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Outline	
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–  Defini7on,	general	form,	ini7al	condi7ons,	terms	
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–  Form,	solu7on,	characteris7c	equa7on,	characteris7c	polynomial,	roots	
–  Second	order	linear	homogeneous	recurrence	

•  Double	roots,	solu7on,	examples	
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•  Other	Methods	
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–  Chea7ng	with	Maple	
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Recursive	Algorithms	
•  A	recursive	algorithm	is	one	in	which	objects	are	defined	in	

terms	of	other	objects	of	the	same	type	
•  Advantages:	

–  Simplicity	of	code	
–  Easy	to	understand	

•  Disadvantages	
–  Memory	
–  Speed	
–  Possibly	redundant	work	

•  Tail	recursion	offers	a	solu7on	to	the	memory	problem,	but	
really,	do	we	need	recursion?	
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Recursive	Algorithms:	Analysis	

•  We	have	already	discussed	how	to	analyze	the	
running	7me	of	(itera7ve)	algorithms	

•  To	analyze	recursive	algorithms,	we	require	
more	sophis7cated	techniques	

•  Specifically,	we	study	how	to	defined	&	solve	
recurrence	rela7ons		
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Mo7va7ng	Examples:	Factorial	
•  Recall	the	factorial	func7on:	

•  Consider	the	following	(recursive)	algorithm	for	compu7ng	n!	
Factorial 

Input:		n∈N 
Output:	n!	
1.  	If	(n=1)	or	(n=0)		
2.  					Then	Return	1	
3.  					Else		Return	n	×	Factorial(n-1)	
4.  	Endif	
5.  	End	

1	 if	n=	1	
n!	=	

n.(n-1)	 if	n	>	1	
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Factorial:	Analysis	
How	many	mul7plica7ons	M(x)	does	factorial	perform?	
•  When	n=1	we	don’t	perform	any	
•  Otherwise,	we	perform	one…	
•  …	plus	how	ever	many	mul7plica7ons	we	perform	in	the	

recursive	call	Factorial(n-1)	

•  The	number	of	mul7plica7ons	can	be	expressed	as	a	formula	
(similar	to	the	defini7on	of	n!	

M(0)	=	0	
M(n)	=	1	+	M(n-1)	

•  This	rela7on	is	known	as	a	recurrence	rela7on	
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Recurrence	Rela7ons	

•  Defini,on:	A	recurrence	rela7on	for	a	
sequence	{an}	is	an	equa7on	that	expresses	an	in	
terms	of	one	or	more	of	the	previous	terms	in	the	
sequence:	

a0,	a1,	a2,	…,	an-1	
	 	for	all	integers	n≥n0	where	n0	is	a	nonnega7ve	
integer.	

•  A	sequence	is	called	a	solu7on	of	a	recurrence	if	its	
terms	sa7sfy	the	recurrence	rela7on	
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Recurrence	Rela7ons:	Solu7ons	

•  Consider	the	recurrence	rela7on	an=2an-1-an-2	
•  It	has	the	following	sequences	an	as	solu7ons	

– an=	3n	
– an=	n+1	
– an=5	

•  The	ini7al	condi7ons	+	recurrence	rela7on	
uniquely	determine	the	sequence	
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Recurrence	Rela7ons:	Example	

•  The	Fibonacci	numbers	are	defined	by	the	recurrence	
	F(n)	=	F(n-1)	+F(n-2)	
	F(1)	=	1	
	F(0)	=	1	

•  The	solu7on	to	the	Fibonacci	recurrence	is	
			

	
	(The	solu7on	is	derived	in	your	textbook.)	

fn =
1p
(5)

(
(1 +

p
(5)

2
)n � 1p

(5)
(
(1�

p
(5)

2
)n
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Recurrence	Rela7ons:	General	Form	

•  More	generally,	recurrences	can	have	the	
form	

T(n)	=	αT(n-β)	+	f(n),	T(δ)	=	c	
	or	

T(n)	=	αT(n/β)	+	f(n),	T(δ)	=	c	

•  Note	that	it	may	be	necessary	to	define	several	T(δ),	
which	are	the	ini7al	condi7ons	
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Recurrence	Rela7ons:	Ini7al	Condi7ons	
•  The	ini7al	condi7ons	specify	the	value	of	the	first	few	necessary	terms	in	

the	sequence	
•  In	the	Fibonacci	numbers,	we	needed	two	ini7al	condi7ons:		

F(0)=F(1)=1	
	because	F(n)	is	defined	by	the	two	previous	terms	in	the	sequence	

•  Ini7al	condi7ons	are	also	known	as	boundary	condi7ons	(as	opposed	to	
general	condi7ons)	

•  From	now	on,	we	will	use	the	subscript	nota7on,	so	the	Fibonacci	
numbers	are:	

fn	=		fn-1	+	fn-2	
f1	=	1	
f0	=		1	
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Recurrence	Rela7ons:	Terms	
•  Recurrence	rela7ons	have	two	parts:		

–  recursive	terms	and		
–  non-recursive	terms	

T(n)	=	2T(n-2)	+	n2	-10	
•  Recursive	terms	come	from	when	an	algorithms	calls	itself	
•  Non-recursive	terms	correspond	to	the	non-recursive	cost	of	

the	algorithm:	work	the	algorithm	performs	within	a	func7on	
•  We	will	see	examples	later.		First,	we	need	to	know	how	to	

solve	recurrences.	
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Solving	Recurrences	

•  There	are	several	methods	for	solving	
recurrences	
– Characteris7c	Equa7ons	
– Forward	Subs7tu7on	
– Backward	Subs7tu7on	
– Recurrence	Trees	
– …	Maple!	
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Linear	Homogeneous	Recurrences	
•  Defini,on:	A	linear	homogeneous	recurrence	rela7on	of	

degree	k	with	constant	coefficients	is	a	recurrence	rela7on	of	
the	form	

an	=	c1an-1	+	c2an-2	+	…	+	ckan-k	
	with	c1,	c2,	…,	ck∈R,	ck≠	0.	

•  Linear:	RHS	is	a	sum	of	mul7ples	of	previous	terms	of	the	
sequence	(linear	combina7on	of	previous	terms).		The	
coefficients	are	all	constants	(not	func7ons	depending	on	n)	

•  Homogeneous:	no	terms	occur	that	are	not	mul7ples	of	aj’s	
•  Degree	k:	an	is	expressed	in	terms	of	(n-k)th	term	of	the	

sequence	
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Linear	Homogeneous	Recurrences:	Examples	

•  The	Fibonacci	sequence	is	a	linear	homogeneous	
recurrence	rela7on	

•  So	are	the	following	rela7ons:	
an	=	4an-1	+	5an-2		+	7an-3	
an	=	2an-2	+	4an-4		+	8an-8	

	How	many	ini7al	condi7ons	do	we	need	to	specify	
for	these	rela7ons?	

	
•  So,	how	do	solve	linear	homogeneous	recurrences?	

As	many	as	the	degree	k:	k	=	3,	8	respec7vely	
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Solving	Linear	Homogeneous	Recurrences	

•  We	want	a	solu7on	of	the	form	an=rn	where	r	is	some	real	constant	
•  We	observe	that	an=rn	is	a	solu7on	to	a	linear	homogeneous	recurrence	if	

and	only	if		
rn	=	c1rn-1	+	c2rn-2	+	…	+	ckrn-k	

•  We	can	now	divide	both	sides	by	rn-k,	collect	terms	and	we	get	a	k-degree	
polynomial	

rk	-	c1rk-1	-	c2rk-2	-	…	-	ck	=	0	
•  This	equa7on	is	called	the	characteris7c	equa7on	of	the	recurrence	

rela7on	
•  The	roots	of	this	polynomial	are	called	the	characteris7cs	roots	of	the	

recurrence	rela7on.	They	can	be	used	to	find	the	solu7ons	(if	they	exist)	to	
the	recurrence	rela7on.		We	will	consider	several	cases.	
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Second	Order	Linear	Homogeneous	Recurrences	

•  A	second	order	(k=2)	linear	homogeneous	recurrence	is	a	
recurrence	of	the	form	

an	=	c1an-1+	c2an-2	
•  Theorem	(Theorem	1,	page	462):	Let	c1,	c2∈R	and	suppose	

that	r2-c1r-c2=0	is	the	characteris7c	polynomial	of	a	2nd	order	
linear	homogeneous	recurrence	that	has	two	dis7nct*	roots	
r1,r2,	then	{an}	is	a	solu7on	if	and	only	if		

an=	α1r1n	+	α2r2n	

	for	n=0,1,2,…	where	α1,	α2	are	constants	dependent	upon	the	
ini7al	condi7ons	

	

*	We	discuss	single	root	later	
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Second	Order	Linear	Homogeneous	
Recurrences:	Example	A	(1)	

•  Find	a	solu7on	to	
an	=	5an-1	-	6an-2	

	with	ini7al	condi7ons	a0=1,	a1=4	
		•  The	characteris7c	equa7on	is	

r2	-	5r	+	6	=	0	
		•  The	roots	are	r1=2,	r2=3	

r2	-	5r	+	6	=	(r-2)(r-3)	
		•  Using	the	2nd	order	theorem	we	have	a	solu7on	

an	=	α12n	+	α23n	
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Second	Order	Linear	Homogeneous	
Recurrences:	Example	A	(2)	

•  Given	the	solu7on	
an	=	α12n	+	α23n		

•  We	plug	in	the	two	ini7al	condi7ons	to	get	a	system	
of	linear	equa7ons	

a0	=	α120	+	α230	
a1	=	α121	+	α231	

•  Thus:	
1	=	α1

	+	α2	
4	=	2α1

	+	3α2	
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Second	Order	Linear	Homogeneous	
Recurrences:	Example	A	(3)	

1	=	α1
	+	α2	

4	=	2α1
	+	3α2	

•  Solving	for	α1	=	(1	-	α2),	we	get	
	4	=	2α1

	+	3α2	

	4	=	2(1-α2)	+	3α2	

4	=	2	-	2α2	+	3α2		
2	=	α2	

•  Subs7tu7ng	for	α1:	α1	=	-1	
•  Pupng	it	back	together,	we	have	

an	=	α12n	+	α23n	

an	=	-1⋅2n	+	2⋅3n	
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Second	Order	Linear	Homogeneous	
Recurrences:	Example	B	(1)	

•  Solve	the	recurrence	
an	=	-2an-1	+	15an-2	

	with	ini7al	condi7ons	a0=	0,	a1=	1	
•  If	we	did	it	right,	we	have	

an	=	1/8	(3)n		-	1/8	(-5)n	

•  To	check	ourselves,	we	verify	a0,	a1,	we	compute	a3	with	both	
equa7ons,	then	maybe	a4,	etc.	
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Single	Root	Case	
•  We	can	apply	the	theorem	if	the	roots	are	dis7ncts,	i.e.	r1≠r2	
•  If	the	roots	are	not	dis7nct	(r1=r2),	we	say	that	one	

characteris7c	root	has	mul7plicity	two.		In	this	case,	we	apply	
a	different	theorem	

•  Theorem	(Theorem2,	page	464)	
	Let	c1,	c2∈R	and	suppose	that	r2	-	c1r	-	c2	=	0	has	only	one	
dis7nct	root,	r0,	then	{an}	is	a	solu7on	to	an	=	c1an-1+	c2an-2	if	
and	only	if		

an=	α1r0n	+	α2nr0n	

	for	n=0,1,2,…	where	α1,	α2	are	constants	depending	upon	the	
ini7al	condi7ons	



Recursion	
	

CSCE	235	 25	

Single	Root	Case:	Example	(1)	

•  What	is	the	solu7on	to	the	recurrence	rela7on	
an	=	8an-1	-	16an-2	

	with	ini7al	condi7ons	a0=	1,	a1=	7?	
•  The	characteris7c	equa7on	is:	

r2	–	8r	+	16	=	0	
•  Factoring	gives	us:	

r2	–	8r	+	16	=	(r-4)(r-4),	so	r0=4	
•  Applying	the	theorem	we	have	the	solu7on:	

an=	α1(4)n	+	α2n(4)n	
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Single	Root	Case:	Example	(2)	

•  Given:										an=	α1(4)n	+	α2n(4)n	

•  Using	the	ini7al	condi7ons,	we	get:	
										a0=	1	=	α1(4)0	+	α20(4)0	=	α1

	

a1=	7	=	α1(4)	+	α21(4)1	=	4α1	+	4α2
	

•  Thus:		=	α1	=	1,	α2	=	3/4	

•  The	solu7on	is		
an=	(4)n	+	¾	n	(4)n	

•  Always	check	yourself…	
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General	Linear	Homogeneous	Recurrences	

•  There	is	a	straighsorward	generaliza7on	of	these	cases	to	
higher-order	linear	homogeneous	recurrences	

•  Essen7ally,	we	simply	define	higher	degree	polynomials	
•  The	roots	of	these	polynomials	lead	to	a	general	solu7on	
•  The	general	solu7on	contains	coefficients	that	depend	only	

on	the	ini7al	condi7ons	
•  In	the	general	case,	the	coefficients	form	a	system	of	linear	

equali7es		
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General	Linear	Homogeneous	Recurrences:	
Dis7nct	Roots	

•  Theorem	(Theorem	3,	page	465)	
	Let	c1,c2,..,ck	∈R		and	suppose	that	the	characteris7c	equa7on		

rk	-	c1rk-1	-	c2rk-2	-	…	-	ck	=	0	
		has	k	dis7nct	roots	r1,r2,	…,rk.		Then	a	sequence	{an}	is	a	
solu7on	of	the	recurrence	rela7on	

an	=	c1an-1	+	c2an-2	+	…	+	ckan-k	
	if	and	only	if	

	an	=	α1r1n	+	α2r2n	+	…	+	αkrkn	
	for	n=0,1,2,…	where	α1,α2,…,αk	are	constants	depending	
upon	the	ini7al	condi7ons	
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General	Linear	Homogeneous	Recurrences:	
Any	Mul7plicity	

•  Theorem	(Theorem	3,	page	465)	
	Let	c1,c2,..,ck	∈R	and	suppose	that	the	characteris7c	equa7on		

rk	-	c1rk-1	-	c2rk-2	-	…	-	ck	=	0	
		has	t	roots	with	mul7plici7es	m1,m2,	…,mt.		Then	a	sequence	
{an}	is	a	solu7on	of	the	recurrence	rela7on	

an	=	c1an-1	+	c2an-2	+	…	+	ckan-k	
	if	and	only	if			an	=	(α1,0	+	α1,1n	+	…	+	α1,m1-1nm1-1)	r1n	+		

																																						(α2,0	+	α2,1n	+	…	+	α2,m2-1nm2-1)	r2n	+	...		
																																						(αt,0	+	αt,1n	+	…	+	αt,mt-1nmt-1)	rtn	
	for	n=0,1,2,…	where	αi,j	are	constants	for	1	≤	i	≤	t	and		

					0	≤	j≤mi-1	depending	upon	the	ini7al	condi7ons	
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Linear	NonHomogeneous	Recurrences	

•  For	recursive	algorithms,	cost	func7on	are	oten	not	homogeneous	
because	there	is	usually	a	non-recursive	cost	depending	on	the	input	size	

•  Such	a	recurrence	rela7on	is	called	a	linear	nonhomogeneous	recurrence	
rela7on	

•  Such	func7ons	are	of	the	form	
an	=	c1an-1	+	c2an-2	+	…	+	ckan-k	+	f(n)	

•  f(n)	represents	a	non-recursive	cost.		If	we	chop	it	off,	we	are	let	with	
an	=	c1an-1	+	c2an-2	+	…	+	ckan-k	

	which	is	the	associated	homogeneous	recurrence	rela7on	
•  Every	solu7on	of	a	linear	nonhomogeneous	recurrence		rela7on	is	the	sum	

of	
–  a	par7cular	solu7on	and		
–  a	solu7on	to	the	associated	linear	homogeneous	recurrence	rela7on		
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Solving	Linear	NonHomogeneous	Recurrences	(1)	

•  Theorem	(Theorem	5,	p468)	
	If	{an(p)}	is	a	par7cular	solu7on	of	the	
nonhomogeneous	linear	recurrence	rela7on	with	
constant	coefficients	

an	=	c1an-1	+	c2an-2	+	…	+	ckan-k	+	f(n)	
	then	every	solu7on	is	of	the	form		{an(p)	+	an(h)}	where	
{an(h)}		is	a	solu7on	of	the	associated	homogeneous	
recurrence	rela7on	

an	=	c1an-1	+	c2an-2	+	…	+	ckan-k	
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Solving	Linear	NonHomogeneous	Recurrences	(2)	

•  There	is	no	general	method	for	solving	such	
rela7ons.	

•  However,	we	can	solve	them	for	special	cases	
•  In	par7cular,	if	f(n)	is		

– a	polynomial	func7on	
– exponen7al	func7on,	or	
–  the	product	of	a	polynomial	and	exponen7al	
func7ons,		

	then	there	is	a	general	solu7on	
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Solving	Linear	NonHomogeneous	Recurrences	(3)	

•  Theorem	(Theorem	6,	p469)	

	Suppose	{an}	sa7sfies	the	linear	nonhomogeneous	
recurrence	rela7on	

an	=	c1an-1	+	c2an-2	+	…	+	ckan-k	+	f(n)	
		where	c1,c2,..,ck	∈R	and	

f(n)	=	(btnt	+	bt-1nt-1	+	..	+	b1n	+	b0)	sn	

	where	b0,b1,..,bn,s	∈R 
																																																																					…	con7nues	
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Solving	Linear	NonHomogeneous	Recurrences	(4)	

•  Theorem	(Theorem	6,	p469)…	con7nued	
	When	s	is	not	a	root	of	the	characteris7c	equa7on	of	the	
associated	linear	homogeneous	recurrence	rela7on,	there	is	a	
par7cular	solu7on	of	the	form	

(ptnt+	pt-1nt-1+	…	+p1n	+	p0)	sn	

	When	s	is	a	root	of	this	characteris7c	equa7on	and	its	
mul7plicity	is	m,	there	is	a	par7cular	solu7on	of	the	form	

nm(ptnt+	pt-1nt-1+	…	+p1n	+	p0)	sn	
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Linear	NonHomogeneous	Recurrences:	Examples	

•  The	examples	in	the	textbook	are	quite	good	(see	
pp467—470)	and	illustrate	how	to	solve	simple	
nonhomogeneous	rela7ons	

•  We	may	go	over	more	examples	if	7me	allows	
•  Also	read	up	on	genera7ng	func7ons	in	Sec7on	7.4	
(though	we	may	return	to	this	subject)	

•  However,	there	are	alternate,	more	intui7ve	
methods	
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Outline	
•  Introduc7on,	Mo7va7ng	Example	
•  Recurrence	Rela7ons	

–  Defini7on,	general	form,	ini7al	condi7ons,	terms	

•  Linear	Homogeneous	Recurrences	
–  Form,	solu7on,	characteris7c	equa7on,	characteris7c	polynomial,	roots	
–  Second	order	linear	homogeneous	recurrence	

•  Double	roots,	solu7on,	examples	
•  Single	root,	example	

–  General	linear	homogeneous	recurrences:	dis7nct	roots,	any	mul7plicity	

•  Linear	Nonhomogenous	Recurrences	
•  Other	Methods	

–  Backward	subs,tu,on	
–  Recurrence	trees	
–  Chea,ng	with	Maple	
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Other	Methods	
•  When	analyzing	algorithms,	linear	homogeneous	recurrences	

of	order	greater	than	2	hardly	ever	arise	in	prac7ce	
•  We	briefly	describe	two	unfolding	methods	that	work	for	a	lot	

of	cases	
–  Backward	subs7tu7on:	this	works	exactly	as	its	name	suggests.		

Star7ng	from	the	equa7on	itself,	work	backwards,	subs7tu7ng	values	
of	the	func7on	for	previous	ones	

–  Recurrence	trees:	just	as	powerful,	but	perhaps	more	intui7ve,	this	
method	involves	mapping	out	the	recurrence	tree	for	an	equa7on.		
Star7ng	from	the	equa7on,	you	unfold	each	recursive	call	to	the	
func7on	and	calculate	the	non-recursive	cost	at	each	level	of	the	tree.			
Then,	you	find	a	general	formula	for	each	level	and	take	a	summa7on	
over	all	such	levels	
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Backward	Subs7tu7on:	Example	(1)	
•  Give	a	solu7on	to	

T(n)=	T(n-1)	+	2n	
	where	T(1)=5	

•  We	begin	by	unfolding	the	recursion	by	a	simple	subs7tu7on	
of	the	func7on	values	

•  We	observe	that	
T(n-1)	=	T((n-1)	-	1)	+	2(n-1)	=	T(n-2)	+	2(n-1)	

•  Subs7tu7ng	into	the	original	equa7on	
T(n)=T(n-2)+2(n-1)+2n	
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Backward	Subs7tu7on:	Example	(2)	
•  If	we	con7nue	to	do	that	we	get	
	T(n)	=	T(n-2)	+	2(n-1)	+	2n	

		T(n)	=	T(n-3)	+	2(n-2)	+	2(n-1)	+	2n	

		T(n)	=	T(n-4)	+	2(n-3)	+	2(n-2)	+	2(n-1)	+	2n	
		…..	
		T(n)	=	T(n-i)	+	Σj=0

i-1	2(n	-	j)																	func1on’s	value	at	the	ith	itera1on	
•  Solving	the	sum	we	get	
					T(n)	=	T(n-i)	+	2n(i-1)	–	2(i-1)(i-1+1)/2	+	2n	
	T(n)	=	T(n-i)	+	2n(i-1)	–	i2	+	i	+	2n	
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Backward	Subs7tu7on:	Example	(3)	
•  We	want	to	get	rid	of	the	recursive	term	
	T(n)	=	T(n-i)	+	2n(i-1)	–	i2	+	i	+	2n	

•  To	do	that,	we	need	to	know	at	what	itera7on	we	reach	our	
based	case,	i.e.	for	what	value	of	i	can	we	use	the	ini7al	
condi7on	T(1)=5?	

•  We	get	the	base	case	when	n-i=1	or	i=n-1	
•  Subs7tu7ng	in	the	equa7on	above	we	get	
	T(n)		=	5	+	2n(n-1-1)	–	(n-1)2	+	(n-1)	+	2n		

						T(n)		=	5	+	2n(n-2)	–	(n2-2n+1)	+	(n-1)	+	2n	=	n2	+	n	+	3		
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Recurrence	Trees	(1)	
•  When	using	recurrence	trees,	we	graphically	represent	the	

recursion	
•  Each	node	in	the	tree	is	an	instance	of	the	func7on.		As	we	

progress	downward,	the	size	of	the	input	decreases	
•  The	contribu7on	of	each	level	to	the	func7on	is	equivalent	to	

the	number	of	nodes	at	that	level	7mes	the	non-recursive	
cost	on	the	size	of	the	input	at	that	level	

•  The	tree	ends	at	the	depth	at	which	we	reach	the	base	case	
•  As	an	example,	we	consider	a	recursive	func7on	of	the	form	

T(n)	=	αT(n/β)	+	f(n),			T(δ)	=	c					
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Recurrence	Trees	(2)	
Itera7on	

0	
	
1	
	
	
	
2	
.	
.	
i	
.	
.	

logβ	n	
	
	

TT(n)	

T(n/β)	 T(n/β)	 T(n/β)	⋅⋅⋅					α				⋅⋅⋅	

T(n/β2)	 T(n/β2)	⋅⋅⋅		α	⋅⋅⋅	 T(n/β2)	 T(n/β2)	⋅⋅⋅		α	⋅⋅⋅	

Cost	
f(n)	
	

αf(n/β)	
	
	
	

α2f(n/β2)	
.	
.	

αi f(n/βi)	
.	
.	
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Recurrence	Trees	(3)	

•  The	total	value	of	the	func7on	is	the	
summa7on	over	all	levels	of	the	tree	

•  Consider	the	following	concrete	example	
T(n)	=	2T(n/2)	+	n,			T(1)=	4		

T (n) = �log� nT (⇤) +

log� n�1X

i=0

�if(
n

⇥i
)
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Recurrence	Tree:	Example	(2)	
Itera7on	

0	
	
1	
	
	
	
2	
.	
.	
i	
.	
.	

log2	n	
	
	

T(n)	

T(n/2)	 T(n/2)	

T(n/4)	 T(n/4)	 T(n/4)	 T(n/4)	

Cost	
n	
	

n/2 +n/2	
	

4.	n/4	
	

8.n/8	
.	
.	

2i(n/2i)	
.	
.	

	

T(n/8)	 T(n/8)	 T(n/8)	 T(n/8)	 T(n/8)	 T(n/8)	 T(n/8)	 T(n/8)	



Recursion	
	

CSCE	235	 46	

Recurrence	Trees:	Example	(3)	

•  The	value	of	the	func7on	is	the	summa7on	of	
the	value	of	all	levels.	

•  We	treat	the	last	level	as	a	special	case	since	
its	non-recursive	cost	is	different	
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Smoothness	Rule	
•  In	the	previous	example,	we	make	the	following	assump7on	

	n	has	a	power	of	two	(n=2k)	
	This	assump7on	is	necessary	to	get	a	nice	depth	of	log(n)	and	
a	full	tree	

•  We	can	restrict	considera7on	to	certain	powers	because	of	
the	smoothness	rule,	which	is	not	studied	in	this	course.		

•  For	more	informa7on	about	that	rule,	consult	pages	481—
483	of	the	textbook	“The	Design	&	Analysis	of	Algorithms”	by	
Anany	Levi7n	
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How	to	Cheat	with	Maple	(1)	
•  Maple	and	other	math	tools	are	great	resources.		However,	

they	are	no	subs7tutes	for	knowing	how	to	solve	recurrences	
yourself	

•  As	such,	you	should	only	use	Maple	to	check	you	answers	
•  Recurrence	rela7ons	can	be	solved	using	the	rsolve	

command	and	giving	Maple	the	proper	parameters	
•  The	arguments	are	essen7ally	a	comma-delimited	list	of	

equa7ons	
–  General	and	boundary	condi7ons	
–  Followed	by	the	‘name’	and	variables	of	the	func7on	
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How	to	Cheat	with	Maple	(2)	
> rsolve({T(n)= T(n-1)+2*n,T(1)=5},T(n));  

 1+2(n+1)(1/2n+1)-2n 
•  You	can	clean	up	Maple’s	answer	a	bit	by	encapsula7ng	it	in	the	

simplify	command	
 

> simplify(rsolve({T(n)= T(n-1) + 2*n, T(1) = 5}, 
T(n)));  

3 + n2 + n	
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Summary	
•  Introduc7on,	Mo7va7ng	Example	
•  Recurrence	Rela7ons	

–  Defini7on,	general	form,	ini7al	condi7ons,	terms	

•  Linear	Homogeneous	Recurrences	
–  Form,	solu7on,	characteris7c	equa7on,	characteris7c	polynomial,	roots	
–  Second	order	linear	homogeneous	recurrence	

•  Double	roots,	solu7on,	examples	
•  Single	root,	example	

–  General	linear	homogeneous	recurrences:	dis7nct	roots,	any	mul7plicity	

•  Linear	Nonhomogenous	Recurrences	
•  Other	Methods	

–  Backward	subs7tu7on	
–  Recurrence	trees	
–  Chea7ng	with	Maple	


