3	$x_4 = 1$
	$x_5 = 0$		
	$x_6 = 0$		
4	$x_7 = 1$		
	$x_8 = 0$		
	$x_9 = 1$		
	$x_{10} = 1$		
CSCE		Clause Le	

$$(x_{5} \lor x_{6} \lor x_{10} \lor \neg x_{12}) \land (x_{1} \lor \neg x_{2} \lor x_{3}) \land (\neg x_{3} \lor x_{5} \lor x_{12}) \land (\neg x_{3} \lor x_{5} \lor x_{12}) \land (\neg x_{3} \lor x_{6} \lor \neg x_{10}) \land (\neg x_{7} \lor x_{9}) \land (\neg x_{7} \lor \neg x_{9}) \land (\neg x_{7} \lor \neg x_{8}) \land (x_{4} \lor \neg x_{5}) \land (x_{4} \lor \neg x_{5}) \land (x_{4} \lor \neg x_{6}) \land (x_{10} \lor x_{11}) \land (x_{10} \lor x_{11}) \land (x_{1} \lor \neg x_{2} \lor x_{4} \lor x_{10}) \land (x_{1} \lor \neg x_{2} \lor x_{4})$$

Clause Learning and Intelligent Backtracking

Summary

- Search
 - Assign variable, Propagate
 - Detect conflict? Intelligent backtracking
- Intelligent backtracking
 - Identify decision variables source of conflict
 - Add no-good clause so conflict cannot arise in the future
 - Backtrack the deepest variables in the learnt clause
 - Flip assignment of deepest variable in learnt clause
 - Proceed
- Do you see any problem in this strategy?