Induction

Sections 5.1 and 5.2 of Rosen 7th Edition

Spring 2017 CSCE 235H Introduction to Discrete Structures (Honors) Course web-page: cse.unl.edu/~cse235h Questions: Piazza

Outline

- Motivation
- What is induction?
 - Viewed as: the Well-Ordering Principle, Universal Generalization
 - Formal Statement
 - 6 Examples
- Strong Induction
 - Definition
 - Examples: decomposition into product of primes, gcd

Motivation

- How can we prove the following proposition? $\forall x \in S P(x)$
- For a finite set S={s₁,s₂,...,s_n}, we can prove that P(x) holds for each element because of the equivalence
 P(s₁)∧P(s₂)∧...∧P(s_n)
- For an infinite set, we can try to use <u>universal</u> <u>generalization</u>
- Another, more sophisticated way is to use *induction*

What Is Induction?

- If a statement P(n₀) is true for some nonnegative integer say n₀=1
- Suppose that we are able to prove that if P(k) is true for k ≥ n₀, then P(k+1) is also true

 $\mathsf{P}(\mathsf{k}) \Longrightarrow \mathsf{P}(\mathsf{k+1})$

 It follows from these two statement that P(n) is true for all n ≥ n₀, that is

$$\forall n \ge n_0 P(n)$$

 The above is the basis of <u>induction</u>, a 'widely' used proof technique and a <u>very</u> powerful one

The Well-Ordering Principle

- Why induction is a legitimate proof technique?
- At its heart, induction is the Well Ordering Principle
- **Theorem:** <u>Principle of Well Ordering</u>. Every nonempty set of nonnegative integers has a least element
- Since, every such has a least element, we can form a basis case (using the least element as the basis case n₀)
- We can then proceed to establish that the set of integers n≥n₀ such that P(n) is false is actually <u>empty</u>
- Thus, induction (both 'weak' and 'strong' forms) are <u>logical</u> <u>equivalences</u> of the well-ordering principle.

Another View

To look at it in another way, assume that the statements

 (1) P(n_o)
 (2) P(k) ⇒ P(k+1)
 are true. We can now use a form of <u>universal generalization</u> as follows

• Say we choose an element c of the UoD. We wish to establish that P(c) is

- true. If $c=n_0$, then we are done
- Otherwise, we apply (2) above to get $P(n_0) \Rightarrow P(n_0+1), P(n_0+1) \Rightarrow P(n_0+2), P(n_0+1) \Rightarrow P(n_0+3), ..., P(c-1) \Rightarrow P(c)$ Via a finite number of steps (c-n₀) we get that P(c) is true.
- Because c is arbitrary, the universal generalization is established and $\forall n \ge n_0 P(n)$

Outline

- Motivation
- What is induction?
 - Viewed as: the Well-Ordering Principle, Universal Generalization
 - Formal Statement
 - 6 Examples
- Strong Induction
 - Definition
 - Examples: decomposition into product of primes, gcd

Induction: Formal Definition (1)

- Theorem: <u>Principle of Mathematical Induction</u> Given a statement P concerning the integer n, suppose
 - 1. P is true for some particular integer n_0 , $P(n_0)=1$
 - 2. If P is true for some particular integer k≥n₀ then it is true for k+1: P(k) → P(k+1)

Then P is true for all integers $n \ge n_0$, that is

 $\forall n \ge n_0 P(n)$ is true

Induction: Formal Definition (2)

- Showing that P(n₀) holds for some initial integer n₀ is called the <u>basis step</u>
- The assumption P(k) is called the inductive hypothesis
- Showing the implication P(k) → P(k+1) for every k≥n₀ is called the <u>inductive step</u>
- Together, they are used to define <u>mathematical</u> <u>induction</u>
- Induction is expressed as an inference rule $[P(n_0) \land (\forall k \ge n_0 P(k) \rightarrow P(k+1)] \rightarrow \forall n \ge n_0 P(n)$

Steps

- 1. Form the general statement
- 2. Form and verify the base case (basis step)
- 3. Form the inductive hypothesis
- 4. Prove the inductive step

Example A (1)

- Prove that $n^2 \le 2^n$ for all $n \ge 5$ using induction
- We formalize the statement $P(n)=(n^2 \le 2^n)$
- Our <u>basis case</u> is for n=5. We directly verify that

$$25=5^2 \le 2^5 = 32$$

so P(5) is true and thus the basic step holds

• We need now to perform the inductive step

Example A (2)

- Assume P(k) holds (the inductive hypothesis). Thus, $k^2 \le 2^k$
- Now, we need to prove the inductive step. For all k≥5, $(k+1)^2 = k^2+2k+1 < k^2+2k+k$ (because k≥5>1) $< k^2+3k < k^2+k\cdot k$ (because k≥5>3) $< k^2+k^2=2k^2$
- Using the inductive hypothesis $(k^2 \le 2^k)$, we get $(k+1)^2 < 2k^2 \le 2 \cdot 2^k = 2^{k+1}$
- Thus, P(k+1) holds

Example B (1)

- Prove that for any $n \ge 1$, $\sum_{i=1}^{n} (i^2) = n(n+1)(2n+1)/6$
- The basis case is easily verified $1^2 = 1 = 1(1+1)(2+1)/6$
- We assume that P(k) holds for some k \ge 1, so $\sum_{i=1}^{k} (i^2) = k(k+1)(2k+1)/6$
- We want to show that P(k+1) holds, that is

$$\Sigma_{i=1}^{k+1}$$
 (i²) = (k+1)(k+2)(2k+3)/6

• We rewrite this sum as

 $\sum_{i=1}^{k+1} (i^2) = 1^2 + 2^2 + \ldots + k^2 + (k+1)^2 = \sum_{i=1}^{k} (i^2) + (k+1)^2$

Example B (2)

- We replace $\sum_{i=1}^{k} (i^2)$ by its value from the inductive hypothesis
 - $\sum_{i=1}^{k+1} (i^2) = \sum_{i=1}^{k} (i^2) + (k+1)^2$
 - $= k(k+1)(2k+1)/6 + (k+1)^2$
 - $= k(k+1)(2k+1)/6 + 6(k+1)^2/6$
 - = (k+1)[k(2k+1)+6(k+1)]/6
 - $= (k+1)[2k^2+7k+6]/6$
 - = (k+1)(k+2)(2k+3)/6
- Thus, we established that $P(k) \rightarrow P(k+1)$
- Thus, by the principle of mathematical induction we have $\forall n \ge 1, \sum_{i=1}^{n} (i^2) = n(n+1)(2n+1)/6$

Example C (1)

- Prove that for any integer $n \ge 1$, $2^{2n}-1$ is divisible by 3
- Define P(n) to be the statement 3 | (2²ⁿ-1)
- We note that for the basis case n=1 we do have P(1)
 2^{2·1}-1 = 3 is divisible by 3
- Next we assume that P(k) holds. That is, there exists some integer u such that

$$2^{2k} - 1 = 3u$$

 We must prove that P(k+1) holds. That is, 2^{2(k+1)}-1 is divisible by 3

Example C (2)

- Note that: $2^{2(k+1)} 1 = 2^2 2^{2k} 1 = 4 \cdot 2^{2k} 1$
- The inductive hypothesis: $2^{2k} 1 = 3u \Rightarrow 2^{2k} = 3u+1$
- Thus: $2^{2(k+1)} 1 = 4 \cdot 2^{2k} 1 = 4(3u+1) 1$

 We conclude, by the principle of mathematical induction, for any integer n≥1, 2²ⁿ-1 is divisible by 3

Example D

- Prove that $n! > 2^n$ for all $n \ge 4$
- The basis case holds for n=4 because 4!=24>2⁴=16
- We assume that k! > 2^k for some integer k≥4 (which is our inductive hypothesis)
- We must prove the P(k+1) holds

 $(k+1)! = k! (k+1) > 2^{k} (k+1)$

- Because $k \ge 4$, $k+1 \ge 5 > 2$, thus $(k+1)! > 2^k (k+1) > 2^k \cdot 2 = 2^{k+1}$
- Thus by the principal of mathematical induction, we have n! > 2ⁿ for all n≥4

Induction

Example E: Summation

- Show that $\Sigma_{i=1}^{n} (i^3) = (\Sigma_{i=1}^{n} i)^2$ for all $n \ge 1$
- The basis case is trivial: for n = 1, $1^3 = 1^2$
- The inductive hypothesis assumes that for some n≥1 we have $\sum_{i=1}^{k} k(i^3) = (\sum_{i=1}^{k} i)^2$
- We now consider the summation for (k+1): $\sum_{i=1}^{k+1} (i^3)$

$$= (\Sigma_{i=1}^{k} i)^{2} + (k+1)^{3} = (k(k+1)/2)^{2} + (k+1)^{3}$$

- = $(k^{2}(k+1)^{2} + 4(k+1)^{3})/2^{2} = (k+1)^{2}(k^{2} + 4(k+1))/2^{2}$
- = $(k+1)^2$ (k^2+4k+4) $/2^2$ = $(k+1)^2$ ($k+2)^2 /2^2$
- $= ((k+1)(k+2) / 2)^{2}$
- Thus, by the PMI, the equality holds CSCE 235 Induction

Example F: Derivatives

- Show that for all $n \ge 1$ and $f(x) = x^n$, we have f'(x) = nx^{n-1}
- Verifying the basis case for n=1:
 f'(x) = lim_{h→0} (f(x₀+h)-f(x₀)) / h

 $= \lim_{h \to 0} \left((x_0 + h)^1 - (x_0^1) \right) / h = 1 = 1 \cdot x^0$

- Now, assume that the inductive hypothesis holds for some k, f(x) = x^k, we have f'(x) = kx^{k-1}
- Now, consider $f_2(x) = x^{k+1} = x^k \cdot x$
- Using the product rule: $f'_2(x) = (x^k)' \cdot x + (x^k) \cdot x'$
- Thus, $f'_2(x) = kx^{k-1} \cdot x + x^k \cdot 1 = kx^k + x^k = (k+1)x^k$

The **Bad** Example: Example G

- Consider the proof for: All of you will receive the same grade
- Let P(n) be the statement: "Every set of n students will receive the same grade"
- Clearly, P(1) is true. So the basis case holds
- Now assume P(k) holds, the inductive hypothesis
- Given a group of k students, apply P(k) to {s₁, s₂, ..., s_k}
- Now, separately apply the inductive hypothesis to the subset {s₂, s₃, ..., s_{k+1}}
- Combining these two facts, we get {s₁, s₂, ..., s_{k+1}}. Thus, P(k+1) holds.
- Hence, P(n) is true for all students

Example G: Where is the Error?

- The mistake is not the basis case: P(1) is true
- Also, it is the case that, say, $P(73) \Rightarrow P(74)$
- So, this is cannot be the mistake
- The error is in $P(1) \Rightarrow P(2)$, which cannot hold
- We cannot combine the two inductive hypotheses to get P(2)

Outline

- Motivation
- What is induction?
 - Viewed as: the Well-Ordering Principle, Universal Generalization
 - Formal Statement
 - 6 Examples

Strong Induction

- Definition
- Examples: decomposition into product of primes, gcd

Strong Induction

• **Theorem**: Principle of Mathematical Induction (Strong Form)

Given a statement P concerning an integer n, suppose

- 1. P is true for some particular integer n_0 , $P(n_0)=1$
- 2. If $k \ge n_0$ is any integer and P is true for all integers m in the range $n_0 \le m < k$, then it is true also for k

Then, P is true for all integers $n \ge n_0$, i.e. $\forall n \ge n_0 P(n)$ holds

MPI and its Strong Form

- Despite the name, the strong form of PMI is not a stronger proof technique than PMI
- In fact, we have the following Lemma
- Lemma: The following are equivalent
 - The Well Ordering Principle
 - The Principle of Mathematical Induction
 - The Principle of Mathematical Induction, Strong Form

Strong Form: Example A (1)

- Fundamental Theorem of Arithmetic (page 211): For any integer n≥2 can be written uniquely as
 - A prime or
 - As the product of primes
- Prove using the strong form of induction to
- **Definition** (page 210)
 - Prime: A positive integer p greater than 1 is called prime iff the only positive factors of p are 1 and p.
 - Composite: A positive integer that is greater than 1 and is not prime is called composite
- According to the definition, 1 is not a prime

Strong Form: Example A (2)

- Let P(n) be the statement: "n is a prime or can be written uniquely as a product of primes."
- 2. The basis case holds: P(2)=2 and 2 is a prime.

Strong Form: Example A (3)

 We make our inductive hypothesis. Here we assume that the predicate P holds for all integers less than some integer k≥2, i.e., we assume that:

 $P(2) \land P(3) \land P(4) \land ... \land P(k)$ is true

- 4. We want to show that this implies that P(k+1) holds. We consider two cases:
 - k+1 is prime, then P(k+1) holds. We are done.
 - k+1 is a composite.

k+1 has two factors u,v, $2 \le u,v \le k+1$ such that k+1=u·v

By the inductive hypothesis $u=\Pi_i p_i v = \Pi_j p_j$, and $p_i p_j$ prime Thus, $k+1=\Pi_i p_i \Pi_i p_i$

So, by the strong form of PMI, P(k+1) holds QED

Strong Form: Example B (1)

• Notation:

- gcd(a,b): the greatest common divisor of a and b
 - Example: gcd(27, 15)=3, gcd(35,28)=7
- gcd(a,b)=1 \Leftrightarrow a, b are mutually prime
 - Example: gcd(15,14)=1, gcd(35,18)=1
- Lemma: If a,b ∈N are such that gcd(a,b)=1 then there are integers s,t such that

gcd(a,b)=1=sa+tb

• **Question:** Prove the above lemma using the strong form of induction

Background Knowledge

- Prove that: gcd(a,b)= gcd(a,b-a)
- Proof: Assume gcd(a,b)=k and gcd(a,b-a)=k' \circ gcd(a,b)=k \Rightarrow k divides a and b \Rightarrow k divides a and (b-a) \Rightarrow k divides k' \circ gcd(a,b-a)=k' \Rightarrow k' divides a and b-a \Rightarrow k' divides a and a+(b-a)=b \Rightarrow k' divides k \circ (k divides k') and (k' divides k) \Rightarrow k = k' \Rightarrow gcd(a,b)= gcd(a,b-a)

(Lame) Alternative Proof

- Prove that $gcd(a,b)=1 \Rightarrow gcd(a,b-a)=1$
- We prove the contrapositive
 - Assume gcd(a,b-a)≠1 ⇒ ∃k∈Z, k≠1 k divides a and b-a ⇒ ∃m,n∈Z a=km and b-a=kn

 \Rightarrow a+(b-a)=k(m+n) \Rightarrow b=k(m+n) \Rightarrow k divides b

- k≠1 divides a and divides b \Rightarrow gcd(a,b) ≠ 1

• But, don't prove a special case when you have the more general one (see previous slide..)

Strong Form: Example B (2)

1. Let P(n) be the statement

 $(a,b \in N) \land (gcd(a,b)=1) \land (a+b=n) \Rightarrow \exists s,t \in Z, sa+tb=1$

- Our basis case is when n=2 because a=b=1.
 For s=1, t=0, the statement P(2) is satisfied (sa+tb=1.1+1.0=1)
- 3. We form the inductive hypothesis P(k):
 - For $k \in N$, $k \ge 2$
 - For all i, 2≤i≤k P(a+b=k) holds
 - For a,b∈ *N*, (gcd(a,b)=1) ∧ (a+b=k) ∃s,t ∈*Z*, sa+tb=1
- Given the inductive hypothesis, we prove P(a+b = k+1)
 We consider three cases: a=b, a<b, a>b

Strong Form: Example B (3)

Case 1: a=b

• In this case: gcd(a,b) = gcd(a,a) Because a=b

= 1

- = a By definition
 - See assumption

• $gcd(a,b)=1 \Rightarrow a=b=1$

⇒ We have the basis case, P(a+b)=P(2), which holds

Strong Form: Example B (4)

Case 2: a<b

- $b > a \Rightarrow b a > 0$. So gcd(a,b)=gcd(a,b-a)=1
- Further: $2 \le a+(b-a)=(a+b)-a=(k+1)-a \le k \implies a+(b-a)\le k$
- Applying the inductive hypothesis P(a+(b-a))(a,(b-a) $\in N$) \land (gcd(a,b-a)=1) \land (a+(b-a)=b) $\Rightarrow \exists s_0, t_0 \in Z, s_0a+t_0(b-a)=1$
- Thus, $\exists s_0, t_0 \in Z$ such that $(s_0-t_0)a + t_0b=1$
- So, for s,t $\in Z$ where s=s₀-t₀, t=t₀ we have sa + tb=1
- Thus, P(k+1) is established for this case

Strong Form: Example B (5)

Case 2: a>b

- This case is completely symmetric to case 2
- We use a-b instead of a-b
- Because the three cases handle every possibility, we have established that P(k+1) holds
- Thus, by the PMI strong form, the Lemma holds. **QED**

Template

- In order to prove by induction
 - Some mathematical theorem, or
 - $\forall n \ge n_0 P(n)$
- Follow the template
 - 1. State a propositional predicate

P(n): some statement involving n

- 2. Form and verify the basis case (basis step)
- 3. Form the inductive hypothesis (assume P(k))
- 4. Prove the inductive step (prove P(k+1))

Summary

- Motivation
- What is induction?
 - Viewed as: the Well-Ordering Principle, Universal Generalization
 - Formal Statement
 - 6 Examples
- Strong Induction
 - Definition
 - Examples: decomposition into product of primes, gcd