Functions

Section 2.3 of Rosen

Spring 2017

CSCE 235H Introduction to Discrete Structures (Honors)

Course web-page: cse.unl.edu/~cse235h

Questions: Piazza

Outline

- Definitions & terminology
 - function, domain, co-domain, image, preimage (antecedent), range, image of a set, strictly increasing, strictly decreasing, monotonic
- Properties
 - One-to-one (injective)
 - Onto (surjective)
 - One-to-one correspondence (bijective)
 - Exercices (5)
- Inverse functions (examples)
- Operators
 - Composition, Equality
- Important functions
 - identity, absolute value, floor, ceiling, factorial

Introduction

You have already encountered function

$$- f(x,y) = x+y$$

$$- f(x) = x$$

$$- f(x) = \sin(x)$$

- Here we will study functions defined on <u>discrete</u> domains and ranges
- We may not always be able to write function in a 'neat way' as above

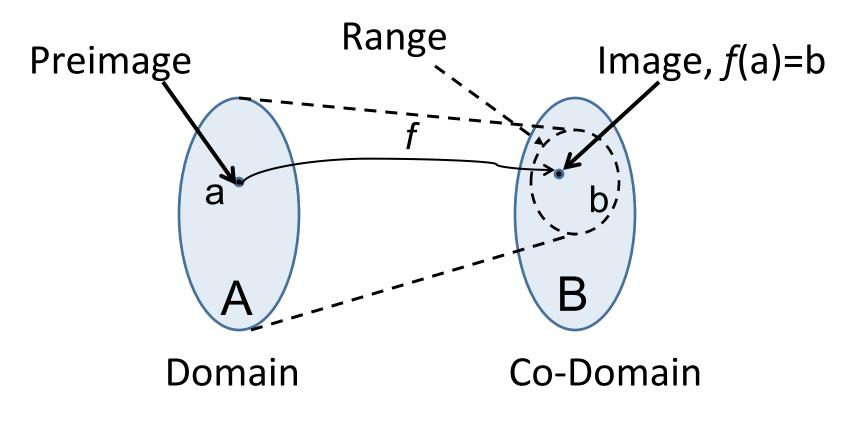
Definition: Function

- Definition: A function f
 - from a set A to a set B
 - is an assignment of exactly one element of B to each element of A.
- We write f(a)=b if b is the unique element of B assigned by the function f to the element $a \in A$.
- Notation: f: A → B
 which can be read as 'f maps A to B'
- Note the subtlety
 - Each and every element of A has a <u>single</u> mapping
 - Each element of B may be mapped to by <u>several</u> elements in A or <u>not</u> at all

Terminology

- Let f: A → B and f(a)=b. Then we use the following terminology:
 - A is the <u>domain</u> of f, denoted dom(f)
 - B is the <u>co-domain</u> of f
 - b is the <u>image</u> of a
 - a is the <u>preimage</u> (<u>antecedent</u>) of b
 - The <u>range</u> of f is the set of all images of elements of A, denoted rng(f)

Function: Visualization



A function, $f: A \rightarrow B$

More Definitions (1)

• **Definition**: Let f_1 and f_2 be two functions from a set A to R. Then f_1+f_2 and f_1f_2 are also function from A to R defined by:

$$-(f_1+f_2)(x) = f_1(x) + f_2(x)$$

$$-f_1f_2(x)=f_1(x)f_2(x)$$

• Example: Let $f_1(x)=x^4+2x^2+1$ and $f_2(x)=2-x^2$

$$-(f_1+f_2)(x) = x^4+2x^2+1+2-x^2 = x^4+x^2+3$$

$$-f_1f_2(x) = (x^4+2x^2+1)(2-x^2) = -x^6+3x^2+2$$

More Definitions (2)

• **Definition**: Let $f: A \rightarrow B$ and $S \subseteq A$. The image of the set S is the subset of B that consists of all the images of the elements of S. We denote the image of S by f(S), so that $f(S)=\{f(s) \mid \forall s \in S\}$

$$f(S) = \{ f(s) \mid \forall s \in S \}$$

 Note there that the image of S is a set and not an element.

Image of a set: Example

• Let:

```
- A = \{a_1, a_2, a_3, a_4, a_5\}

- B = \{b_1, b_2, b_3, b_4, b_5\}

- f = \{(a_1, b_2), (a_2, b_3), (a_3, b_3), (a_4, b_1), (a_5, b_4)\}

- S=\{a_1, a_3\}
```

- Draw a diagram for *f*
- What is the:
 - Domain, co-domain, range of f?
 - Image of S, f(S)?

More Definitions (3)

- Definition: A function f whose domain and codomain are subsets of the set of real numbers (R) is called
 - strictly increasing if f(x) < f(y) whenever x<y and x and y are in the domain of f.
 - strictly decreasing if f(x)>f(y) whenever x<y and x and y are in the domain of f.
- A function that is increasing or decreasing is said to be monotonic

Outline

- Definitions & terminology
- Properties
 - One-to-one (injective)
 - Onto (surjective)
 - One-to-one correspondence (bijective)
 - Exercices (5)
- Inverse functions (examples)
- Operators
- Important functions

Definition: Injection

 Definition: A function f is said to be <u>one-to-one</u> or <u>injective</u> (or an injection) if

 \forall x and y in in the domain of f, $f(x)=f(y) \Rightarrow x=y$

- Intuitively, an injection simply means that each element in the range has at most one preimage (antecedent)
- It is useful to think of the contrapositive of this definition

$$x \neq y \implies f(x) \neq f(y)$$

Definition: Surjection

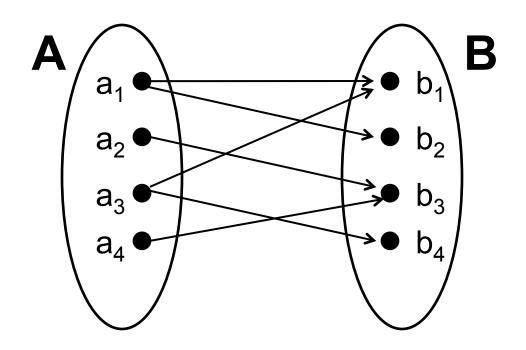
 Definition: A function f: A→B is called <u>onto</u> or <u>surjective</u> (or an surjection) if

 \forall b \in B, \exists a \in A with f(a)=b

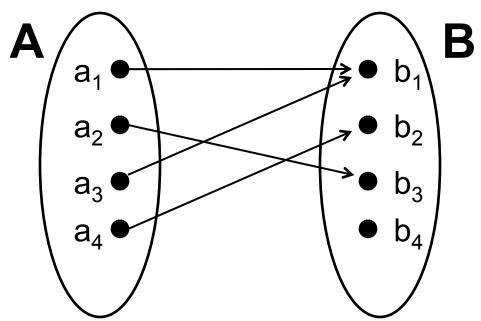
- Intuitively, a surjection means that every element in the codomain is mapped into (i.e., it is an image, has an antecedent)
- Thus, the range is the same as the codomain

Definition: Bijection

- Definition: A function f is a <u>one-to-one</u>
 correspondence (or a bijection), if it is both
 - one-to-one (injective) and
 - onto (surjective)
- One-to-one correspondences are important because they endow a function with an <u>inverse</u>.
- They also allow us to have a concept cardinality for infinite sets
- Let's look at a few examples to develop a feel for these definitions...

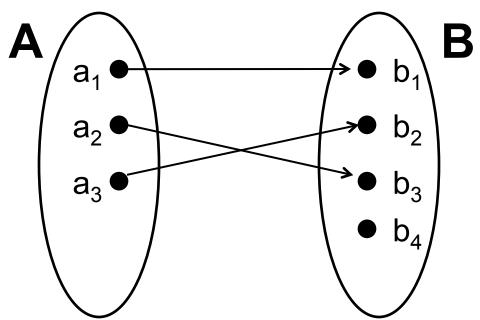


- Is this a function? Why?
- No, because each of a₁, a₂ has two images



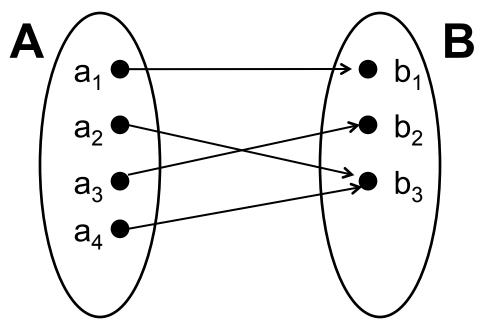
- Is this a function
 - One-to-one (injective)? Why? No, b₁ has 2 preimages
 - Onto (surjective)? Why?

No, b₄ has no preimage



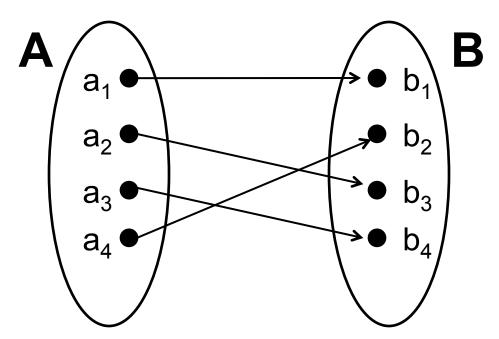
- Is this a function
 - One-to-one (injective)? Why? Yes, no b_i has 2 preimages
 - Onto (surjective)? Why?

No, b₄ has no preimage



- Is this a function
 - One-to-one (injective)? Why? No, b₃ has 2 preimages
 - Onto (surjective)? Why?

Yes, every b_i has a preimage



- Is this a function
 - One-to-one (injective)?
 - Onto (surjective)?

Thus, it is a bijection or a one-to-one correspondence

Exercice 1

• Let $f:Z \rightarrow Z$ be defined by

$$f(x) = 2x - 3$$

- What is the domain, codomain, range of f?
- Is f one-to-one (injective)?
- Is f onto (surjective)?
- Clearly, dom(f)=Z. To see what the range is, note that:

b
$$\in$$
 rng(f) \Leftrightarrow b=2a-3, with a \in Z \Leftrightarrow b=2(a-2)+1 \Leftrightarrow b is odd

Exercise 1 (cont'd)

- Thus, the range is the set of all odd integers
- Since the range and the codomain are different (i.e., $rng(f) \neq Z$), we can conclude that f is not onto (surjective)
- However, f is one-to-one injective. Using simple algebra, we have:

$$f(x_1) = f(x_2) \Rightarrow 2x_1 - 3 = 2x_2 - 3 \Rightarrow x_1 = x_2$$
 QED

Exercise 2

Let f be as before

$$f(x)=2x-3$$

but now we define $f: N \rightarrow N$

- What is the domain and range of f?
- Is *f* onto (surjective)?
- Is f one-to-one (injective)?
- By changing the domain and codomain of f, f is not even a function anymore. Indeed, $f(1)=2\cdot 1-3=-1 \notin N$

Exercice 3

• Let $f:Z \rightarrow Z$ be defined by

$$f(x) = x^2 - 5x + 5$$

- Is this function
 - One-to-one?
 - Onto?

Exercice 3: Answer

It is not one-to-one (injective)

$$f(x_1)=f(x_2) \Rightarrow x_1^2 - 5x_1 + 5 = x_2^2 - 5x_2 + 5 \Rightarrow x_1^2 - 5x_1 = x_2^2 - 5x_2$$

\Rightarrow x_1^2 - x_2^2 = 5x_1 - 5x_2 \Rightarrow (x_1 - x_2)(x_1 + x_2) = 5(x_1 - x_2)
\Rightarrow (x_1 + x_2) = 5

Many $x_1, x_2 \in \mathbb{Z}$ satisfy this equality. There are thus an infinite number of solutions. In particular, f(2)=f(3)=-1

It is also not onto (surjective).

The function is a parabola with a global minimum at (5/2,-5/4). Therefore, the function fails to map to any integer less than -1

What would happen if we changed the domain/codomain?

Exercice 4

• Let $f:Z \rightarrow Z$ be defined by

$$f(x) = 2x^2 + 7x$$

- Is this function
 - One-to-one (injective)?
 - Onto (surjective)?
- Again, this is a parabola, it cannot be onto (where is the global minimum?)

Exercice 4: Answer

• f(x) is one-to-one! Indeed:

$$f(x_1)=f(x_2) \Rightarrow 2x_1^2 + 7x_1 = 2x_2^2 + 7x_2 \Rightarrow 2x_1^2 - 2x_2^2 = 7x_2 - 7x_1$$

\Rightarrow 2(x_1 - x_2)(x_1 + x_2) = 7(x_2 - x_1) \Rightarrow 2(x_1 + x_2) = -7 \Rightarrow (x_1 + x_2) = -7/2

But $-7/2 \notin Z$. Therefore it must be the case that $x_1 = x_2$.

It follows that *f* is a one-to-one function.

QED

f(x) is not surjective because f(x)=1 does not exist

 $2x^2 + 7x = 1 \implies x(2x + 7) = 1$ the product of two integers is 1 if both integers are 1 or -1

$$x=1 \Rightarrow (2x+7)=1 \Rightarrow 9 = 1$$
, impossible

$$x=-1 \Rightarrow -1(-2+7)=1 \Rightarrow -5=1$$
, impossible

Exercise 5

• Let $f:Z \rightarrow Z$ be defined by

$$f(x) = 3x^3 - x$$

- Is this function
 - One-to-one (injective)?
 - Onto (surjective)?

Exercice 5: f is one-to-one

• To check if f is one-to-one, again we suppose that for $x_1, x_2 \in \mathbb{Z}$ we have $f(x_1) = f(x_2)$

$$f(x_1)=f(x_2) \Rightarrow 3x_1^3 - x_1 = 3x_2^3 - x_2$$

 $\Rightarrow 3x_1^3 - 3x_2^3 = x_1 - x_2$
 $\Rightarrow 3(x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2) = (x_1 - x_2)$
 $\Rightarrow (x_1^2 + x_1x_2 + x_2^2) = 1/3$
which is impossible because $x_1, x_2 \in \mathbb{Z}$
thus, f is one-to-one

Exercice 5: f is not onto

- Consider the counter example f(a)=1
- If this were true, we would have $3a^3 a = 1 \Rightarrow a(3a^2 1) = 1$ where a and $(3a^2 1) \in \mathbb{Z}$
- The only time we can have the product of two integers equal to 1 is when they are both equal to 1 or -1
- Neither 1 nor -1 satisfy the above equality
 - Thus, we have identified $1 \in \mathbb{Z}$ that does not have an antecedent and f is not onto (surjective)

Outline

- Definitions & terminology
 - function, domain, co-domain, image, preimage (antecedent), range,
 image of a set, strictly increasing, strictly decreasing, monotonic
- Properties
 - One-to-one (injective), onto (surjective), one-to-one correspondence (bijective)
 - Exercices (5)
- Inverse functions (examples)
- Operators
 - Composition, Equality
- Important functions
 - identity, absolute value, floor, ceiling, factorial

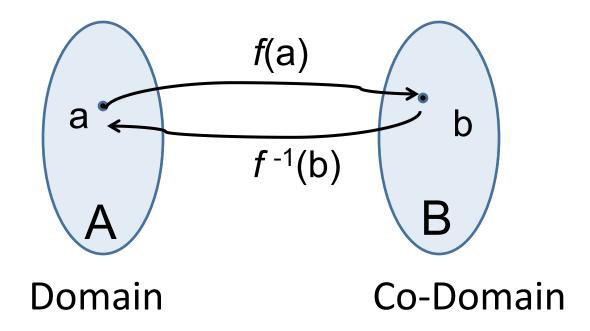
Inverse Functions (1)

- Definition: Let f: A→B be a bijection. The inverse function of f is the function that assigns to an element b∈B the unique element a∈A such that f(a)=b
- The inverse function is denote f^1 .
- When f is a bijection, its inverse exists and $f(a)=b \iff f^1(b)=a$

Inverse Functions (2)

- Note that by definition, a function can have an inverse if and only if it is a bijection. Thus, we say that a bijection is <u>invertible</u>
- Why must a function be bijective to have an inverse?
 - Consider the case where f is not one-to-one (not injective). This means that some element b∈B has more than one antecedent in A, say a_1 and a_2 . How can we define an inverse? Does $f^1(b)=a_1$ or a_2 ?
 - Consider the case where f is not onto (not surjective). This means that there is some element b∈B that does not have any preimage a∈A. What is then $f^{-1}(b)$?

Inverse Functions: Representation



A function and its inverse

Inverse Functions: Example 1

• Let $f:R \rightarrow R$ be defined by

$$f(x) = 2x - 3$$

- What is f^{-1} ?
 - We must verify that f is invertible, that is, is a bijection.
 We prove that is one-to-one (injective) and onto (surjective). It is.
 - 2. To find the inverse, we use the substitution
 - Let *f*-1(y)=x
 - And y=2x-3, which we solve for x. Clearly, x=(y+3)/2
 - So, $f^1(y) = (y+3)/2$

Inverse Functions: Example 2

- Let $f(x)=x^2$. What is f^{-1} ?
- No domain/codomain has been specified.
- Say $f:R \rightarrow R$
 - Is f a bijection? Does its inverse exist?
 - Answer: No
- Say we specify that $f: A \rightarrow B$ where

$$A=\{x\in R\mid x\leq 0\}$$
 and $B=\{y\in R\mid y\geq 0\}$

- Is f a bijection? Does its inverse exist?
- Answer: Yes, the function <u>becomes</u> a bijection and thus, has an inverse

Inverse Functions: Example 2 (cont')

- To find the inverse, we let
 - $f^{-1}(y) = x$
 - $-y=x^2$, which we solve for x
- Solving for x, we get $x=\pm\sqrt{y}$, but which one is it?
- Since dom(f) is all nonpositive and rng(f) is nonnegative, thus x must be nonpositive and

$$f^{-1}(y) = -\sqrt{y}$$

 From this, we see that the domains/codomains are just as important to a function as the definition of the function itself

Inverse Functions: Example 3

- Let $f(x)=2^x$
 - What should the domain/codomain be for this function to be a bijection?
 - What is the inverse?
- The function should be $f:R \rightarrow R^+$
- Let $f^1(y)=x$ and $y=2^x$, solving for x we get $x=\log_2(y)$. Thus, $f^1(y)=\log_2(y)$
- What happens when we include 0 in the codomain?
- What happens when restrict either sets to Z?

Function Composition (1)

- The value of functions can be used as the input to other functions
- **Definition**: Let $g:A \rightarrow B$ and $f:B \rightarrow C$. The composition of the functions f and g is

$$(f \circ g) (x) = f(g(x))$$

- $f \circ g$ is read as 'f circle g', or 'f composed with g', 'f following g', or just 'f of g'
- In LaTeX: \$\circ\$

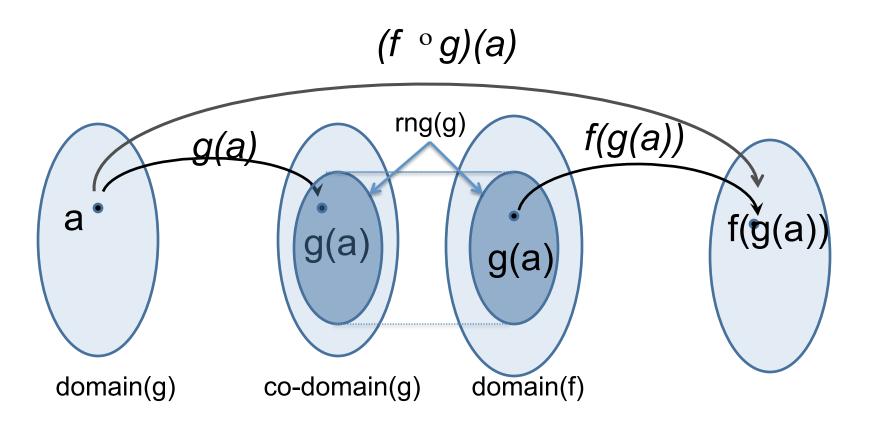
Function Composition (2)

• Because $(f \circ g)(x)=f(g(x))$, the composition $f \circ g$ cannot be defined unless the range of g is a subset of the domain of f

```
f \circ g is defined \Leftrightarrow rng(g) \subseteq dom(f)
```

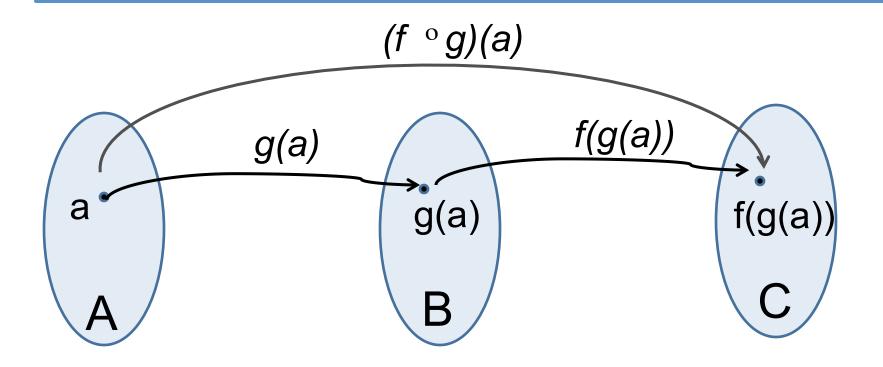
- The <u>order</u> in which you apply a function matters: you go from the inner most to the outer most
- It follows that $f \circ g$ is in general <u>not</u> the same as $g \circ f$

Composition: Graphical Representation



The composition of two functions

Composition: Graphical Representation



The composition of two functions

Composition: Example 1

• Let f, g be two functions on $R \rightarrow R$ defined by

$$f(x) = 2x - 3$$
$$g(x) = x^2 + 1$$

- What are $f \circ g$ and $g \circ f$?
- We note that
 - -f is bijective, thus dom(f)=rng(f)= codomain(f)= R
 - For g, dom(g)= R but rng(g)={x∈R | x≥1} ⊆ R^+
 - Since rng(g)={x∈R | x≥1} ⊆R⁺⊆ dom(f) =R, $f \circ g$ is defined
 - Since rng(f)= $R \subseteq \text{dom}(g) = R$, $g \circ f$ is defined

Composition: Example 1 (cont')

- Given f(x) = 2x 3 and $g(x) = x^2 + 1$
- $(f \circ g)(x) = f(g(x)) = f(x^2+1) = 2(x^2+1)-3$ = $2x^2 - 1$
- $(g \circ f)(x) = g(f(x)) = g(2x-3) = (2x-3)^2 + 1$ = $4x^2 - 12x + 10$

Function Equality

- Although it is intuitive, we formally define what it means for two functions to be equal
- Lemma: Two functions f and g are equal if and only
 - $-\operatorname{dom}(f) = \operatorname{dom}(g)$
 - $\forall a \in dom(f) (f(a) = g(a))$

Associativity

- The composition of function is not commutative $(f \circ g \neq g \circ f)$, it is associative
- Lemma: The composition of functions is an associative operation, that is

$$(f \circ g) \circ h = f \circ (g \circ h)$$

Outline

- Definitions & terminology
 - function, domain, co-domain, image, preimage (antecedent), range, image of a set, strictly increasing, strictly decreasing, monotonic
- Properties
 - One-to-one (injective), onto (surjective), one-to-one correspondence (bijective)
 - Exercices (5)
- Inverse functions (examples)
- Operators
 - Composition, Equality
- Important functions
 - identity, absolute value, floor, ceiling, factorial

Important Functions: Identity

Definition: The <u>identity</u> function on a set A is the function

defined by $\iota(a)=a$ for all $a \in A$.

 One can view the identity function as a composition of a function and its inverse:

$$\iota(a) = (f \circ f^1)(a) = (f^1 \circ f)(a)$$

 Moreover, the composition of any function f with the identity function is itself f:

$$(f \circ \iota)(a) = (\iota \circ f)(a) = f(a)$$

Inverses and Identity

- The identity function, along with the composition operation, gives us another characterization of inverses when a function has an inverse
- **Theorem**: The functions $f: A \rightarrow B$ and $g: B \rightarrow A$ are inverses if and only if

$$(g \circ f) = \iota_A \text{ and } (f \circ g) = \iota_B$$

where the $\iota_{\rm A}$ and $\iota_{\rm B}$ are the identity functions on sets A and B. That is,

$$\forall a \in A, b \in B ((g(f(a)) = a) \land (f(g(b)) = b))$$

Important Functions: Absolute Value

• **Definition**: The <u>absolute value</u> function, denoted |x|, $f f: R \rightarrow \{y \in R \mid y \ge 0\}$. Its value is defined by

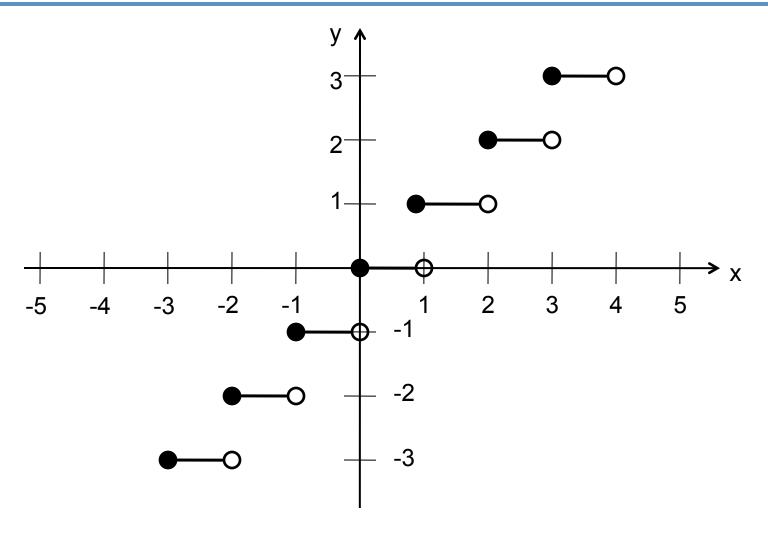
$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x \le 0 \end{cases}$$

Important Functions: Floor & Ceiling

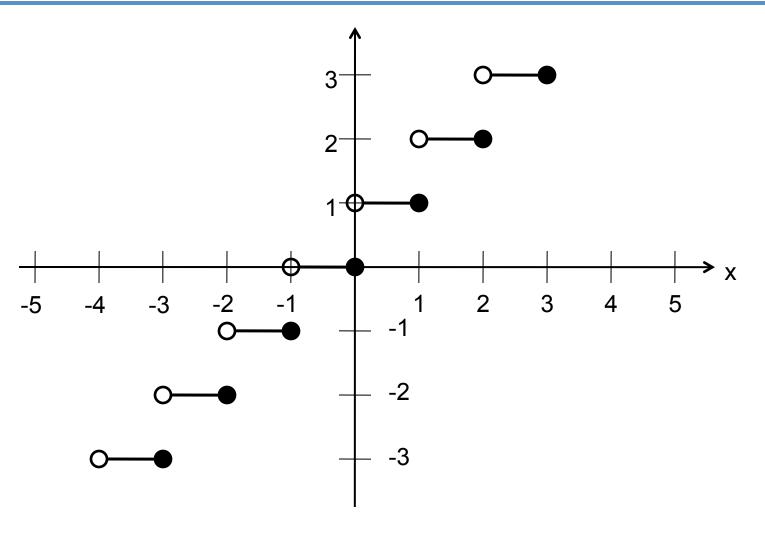
Definitions:

- The <u>floor function</u>, denoted $\lfloor x \rfloor$, is a function $R \rightarrow Z$. Its values is the <u>largest integer</u> that is less than or equal to x
- The ceiling function, denoted $\lceil x \rceil$, is a function $R \rightarrow Z$. Its values is the <u>smallest integer</u> that is greater than or equal to x
- In LaTex: \$\lceil\$, \$\rceil\$, \$\rfloor\$, \$\lfloor\$

Important Functions: Floor



Important Functions: Ceiling



Important Function: Factorial

- The factorial function gives us the number of permutations (that is, uniquely ordered arrangements) of a collection of n objects
- **Definition**: The <u>factorial</u> function, denoted n!, is a function $N \rightarrow N^+$. Its value is the <u>product</u> of the n positive integers

$$n! = \prod_{i=1}^{n} i = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (n-1) \cdot n$$

Factorial Function & Stirling's Approximation

- The factorial function is defined on a discrete domain
- In many applications, it is useful a continuous version of the function (say if we want to differentiate it)
- To this end, we have the Stirling's formula

$$n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$$

Summary

- Definitions & terminology
 - function, domain, co-domain, image, preimage (antecedent), range, image of a set, strictly increasing, strictly decreasing, monotonic
- Properties
 - One-to-one (injective), onto (surjective), one-to-one correspondence (bijective)
 - Exercices (5)
- Inverse functions (examples)
- Operators
 - Composition, Equality
- Important functions
 - identity, absolute value, floor, ceiling, factorial