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Outline	
•  Rela6on:		

–  Defini6on,	representa6on,	rela6on	on	a	set	
•  Proper6es	

–  Reflexivity,	symmetry,	an6symmetric,	irreflexive,	asymmetric	

•  Combining	rela6ons	
–  ∩,	∪,	\,	composite	of	rela6ons	

•  Represen6ng	rela6ons	
–  0-1	matrices,	directed	graphs	

•  Closure	of	rela6ons	
–  Reflexive	closure,	diagonal	rela6on,	Warshall’s	Algorithm,	

•  Equivalence	rela6ons:	
–  Equivalence	class,	par66ons,		
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Introduc6on	

•  A	rela6on	between	elements	of	two	sets	is	a	subset	
of	their	Cartesian	products	(set	of	all	ordered	pairs	

•  Defini&on:		A	binary	rela6on	from	a	set	A	to	a	set	B	is	
a	subset	R	⊆	A×B	={	(a,b)	|	a	∈	A,	b	∈	B	}	

•  Rela6on	versus	func6on	
–  	In	a	rela6on,	each	a∈A	can	map	to	mul6ple	elements	in	B	
–  Rela6ons	are	more	general	than	func6ons	

•  When	(a,b)∈R,	we	say	that	a	is	related	to	b.	
•  Nota6on:	aRb,	aRb																																$aRb$,	$a\notR	b$	
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Rela6ons:	Representa6on	
•  To	represent	a	rela6on,	we	can	enumerate	every	element	of	R	
•  Example	

–  Let	A={a1,a2,a3,a4,a5}	and	B={b1,b2,b3}	
–  Let	R	be	a	rela6on	from	A	to	B	defined	as	follows	

R={(a1,b1),(a1,b2),(a1,b3),	(a2,b1),(a3,b1),(a3,b2),(a3,b3),(a5,b1)}	

•  We	can	represent	this	rela6on	graphically	

	a1 

a2 

a3 

a4 

b1 

b2 

b3 

A B 

a5 

Graphical representation 
•  Bipartite 
•  Directed 
•  Graph 
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Rela6ons	on	a	Set	

•  Defini&on:	A	rela6on	on	the	set	A	is	a	rela6on	from	A	
to	A	and	is	a	subset	of	A×A	

•  Example	
	The	following	are	binary	rela6ons	on	N 

R1={	(a,b)	|	a	≤	b	}	
R2={	(a,b)	|	a,b	∈	N,		a/b	∈	Z }	
R3={	(a,b)	|	a,b	∈	N,	a-b=2	}	

•  Ques&on	
	For	each	of	the	above	rela6ons,	give	some	examples	of	
ordered	pairs	(a,b)	∈N2	that	are	not	in	the	rela6on	
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Proper6es	

•  We	will	study	several	proper6es	of	rela6ons	
– Reflexive	
– Symmetric	
– Transi6ve		
– An6symmetric	
– Asymmetric	

•  Alert:	Those	proper6es	are	defined	for	only	
rela6ons	on	a	set	
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Proper6es:	Reflexivity	

•  In	a	rela6on	on	a	set,	if	all	ordered	pairs	(a,a)	
for	every	a∈A	appears	in	the	rela6on,	R	is	
called	reflexive	

•  Defini&on:	A	rela6on	R	on	a	set	A	is	called	
reflexive	iff	

∀a∈A	(a,a)∈R	
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Reflexivity:	Examples	

•  Recall	the	rela6ons	below,	which	is	reflexive?	
R1={	(a,b)	|	a	≤	b	}	

R2={	(a,b)	|	a,b∈N,		a/b∈Z }	
R3={	(a,b)	|	a,b∈N,	a-b=2	}	

•  R1	is	reflexive	since	for	every	a∈N,	a	≤	a		
•  R2	is	reflexive	since	a/a=1	is	an	integer		
•  R3	is	not	reflexive	since	a-a=0	for	every	a∈N			
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Proper6es:	Symmetry	

•  Defini&ons	
– A	rela6on	R	on	a	set	A	is	called	symmetric	if	

	∀a,b	∈	A	(	(b,a)∈R	⇔	(a,b)∈R	)	

– A	rela6on	R	on	a	set	A	is	called	an&symmetric	if	

	∀a,b	∈	A	[	(a,b)∈R	∧	(b,a)∈R	⇒	a=b]	
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Symmetry	versus	An6symmetry	
•  In	a	symmetric	rela6on	aRb	⇔	bRa	
•  In	an	an6symmetric	rela6on,	if	we	have	aRb	and	bRa	hold	

only	when	a=b	
•  An	an6symmetric	rela6on	is	not	necessarily	a	reflexive	

rela6on:		it	may	be	reflexive	or	not	
•  A	rela6on	can	be		

–  both	symmetric	and	an6symmetric		
–  or	neither		
–  or	have	one	property	but	not	the	other	
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Symmetric	Rela6ons:	Example	

•  Consider	R={(x,y)∈R2|x2+y2=1},	is	R	
– Reflexive?	
– Symmetric?	
– An6symmetric?	

•  R	is	not	reflexive	since	for	example	(2,2)∉R2	

•  R	is	symmetric	because		
∀x,y∈R,	xRy⇒x2+y2=1	⇒	y2+x2=1	⇒	yRx	

•  R	is	not	an6symmetric	because	(1/3,√8/3)∈R	
and	(√8/3,1/3)∈R	but	1/3≠√8/3 	
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Proper6es:	Transi6vity	

•  Defini&on:	A	rela6on	R	on	a	set	A	is	called	
transi&ve		
–  if	whenever	(a,b)∈R	and	(b,c)∈R		
–  then	(a,c)∈R	for	all	a,b,c	∈	A	
	

∀a,b,c	∈	A	((aRb) ∧(bRc))	⇒	aRc	
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Transi6vity:	Examples	(1)	

•  Is	the	rela6on	R={(x,y)∈R2|	x≤y}	transi6ve?	

•  Is	the	rela6on	R={(a,b),(b,a),(a,a)}	transi6ve?	
	

	Yes,	it	is	transi6ve	because	xRy	and	yRz	⇒	x≤y	
and	y≤z	⇒	x≤z	⇒	xRz		

	No,	it	is	not	transi6ve	because	bRa	and	aRb	
but	bRb		
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Transi6vity:	Examples	(2)	

•  Is	the	rela6on	{(a,b)	|	a	is	an	ancestor	of	b}	
transi6ve?	

•  Is	the	rela6on	{(x,y)∈R2|	x2≥y}	transi6ve?	

	Yes,	it	is	transi6ve	because	aRb	and	bRc	⇒	a	is	an	ancestor	of	
b	and	b	is	an	ancestor	of	c	⇒	a	is	an	ancestor	of	c	⇒	aRc		

	No,	it	is	not	transi6ve	because	2R4	and	4R10	but	2R10		
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More	Proper6es	

•  Defini&ons	
–  A	rela6on	on	a	set	A	is	irreflexive	iff	∀a∈A	(a,a)∉R	
–  A	rela6on	on	a	set	A	is	asymmetric	iff	

∀a,b∈A	(	(a,b)∈R	⇒	(b,a)	∉	R	)	

•  Lemma:		A	rela6on	R	on	a	set	A	is	asymmetric	iff	
–  R	is	irreflexive	and	
–  R	is	an6symmetric	

•  Alert	
A	rela6on	that	is	not	symmetric	is	not	necessarily	
asymmetric	
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Outline	
•  Rela6on:		

–  Defini6on,	representa6on,	rela6on	on	a	set	
•  Proper6es	

–  Reflexivity,	symmetry,	an6symmetric,	irreflexive,	asymmetric	

•  Combining	rela&ons	
–  ∩,	∪,	\,	composite	of	rela&ons	

•  Represen6ng	rela6ons	
–  0-1	matrices,	directed	graphs	

•  Closure	of	rela6ons	
–  Reflexive	closure,	diagonal	rela6on,	Warshall’s	Algorithm,	

•  Equivalence	rela6ons:	
–  Equivalence	class,	par66ons,		



Rela6ons	CSCE	235	 17	

Combining	Rela6ons	
•  Rela6ons	are	simply…	sets	(of	ordered	pairs);		subsets	of	the	

Cartesian	product	of	two	sets	
•  Therefore,	in	order	to	combine	rela6ons	to	create	new	

rela6ons,	it	makes	sense	to	use	the	usual	set	opera6ons	
–  Intersec6on	(R1∩R2)	
–  Union	(R1∪R2)	
–  Set	difference	(R1\R2)	

•  Some6mes,	combining	rela6ons	endows	them	with	the	
proper6es	previously	discussed.		For	example,	two	rela6ons	
may	be	not	transi6ve,	but	their	union	may	be	
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Combining	Rela6ons:	Example	

•  Let		
–  A={1,2,3,4}	
–  B={1,2,3,4}	
–  R1={(1,2),(1,3),(1,4),(2,2),(3,4),(4,1),(4,2)}	
–  R2={(1,1),(1,2),(1,3),(2,3)}	

•  Let		
–  R1∪	R2=	
–  R1	∩	R2	=	
–  R1	\	R2	=	
–  R2	\	R1	=	
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Composite	of	Rela6ons	

•  Defini&on:	Let	R1	be	a	rela6on	from	the	set	A	
to	B	and	R2	be	a	rela6on	from	B	to	C,	i.e.	

	R1	⊆	A×B	and	R2⊆B×C	
	the	composite	of	R1	and	R2	is	the	rela6on	
consis6ng	of	ordered	pairs	(a,c)	where	a∈A,	
c∈C	and	for	which	there	exists	an	element	
b∈B	such	that	(a,b)∈R1	and	(b,c)∈R2.		We	
denote	the	composite	of	R1	and	R2	by	

R2	ο	R1	
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Powers	of	Rela6ons	

•  Using	the	composite	way	of	combining	rela6ons	
(similar	to	func6on	composi6on)	allows	us	to	
recursively	define	power	of	a	rela6on	R	on	a	set	A	

•  Defini&on:	Let	R	be	a	rela6on	on	A.		The	powers	Rn,	
n=1,2,3,…,	are	defined	recursively	by		
	 	 	 	R1				=	R	
	 	 	 	Rn+1	=	Rn	ο		R	
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Powers	of	Rela6ons:	Example	

•  Consider	R={(1,1),(2,1),(3,2),(4,3)}	
•  R2=	
•  R3=	
•  R4=	
•  Note	that	Rn=R3	for	n=4,5,6,…		
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Powers	of	Rela6ons	&	Transi6vity	

•  The	powers	of	rela6ons	give	us	a	nice	
characteriza6on	of	transi6vity	

•  Theorem:	A	rela6on	R	is	transi6ve	if	and	only	
if	Rn	⊆	R	for	n=1,2,3,…	
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Outline	
•  Rela6on:		

–  Defini6on,	representa6on,	rela6on	on	a	set	
•  Proper6es	

–  Reflexivity,	symmetry,	an6symmetric,	irreflexive,	asymmetric	

•  Combining	rela6ons	
–  ∩,	∪,	\,	composite	of	rela6ons	

•  Represen&ng	rela&ons	
–  0-1	matrices,	directed	graphs	

•  Closure	of	rela6ons	
–  Reflexive	closure,	diagonal	rela6on,	Warshall’s	Algorithm,	

•  Equivalence	rela6ons:	
–  Equivalence	class,	par66ons,		
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Represen6ng	Rela6ons	

•  We	have	seen	one	way	to	graphically	
represent	a	func6on/rela6on	between	two	
(different)	sets:	Specifically	as	a	directed	graph	
with	arrows	between	nodes	that	are	related	

•  We	will	look	at	two	alterna6ve	ways	to	
represent	rela6ons	
– 0-1	matrices	(bit	matrices)	
– Directed	graphs	
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0-1	Matrices	(1)	

•  A	0-1	matrix	is	a	matrix	whose	entries	are	0	or	1	
•  Let	R	be	a	rela6on	from		A={a1,a2,…,an}	and	B={b1,b2,
…,bn}	

•  Let’s	impose	an	ordering	on	the	elements	in	each	
set.	Although	this	ordering	is	arbitrary,	it	is	important	
that	it	remain	consistent.	That	is,	once	we	fix	an	
ordering,	we	have	to	s6ck	to	it.	

•  When	A=B,	R	is	a	rela6on	on	A	and	we	choose	the	
same	ordering	in	the	two	dimensions	of	the	matrix	
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0-1	Matrix	(2)	

•  The	rela6on	R	can	be	represented	by	a	(n×m)	
sized	0-1	matrix	MR=[mi,j]	as	follows	

•  Intui6vely,	the	(i,j)-th	entry	if	1	if	and	only	if	
ai∈A	is	related	to	bi∈B	

																																				
	 	 		

1	if	(ai,bi)	∈	R	
mi,j	=	

0	if	(ai,bi)	∉	R	
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0-1	Matrix	(3)	

•  An	important	note:	the	choice	of	row-major	or	
column-major	form	is	important.		
–  The	(i,j)th	entry		refers	to	the	i-th	row	&the	j-th	column.			
–  The	size,	(n×m),	refers	to	the	fact	that	MR	has	n	rows	and	m	
columns	

•  Though	the	choice	is	arbitrary,	switching	between	
row-major	and	column-major	is	a	bad	idea,	because	
when	A≠B,	the	Cartesian	Product	A×B	≠	B×A	

•  In	matrix	terms,	the	transpose,	(MR)T	does	not	give	
the	same	rela6on.		This	point	is	moot	for	A=B.	
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0-1	Matrix	(4)	

B	

b1	 b2	 b3	 b4	

A
a1	 0	 0	 1	 0	

a2	 1	 1	 1	 1	

a3	 0	 0	 1	 1	

a4	 1	 0	 1	 1	
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Matrix	Representa6on:	Example	

•  Consider	again	the	example	
– A={a1,a2,a3,a4,a5}	and	B={b1,b2,b3}	
– Let	R	be	a	rela6on	from	A	to	B	as	follows:	
R={(a1,b1),(a1,b2),(a1,b3),(a3,b1),(a3,b2),(a3,b3),(a5,b1)}	

•  Give	MR	
– What	is	the	size	of	the	matrix?		



Rela6ons	CSCE	235	 30	

Using	the	Matrix	Representa6on	(1)	

•  A	0-1	matrix	representa6on	makes	it	very	easy	to	
check	whether	or	not	a	rela6on	is	
–  Reflexive	
–  Symmetric	
–  An6symmetric	

•  Reflexivity	
–  For	R	to	be	reflexive,	∀a	(a,a)∈R	
–  In	MR,	R	is	reflexive	iff	mi,i=1	for	i=1,2,…,n	
– We	check	only	the	diagonal	
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Using	the	Matrix	Representa6on	(2)	

•  Symmetry	
–  R	is	symmetric	iff	for	all	pairs	(a,b)	aRb⇒bRa	
–  In	MR,			this	is	equivalent	to	mi,j=mj,i	for	every	pair	i,j=1,2,
…,n	

– We	check	that	MR=(MR)T	

•  An&symmetry	
–  R	is	an6symmetric	if	mi,j=1	with	i≠j,	then	mj,i=0		
–  Thus,	∀i,j=1,2,…,	n,	i≠j	(mi,j=0)	∨	(mj,i=0)	
–  A	simpler	logical	equivalence	is	

∀i,j=1,2,…,	n,	i≠j	¬((mi,j=1)	∧	(mj,i=1))	
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Matrix	Representa6on:	Example	

•  Is	R	reflexive?	Symmetric?	An6symmetric?	

•  Clearly	R	is	not	reflexive:	m2,2=0	
•  It	is	not	symmetric	because	m2,1=1,	m1,2=0	
•  It	is	however	an6symmetric	

MR=	

0	 0	 1	

1	 1	 1	

0	 0	 1	
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Matrix	Representa6on:	Combining	Rela6ons	

•  Combining	rela6ons	is	also	simple:	union	and	intersec6on	of	
rela6ons	are	nothing	more	than	entry-wise	Boolean	oper6ons	

•  Union:	An	entry	in	the	matrix	of	the	union	of	two	rela6ons	
R1∪R2	is	1	iff	at	least	one	of	the	corresponding	entries	in	R1	or	
R2	is	1.		Thus	

MR1∪R2	=	MR1∨	MR2	

•  Intersec&on:	An	entry	in	the	matrix	of	the	intersec6on	of	two	
rela6ons	R1∩R2	is	1	iff	both	of	the	corresponding	entries	in	R1	
and	R2	are	1.	Thus	

MR1∩R2	=	MR1	∧	MR2	

•  Count	the	number	of	opera6ons		
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Combining	Rela6ons:	Example	

•  What	is	MR1∪R2	and	MR1∩R2?	

•  How	does	combining	the	rela6ons	change	their	proper6es?	

MR1	=	

1	 0	 1	

0	 1	 1	

1	 1	 0	

MR2	=	

0	 0	 0	

1	 1	 1	

0	 1	 1	

MR1∪R2=	

1	 0	 1	

1	 1	 1	

1	 1	 1	

MR1∩R2=	

0	 0	 0	

0	 1	 1	

0	 1	 0	
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Composing	Rela6ons:	Example	

•  0-1	matrices	are	also	useful	for	composing	matrices.		
If	you	have	not	seen	matrix	product	before,	read	
Sec6on	3.8	

MR1	=	

1	 0	 1	

0	 1	 1	

1	 1	 0	

MR2	=	

0	 0	 0	

1	 1	 1	

0	 1	 1	

MR2ο	R1=MR1
.	MR2=	

0	 1	 1	

1	 1	 1	

1	 1	 1	
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Composite	Rela6ons:	Rn	

•  Remember	that	recursively	composing	a	rela6on	Rn	⊆	R	for	
n=1,2,3,…	gives	a	nice	characteriza6on	of	transi6vity	

•  Theorem:	A	rela6on	R	is	transi6ve	if	and	only	if	Rn	⊆	R	for	
n=1,2,3,…	

•  We	will	use		
–  this	idea	and		
–  the	composi6on	by	matrix	mul6plica6on		

	to	build	the	Warshall	(a.k.a.	Roy-Warshall)	algorithm,	which	
computed	the	transi6ve	closure	(discussed	in	the	next	
sec6on)	
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Directed	Graphs	Representa6on	(1)	
•  We	will	study	graphs	in	details	towards	the	end	of	
the	semester	

•  We	briefly	introduce	them	here	to	use	them	to	
represent	rela6ons	

•  We	have	already	seen	directed	graphs	to	represent	
func6ons	and	rela6ons	(between	two	sets).		Those	
are	special	graphs,	called	bipar6te	directed	graphs	

•  For	a	rela6on	on	a	set	A,	it	makes	more	sense	to	use	
a	general	directed	graph	rather	than	having	two	
copies	of	the	same	set	A	
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Defini6on:	Directed	Graphs	(2)	
•  Defini&on:	A	G	graph	consists	of	

–  A	set	V	of	ver6ces	(or	nodes),	and	
–  A	set	E	of	edges	(or	arcs)	
– We	note:	G=(V,E)	

•  Defini&on:	A	directed	G	graph	(digraph)	consists	of	
–  A	set	V	of	ver6ces	(or	nodes),	and	
–  A	set	E	of	edges	of	ordered	pairs	of	elements	of	V	(of	
ver6ces)	

	



Rela6ons	CSCE	235	 39	

Directed	Graphs	Representa6on	(2)	

•  Example:		
– Let	A=	{a1,a2,a3,a4}	
– Let	R	be	a	rela6on	on	A	defined	as	follows	
R={(a1,a2),(a1,a3),(a1,a4),(a2,a3),(a2,a4),(a3,a1),(a3,a4),	

(a4,a3),(a4,a4)}	

•  Draw	the	digraph	represen6ng	this	rela6on	
(see	white	board)	
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Using	the	Digraphs	Representa6on	(1)	

•  A	directed	graph	offers	some	insight	into	the	
proper6es	of	a	rela6on	

•  Reflexivity:	In	a	digraph,	the	represented		
rela6on	is	reflexive	iff	every	vertex	has	a	self	
loop	

•  Symmetry:	In	a	digraph,	the	represented	
rela6on	is	symmetric	iff	for	every	directed	
edge	from	a	vertex	x	to	a	vertex	y	there	is	also	
an	edge	from	y	to	x	
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Using	the	Digraphs	Representa6on	(2)	

•  An&symmetry:	A	represented	rela6on	is	
an6symmetric	iff	there	is	never	a	back	edge	
for	any	directed	edges	between	two	dis6nct	
ver6ces		

•  Transi&vity:		A	digraph	is	transi6ve	if	for	every	
pair	of	directed	edges	(x,y)	and	(y,z)	there	is	
also	a	directed	edge	(x,z)		
→	This	may	be	harder	to	visually	verify	in	more	
complex	graphs	
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Outline	
•  Rela6on:		

–  Defini6on,	representa6on,	rela6on	on	a	set	
•  Proper6es	

–  Reflexivity,	symmetry,	an6symmetric,	irreflexive,	asymmetric	

•  Combining	rela6ons	
–  ∩,	∪,	\,	composite	of	rela6ons	

•  Represen6ng	rela6ons	
–  0-1	matrices,	directed	graphs	

•  Closure	of	rela&ons	
–  Reflexive	closure,	diagonal	rela&on,	Warshall’s	Algorithm,	

•  Equivalence	rela6ons:	
–  Equivalence	class,	par66ons,		
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Closures:	Defini6ons	

•  If	a	given	rela6on	R		
–  is	not	reflexive	(or	symmetric,	an6symmetric,	transi6ve)	
–  How	can	we	transform	it	into	a	rela6on	R’	that	is?	

•  Example:	Let	R={(1,2),(2,1),(2,2),(3,1),(3,3)}	
–  How	can	we	make	it	reflexive?	
–  In	general	we	would	like	to	change	the	rela6on	as	liule	as	
possible	

–  To	make	R	reflexive,	we	simply	add	(1,1)	to	the	set	

•  Inducing	a	property	on	a	rela&on	is	called	its	closure.			
•  Above,	R’=R	∪{(1,1)}	is	called	the	reflexive	closure	
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Reflexive	Closure	

•  In	general,	the	reflexive	closure	of	a	rela6on	R	
on	A	is	R∪Δ		where	Δ={	(a,a)	|	a∈A}	

•  Δ	is	the	diagonal	rela6on	on	A	
•  Ques&on:	How	can	we	compute	the	diagonal	
rela6on	using	
– 0-1	matrix	representa6on?	
– Digraph	representa6on?	
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Symmetric	Closure	

•  Similarly,	we	can	create	the	symmetric	closure	
using	the	inverse	of	the	rela6on	R.			

•  The	symmetric	closer	is,	R∪R’	where		
R’={	(b,a)	|	(a,b)∈R	}	

•  Ques&on:	How	can	we	compute	the	
symmetric	closure	using	
– 0-1	matrix	representa6on?	
– Digraph	representa6on?	
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Transi6ve	Closure	

•  To	compute	the	transi6ve	closure	we	use	the	theorem	
•  Theorem:	A	rela6on	R	is	transi6ve	if	and	only	if	Rn	⊆	R	
for	n=1,2,3,…	

•  Thus,	if	we	compute	Rk	such	that	Rk	⊆	Rn	for	all	n≥k,	
then	Rk	is	the	transi6ve	closure	

•  The	Warshall’s	Algorithm	allows	us	to	do	this	
efficiently	

•  Note:	Your	textbook	gives	much	greater	details	in	terms	of	graphs	and	
connec6vity	rela6ons.		It	is	good	to	read	this	material,	but	it	is	based	on	
material	that	we	have	not	yet	seen.	
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Warshall’s	Algorithm:	Key	Ideas	
•  In	any	set	A	with	|A|=n,	any	transi6ve	rela6on	will	be	built	

from	a	sequence	of	rela6ons	that	has	a	length	of	at	most	n.		
Why?	

•  Consider	the	case	where	the	rela6on	R	on	A	has	the	ordered	
pairs	(a1,a2),(a2,a3),…,(an-1,an).		Then,	(a1,an)	must	be	in	R	for	R	
to	be	transi6ve	

•  Thus,	by	the	previous	theorem,	it	suffices	to	compute	(at	
most)	Rn	

•  Recall	that	Rk=RοRk-1	is	computed	using	a	bit-matrix	product	
•  The	above	gives	us	a	natural	algorithm	for	compu6ng	the	

transi6ve	closure:		the	Warshall’s	Algorithm	
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Warshall’s	Algorithm	
Input:	An	(n×n)	0-1	matrix	MR	represen6ng	a	rela6on	R	on	A,	|A|=n	
Output:		An	(n×n)	0-1	matrix	W	represen6ng	the	transi6ve	closure	of	R	on	A	
1.					W←	MR	
2.					FOR	k=1,…,	n	DO	
3.  						FOR	i=1,…,n	DO	
4.  												FOR	j=1,…,n	DO	
5.  																				wi,j	←	wi.j	∨	(wi,k	∧	wk,j)	
6.  												END	
7.  						END	
8.  END	
9.  RETURN	W	
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Warshall’s	Algorithm:	Example	

•  Compute	the	transi6ve	closure	of		
– The	rela6on	R={(1,1),(1,2),(1,4),(2,2),(2,3),(3,1),	
	(3,4),(4,1),(4,4)}	

– On	the	set	A={1,2,3,4}	
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Outline	
•  Rela6on:		

–  Defini6on,	representa6on,	rela6on	on	a	set	
•  Proper6es	

–  Reflexivity,	symmetry,	an6symmetric,	irreflexive,	asymmetric	

•  Combining	rela6ons	
–  ∩,	∪,	\,	composite	of	rela6ons	

•  Represen6ng	rela6ons	
–  0-1	matrices,	directed	graphs	

•  Closure	of	rela6ons	
–  Reflexive	closure,	diagonal	rela6on,	Warshall’s	Algorithm	

•  Equivalence	rela&ons:	
–  Equivalence	class,	par&&ons,		
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Equivalence	Rela6on	
•  Consider	the	set	of	every	person	in	the	world	
•  Now	consider	a	R	rela6on	such	that	(a,b)∈R	if	a	and	
b	are	siblings.	

•  Clearly	this	rela6on	is	
–  Reflexive	
–  Symmetric,	and	
–  Transi6ve	

•  Such	as	rela6on	is	called	an	equivalence	rela6on	
•  Defini&on:	A	rela6on	on	a	set	A	is	an	equivalence	
rela6on	if	it	is	reflexive,	symmetric,	and	transi6ve	
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Equivalence	Class	(1)	

•  Although	a	rela6on	R	on	a	set	A	may	not	be	an	
equivalence	rela6on,	we	can	define	a	subset	of	A	
such	that	R	does	become	an	equivalence	rela6on	(on	
the	subset)	

•  Defini&on:	Let	R	be	an	equivalence	rela6on	on	a	set	
A	and	let	a	∈A.		The	set	of	all	elements	in	A	that	are	
related	to	a	is	called	the	equivalence	class	of	a.	We	
denote	this	set	[a]R.		We	omit	R	when	there	is	not	
ambiguity	as	to	the	rela6on.			

[a]R	=	{	s	|	(a,s)∈R,	s∈A}	
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Equivalence	Class	(2)	

•  The	elements	in	[a]R	are	called	representa6ves	of	the	
equivalence	class	

•  Theorem:	Let	R	be	an	equivalence	class	on	a	set	A.		
The	following	statements	are	equivalent	
–  aRb	
–  [a]=[b]	
–  [a]	∩	[b]	≠∅	

•  The	proof	in	the	book	is	a	circular	proof	
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Par66ons	
	

Par66ons	(1)	
	
	

•  Equivalence	classes	par66on	the	set	A	into	
disjoint,	non-empty	subsets	A1,	A2,	…,	Ak	

•  A	par&&on	of	a	set	A	sa6sfies	the	proper6es	

– 	∪k
i=1Ai=A	

– Ai	∩	Aj	=	∅	for	i≠j	
– Ai	≠	∅	for	all	i		
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Par66ons	(2)	

•  Example:	Let	R	be	a	rela6on	such	that	(a,b)∈R	if	a	
and	b	live	in	the	same	state,	then	R	is	an	equivalence	
rela6on	that	par66ons	the	set	of	people	who	live	in	
the	US	into	50	equivalence	classes	

•  Theorem:		
–  Let	R	be	an	equivalence	rela6on	on	a	set	S.		Then	the	
equivalence	classes	of	R	form	a	par66on	of	S.			

–  Conversely,	given	a	par66on	Ai	of	the	set	S,	there	is	a	
equivalence	rela6on	R	that	has	the	set	Ai	as	its	equivalence	
classes	
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Par66ons:	Visual	Interpreta6on	

•  In	a	0-1	matrix,	if	the	elements	are	ordered	into	their	
equivalence	classes,	equivalence	classes/par66ons	
form	perfect	squares	of	1s	(with	0s	everywhere	else)	

•  In	a	diargh,	equivalence	classes	form	a	collec6ons	of	
disjoint	complete	graphs	

•  Example:	Let	A={1,2,3,4,5,6,7}	and	R	be	an	
equivalence	rela6on	that	par66ons	A	into	A1={1,2},	
A2={3,4,5,6}	and	A3={7}	
–  Draw	the	0-1	matrix	
–  Draw	the	digraph	
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Equivalence	Rela6ons:	Example	1	

•  Example:	Let	R={	(a,b)	|	a,b∈R	and	a≤b}	
–  Is	R	reflexive?	
–  Is	it	transi6ve?	
–  Is	it	symmetric?	

No,	it	is	not.		4	is	related	to	5	(4 ≤ 5) 
but 5 is not related to 4 	

Thus	R	is	not	an	equivalence	rela6on	
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Equivalence	Rela6ons:	Example	2	

•  Example:	Let	R={	(a,b)	|	a,b∈Z	and	a=b}	
–  Is	R	reflexive?	
–  Is	it	transi6ve?	
–  Is	it	symmetric?	
– What	are	the	equivalence	classes	that	par66on	Z?		
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Equivalence	Rela6ons:	Example	3	

•  Example:	For	(x,y),(u,v)	∈R2,	we	define	
	R={	((x,y),(u,v))	|	x2+y2=u2+v2}	

•  Show	that	R	is	an	equivalence	rela6on.	
•  What	are	the	equivalence	classes	that	R	
defines	(i.e.,	what	are	the	par66ons	of	R2)?	
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Equivalence	Rela6ons:	Example	4	
•  Example:	Given	n,r∈N,	define	the	set	

	nZ +	r	=	{	na	+	r	|	a	∈Z	}	
–  For	n=2,	r=0,	2Z represents	the	equivalence	class	of	all	
even	integers	

– What	n,	r	give	the	class	of	all	odd	integers?	
–  For	n=3,	r=0,	3Z represents	the	equivalence	class	of	all	
integers	divisible	by	3	

–  For	n=3,	r=1,	3Z represents	the	equivalence	class	of	all	
integers	divisible	by	3	with	a	remainder	of	1	

–  In	general,	this	rela6on	defines	equivalence	classes	that	
are,	in	fact,	congruence	classes	(See	Sec6on	3.4)		


