Unit Propagation and Variable Ordering in MiniSAT

Daniel Geschwender

CSCE 235H Introduction to Discrete Structures
Spring 2017

URL: cse.unl.edu/~cse235h

All questions: Piazza

Unit Propagation (1): In a clause

- If a literal is true, the clause is true and can be removed
 - If $a \leftarrow true$, remove all clauses where it is positive

$$a \lor b \lor c$$

- If $a \leftarrow false$, remove all clauses where it is negative

$$\neg a \lor b \lor c$$

- If a literal is false, it can be removed from the clause
 - If $a \leftarrow false$, remove it from all clauses where it is positive

$$a \lor b \lor c$$
 $b \lor c$

$$b \vee c$$

– If $a \leftarrow true$, remove all clauses where it is negative

$$\neg a \lor b \lor c$$

$$b \vee c$$

Unit Propagation (2)

 When a literal in a clause is true, the entire clause is true and can be removed

After assignment: $a \leftarrow false$

$$\cdots \wedge C_i \wedge (\neg a \vee b \vee \neg c) \wedge C_{i+2} \wedge \cdots$$

$$\equiv \cdots \wedge C_i \wedge (true \vee b \vee \neg c) \wedge C_{i+2} \wedge \cdots$$

$$\equiv \cdots \wedge C_i \wedge true \wedge C_{i+2} \wedge \cdots$$

$$\equiv \cdots \wedge C_i \wedge C_{i+2} \wedge \cdots$$

Unit Propagation (3)

 When a literal in a clause is false, the literal may be removed from the clause

After assignment: $a \leftarrow true$

$$(\neg a \lor b \lor \neg c)$$

$$\equiv (false \lor b \lor \neg c)$$

$$\equiv (b \lor \neg c)$$

Unit Propagation (4)

- Assignments may result in unit clauses $a \leftarrow false \text{ and } a \lor b \text{ yield } b$
- Unit clauses immediately force an assignment

$$b \leftarrow true$$

 This can lead to a chain reaction as new assignments 'propagate' throughout the clauses

Unit Propagation: Example

- SAT formula with 1,000 variables
- Cycle of implications

$$\begin{array}{c} v_1 \to v_2 \\ v_2 \to v_3 \\ \vdots \end{array}$$

 A single assignment results in unit propagation to solve the entire problem

$$(\neg v_1 \lor v_2)$$

 $\land (\neg v_2 \lor v_3)$
 \vdots
 $\land (\neg v_{999} \lor v_{1000})$
 $\land (\neg v_{1000} \lor v_1)$

Unit Resolution

Unit resolution or disjunctive syllogism

$$\frac{a, \neg a \lor b}{b}$$

- Unit propagation has similarities to unit resolution
 - Assignments add unit clauses to the formula
 - When a new unit clause is added, it can be resolved with other clauses in the formula and the result added to the formula

$$(a) \land (\neg a \lor b \lor \neg c) \rightarrow (b \lor \neg c)$$

Thrashing in Search

CSCE 235H

- Repeatedly hitting conflict within a subtree of the search tree
- Thrashing is costly

Fail-First Principle (FFP)

- It is better to fail early than to waste time exploring a subtree with no solutions
- Want to handle potential conflicts earlier

Variable Ordering Heuristics

- The order in which variables are assigned
- Heuristic: good performance in general, not guaranteed to be optimal
- Static versus dynamic
 - Static: Assignment order is decided before search and maintained fixedthroughout search
 - Dynamic: Variable ordering is adjusted during the course of the search

Activity-Based Heuristics

- Variables are assigned an 'activity' value
- Variables involved in a conflict have their activities increased
- Activities exponentially decay
- Select most 'active' variable

$$(\neg a \lor \neg c \lor d)$$

$$Activity(a) += 1$$
$$Activity(c) += 1$$
$$Activity(d) += 1$$

Activity-Based Heuristics Example

- UNSAT formula with 1000 variables
- Conflict occurs between v_{999} and v_{1000}

Unit Propagation and Variable Ordering