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Motivation

 Combinatorics is the study of collections of objects.
Specifically, counting objects, arrangement, derangement,
etc. along with their mathematical properties

* Counting objects is important in order to analyze algorithms
and compute discrete probabilities

* Originally, combinatorics was motivated by gambling:
counting configurations is essential to elementary probability

— Asimple example: How many arrangements are there of a deck of 52
cards?

* |n addition, combinatorics can be used as a proof technique

— A combinatorial proof is a proof method that uses counting arguments
to prove a statement
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Outline

 |Introduction

 Counting:
— Product rule, sum rule, Principal of Inclusion Exclusion (PIE)
— Application of PIE: Number of onto functions
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Product Rule

* If two events are not mutually exclusive (that is we
do them separately), then we apply the product rule

e Theorem: Product Rule

Suppose a procedure can be accomplished with two disjoint
subtasks. If there are

— n, ways of doing the first task and

— n, ways of doing the second task,
then there are n,.n, ways of doing the overall procedure
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Sum Rule (1)

* If two events are mutually exclusive, that is, they
cannot be done at the same time, then we must

apply the sum rule

* Theorem: Sum Rule. If
— an event e, can be done in n; ways,
— an event e, can be done in n, ways, and

— e, and e, are mutually exclusive
then the number of ways of both events occurring is n;+ n,
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Sum Rule (2)

 Thereis a natural generalization to any sequence of
m tasks; namely the number of ways m mutually
exclusive events can occur

ng+n,+..+n_.+n_

 We can give another formulation in terms of sets.
Let A, A, ..., A be pairwise disjoint sets. Then

A, UAU...UA_|=[A]UI|A|U..UJ|A_|

(In fact, this is a special case of the general Principal of
Inclusion-Exclusion (PIE))
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Principle of Inclusion-Exclusion (PIE)

* Say there are two events, e, and e,,
— For which there are n, and n, possible outcomes respectively.
— But, some outcome n, could result from e, and also from e,

* Now, say that only one event can occur, not both
* In this situation, we cannot apply the sum rule. Why?
... because we would be over counting the number of possible outcomes.

* Instead we have to count the number of possible outcomes of e, and e,
minus the number of possible outcomes in common to both; i.e., the
number of ways to do both tasks

* |f again we think of them as sets, we have
|Ar U A=A +]Ay] - [AN A
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PIE (2)

* More generally, we have the following

e Lemma: Let A, B, be subsets of a finite set U. Then
AUB| = |A| + |B| - |ANB]|

ANB|=min{|A]|, |B|}

A\B| = [A]| - [ANB]| = |A[-|B|

Al = U] - |A]

A®B| = |AUB|-|ANB|
= |A|+|B|-2[ANB|= |A\B|+ [B\A|

6. |AxB|=]|A|x|B]

A A
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PIE: Theorem

* Theorem: Let A A,, ...,A, be finite sets, then
|A,UA, U...UA [=Z]A ]
-ijlAi N Aj|
+ 2 ATMNANA
+(-1)™1 A, NANLLNA |

Each summation is over
e alli,
* pairsi,j with i<j,
* triples with i<j<k, etc.
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PIE Theorem: Example 1

 To illustrate, when n=3, we have

|A,UA, UA;|= |A |+ |A,]| +]A;]
- ([ANA, [+ A NAS+]ANA,])
+|A; N A, NA,]
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PIE Theorem: Example 2

 Toillustrate, when n=4, we have
|AUAUAUA, = |A [+ A |+ A+ Ayl
- (JANA, [+]ANAS | +]ANA,]
+A,NAL [+ ANA, |+ A;NA,])
+ (|A;NANA | +|ANANA, |
+| A NANA,[+]A,NANA,])
- AL NA,NA;NA,|
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Application of PIE: Example A (1)

* How many integers between 1 and 300 (inclusive) are
— Divisible by at least one of 3,5,7?
— Divisible by 3 and by 5 but not by 77
— Divisible by 5 but by neither 3 or 7°?

* Let
A={nEZ | (1=n =<300)a (3|n)}
B={n&EZ | (1 =n=<300)a (5|n)}
C={n€Z | (1 =n=<=300)A (7]|n)}

* How big are these sets? We use the floor function
|A| =[300/3] =100
|B|] =|300/5] =60
|C| =|300/7] =42
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Application of PIE: Example A (2)

* How many integers between 1 and 300 (inclusive) are divisible by at least
one of 3,5,77
Answer: |AUB UC|

* By the principle of inclusion-exclusion

|AUB UC|= |A|+|B|+|C|-[|ANB|+]|ANC|+|BNC]|]+|ANBNC]|
* How big are these sets? We use the floor function

|A] =
Bl =
ICl =

300/3] =100
300/5] =60
300/7] =42

e Therefore:
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|ANB| =]300/15] =20
|ANC| =[300/21] =100
IBNC| =|300/35] =8
|ANBNC| =|300/105] =2

|AUB UC| =100 + 60 + 42 - (20+14+8) + 2 = 162
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Application of PIE: Example A (3)

How many integers between 1 and 300 (inclusive) are divisible by 3 and by
5 but not by 7?

Answer: | (A N B)\C|
By the definition of set-minus
I(ANBN\C|=|ANB|-|ANBNC|=20-2=18

Knowing that

|A| =|300/3] =100 |ANB| = |300/15] =20
IB| =|300/5] =60 |ANC| =|300/21] =100
|C| =[300/7] =42 |IBNC| =|300/35] =8

|ANBNC| =|300/105] =2
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Application of PIE: Example A (4)

How many integers between 1 and 300 (inclusive) are divisible by 5 but by
neither 3 or 7?

Answer: |B\(AUC)| =|B| - |BMN (A UC)|

Distributing B over the intersection

IBN(AUC)|=[(BNA)U(BNCQ)|
=|BNA|+|BNC|-|(BNA)N(BNC)|
=|BNA|+|BNC|-|BNANC|

=20+8-2=26
Knowing that
|A| =|300/3]| =100 |ANB| =|300/15] =20
|B| =[300/5] =60 |ANC| =]300/21] =14
|C| =]300/7] =42 |BNC| =|300/35]| =8

|ANBNC| =|300/105] =2
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Application of PIE: #Surjections
(Section 8.6)

* The principle of inclusion-exclusion can be used to
count the number of onto (surjective) functions

* Theorem: Let A, B be non-empty sets of cardinality
m,n with m=n. Then there are

n™ _ (7;) ('71 . 1)7.71/ 4 (g) ('71 . 2).,-71, et (_1)71—1 (n i 1) 1m

e >, 1 —1)"(")(n — i)™ onto functions f : A — B.

See textbook, Section 8.6 page 561

CSCE 235 Combinatorics 16



Surjections: Example

* How many ways of giving out 6 pieces of candy to 3 children if
each child must receive at least one piece?

* This problem can be modeled as follows:

Let A be the set of candies, |A|=6

Let B be the set of children, |B|=3
The problem becomes “find the number of surjective mappings from
A to B” (because each child must receive at least one candy)

* Thus the number of ways is thus (m=6, n=3)

CSCE 235

A0 3N G N N R
37 = : (3-=1)" 4 N (3 =2} = 5340
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Outline

* Pigeonhole principle
— Generalized, probabilistic forms
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Pigeonhole Principle (1)

* If there are more pigeons than there are roots
(pigeonholes), for at least one pigeonhole, more
than one pigeon must be in it

* Theorem: If k+1 or more objects are placed in k
boxes, then there is at least one box containing two
or more objects

* This principal is a fundamental tool of elementary
discrete mathematics.

e |tis also known as the Dirichlet Drawer Principle or
Dirichlet Box Pinciple
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Pigeonhole Principle (2)

e |tis seemingly simple but very powerful

* The difficulty comes in where and how to apply it

 Some simple applications in Computer Science

— Calculating the probability of hash functions having a
collision

— Proving that there can be no lossless compression
algorithm compressing all files to within a certain ration

* Lemma: For two finite sets A,B there exists a
bijection f:A—B if and only if |[A|=]|B]|
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Generalized Pigeonhole Principle (1)

* Theorem: If N objects are placed into k boxes then
there is at least one box containing at least

i

 Example: In any group of 367 or more people, at

least two of them must have been born on the same
date.
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Generalized Pigeonhole Principle (2)

e A probabilistic generalization states that
— if n objects are randomly put into m boxes
— with uniform probability

— (i.e., each object is place in a giveit box with probability 1/

m)

— then at least one boxwill hold more than one object with

probability

m!

1 —

(m — n)hm"
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Generalized Pigeonhole Principle: Example

* Among 10 people, what is the probabili at

two or more will have the same birthday?
— Here n=10 and m=365 (ignoringteap years)

— Thus, the probability th
birthday is

wo will have the same

365!
= . ~ (0.1169
(365 — 10)!36510

less than 12% probability
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Pigeonhole Principle: Example A (1)

Show that
— inaroom of n people with certain acquaintances,
— some pair must have the same number of acquaintances

* Note that this is equivalent to showing that any symmetric, irreflexive
relation on n elements must have two elements with the same number of
relations

* Proof: by contradiction using the pigeonhole principle

* Assume, to the contrary, that every person has a different number of
acquaintances: 0, 1, 2, ...,, n-1

* Note: no one can have n acquaintances because the relation is irreflexive).

* There are n possibilities, we have n people, we are not done ®
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Pigeonhole Principle: Example A (2)

* |n particular
— Some person knows 0 people

— While another knows n-1 people, meaning knows the person who knows
0 people

* This situation is impossible. Contradiction! ©

 So we do not have n (10) possibilities, but less

* Thus by the pigeonhole principle (10 people and 9 possibilities)
at least two people have to the same number of acquaintances
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Pigeonhole Principle: Example B

Example: Say, 30 buses are to transport 2000 Cornhusker fans to
Colorado. Each bus has 80 seats.

Show that

— One of the buses will have 14 empty seats

— One of the buses will carry at least 67 passengers

One of the buses will have 14 empty seats

— Total number of seats is 80.30=2400

— Total number of empty seats is 2400-2000=400

— By the pigeonhole principle: 400 empty seats in 30 buses, one must have
[400/30 | = 14 empty seats

One of the buses will carry at least 67 passengers

— By the pigeonhole principle: 2000 passengers in 30 buses, one must have
[2000/30 | = 67 passengers
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Outline

*  Permutations
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Permutations

A permutation of a set of distinct objects is an ordered arrangement of
these objects.

An ordered arrangement of r elements of a set of n elements is called an
r-permutation

Theorem: The number of r permutations of a set of n distinct elements is

Pn.r)=T'_}(n—i)=nn—-1)(n—-2)-(n—r+1)

n!
(n—1r)!

In particular P(n,n) = n!

It follows that P(n,r) =

Note here that the order is important. It is necessary to distinguish when
the order matters and it does not
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Application of PIE and Permutations: Derangements ()

(Section 8.6)

* Consider the hat-check problem

— Given

 When customers cheek out their hats, they are given

one at random

— Question

t is the probability that no one will get their hat
back?
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Application of PIE and Permutations:
Derangements (lIl)

* The hat-check problem can be modeled using derangements:
permutations of objects such that no element is in its original

is'not

Thus, the prebability of the hatcheck problem converges

. D 1 _
lim — = ¢ " 2 (.368
n—oc 71l

See textbook, Section 8.6 page 562
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Permutations: Example A

* How many pairs of dance partners can be
selected from a group of 12 women and 20

men?
— The first woman can partner with any of the 20 men, the
second with any of the remaining 19, etc.

— To partner all 12 women, we have
P(20,12) =20!/8! =9.10.11...20
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Permutations: Example B

* In how many ways can the English letters be
arranged so that there are exactly 10 letters

between a and z?
— The number of ways is P(24,10)

— Since we can choose either a or z to come first, then there
are 2P(24,10) arrangements of the 12-letter block

— For the remaining 14 letters, there are P(15,15)=15!
possible arrangements

— In all there are 2P(24,10).15! arrangements
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Permutations: Example C (1)

* How many permutations of the letters a, b, ¢, d, e, f, g contain

ne

CSCE 235

ither the pattern bge nor eaf?

The total number of permutations is P(7,7)=7!

If we fix the pattern bge, then we consider it as a single block. Thus,
the number of permutations with this pattern is P(5,5)=5!

Fixing the patter eaf, we have the same number: 5!
Thus, we have (7! — 2.5!). Is this correct?

No! we have subtracted too many permutations: ones containing both
eaf and bfe.
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Permutations: Example C (2)

— There are two cases: (1) eaf comes first, (2) bge comes first
— Are there any cases where eaf comes before bge?

— No! The letter e cannot be used twice

— If bge comes first, then the pattern must be bgeaf, so we have 3 blocks
or 3! arrangements

— Altogether, we have
7!1—=2.(5!) +3!=4806
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Outline

e Combinations
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Combinations (1)

* Whereas permutations consider order,
combinations are used when order does not
matter

e Definition: A k-combination of elements of a
set is an unordered selection of k elements
from the set.

(A combination is imply a subset of cardinality k)
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Combinations (2)

e Theorem: The number of k-combinations of a
set of cardinality nwithO =k =<nis

N A n!
Cln. k) = (ﬁﬁ) (= k)

is read ‘n choose k’. ${n \choose k}$
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Combinations (3)

e A useful fact about combinations is that they
are symmetric

0-=0") (=0 ()=("s)

* Corollary: Let n, k be nonnegative integers

with k = n, then
(?) - (H_i Lr)
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Combinations: Example A

* In the Powerball lottery, you pick
— Five numbers between 1 and 55 and
— Asingle ‘powerball’ number between 1 and 42
How many possible plays are there?

* Here order does not matter ”,
— The number of ways of choosing 5 numbers is ( L})

i
P’

(g |

— There are 42 possible ways to choose the powerball

=

. _ thed
— The two events are not mutually exclusive: 42( i )
o

1 .
— The odds of Winning are 1 (55) < 0.000000006845
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Combinations: Example B

* |n a sequence of 10 coin tosses, how many
ways can 3 heads and 7 tails come up?

— The number of ways of choosing 3 heads out of

10 coin tosses is (m)
3

— It is the same as choosing 7 tails out of 10 coin

10 10
tosses (,_) _ (;) — 120
{ .

— ... which illustrates the corollary (;J) = (,”_ ) A_,)
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Combinations: Example C

« How many committees of 5 people can be chosen from 20 men and 12
women

— If exactly 3 men must be on each committee?
— |If at least 4 women must be on each committee?

If exactly three men must be on each committee?
— We must choose 3 men and 2 women. The choices are not mutually exclusive,

we use the product rule
20) 12
3] |2

If at least 4 women must be on each committee?

— We consider 2 cases: 4 women are chosen and 5 women are chosen. Theses
choices are mutually exclusive, we use the addition rule:

20 12 20 12
: : — 10. 692
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Outline

* Binomial Coefficients
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Binomial Coefficients (1)

e The number of r-combinations ('”

) is also called the
binomial coefficient

..rl'

* The binomial coefficients are the coefficients in the
expansion of the expression, (multivariate
polynomial),

(x+y)"
e A binomial is a sum of two terms
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Binomial Coefficients (2)

CSCE 235

Theorem: Binomial Theorem

Let X, y, be variables and let n be a nonnegative integer. Then

n 1 i p— ;
r+y) =Yl . " Y
J ;

Expanding the summation we have

1 g i !
I{.t'-|— H:Ii'i' — (Iu)'!'” + (f;).t'”_ly-l— (;)IE,H—EHE 4.+ ( l)**'-‘f”_l + (F ),i!_.f”
L —

!

Example (z +y)? =23 + 322y + 3zy? + o>

Combinatorics 44



Binomial Coefficients: Example

* What is the coefficient of the term x3y!? in the
expansion of (3x+4y)?20?
— By the binomial theorem, we have
(3z +4y)™" = =71, (2;]) (32)" 7 (4y)’

— When j=12, we have

20) o
(1 E) (3.;'}3{4,@ b=

20 02 200 g 4o o -
('IE) 347 = T’S’j 477 = 1380661873206750720

— The coefficient is
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Binomial Coefficients (3)

 Many useful identities and facts come from the
Binomial Theorem

° . T .
Corollary: s (k) _ on

Sho2" (E) = 3

Equalities are based on (1+1)"=2", ((-1)+1)"=0", (1+2)"=3"

CSCE 235 Combinatorics
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Binomial Coefficients (4)

e Theorem: Vandermonde’ s Identity
Let m,n,r be nonnegative integers with r not exceeding either

m or n. Then
LTl ¥ _ Ei,_ i T
r k=0 r—k L

| o 2n . )
* Corollary: If n is a nonnegative integer then ( " ) - ij"=“(£;)

* Corollary: Let n,r be nonnegative integers, r=n, then

n+ 1 _ Jj
r+1 J=TNp
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Binomial Coefficients: Pascal’s Identity & Triangle

* The following is known as Pascal’s identity which gives a
useful identity for efficiently computing binomial coefficients

* Theorem: Pascal’s ldentity
Let n,k EZ* with n=k, then

(4 =65)+ ()

Pascal’s Identity forms the basis of a geometric object known
as Pascal’ s Triangle
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Pascal’s Triangle

CCCCCCC

Combinatorics



Outline

* Generalizations
— Combinations with repetitions, permutations with indistinguishable objects
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Generalized Combinations & Permutations (1)

 Sometimes, we are interested in permutations and
combinations in which repetitions are allowed

* Theorem: The number of r-permutations of a set of
n objects with repetition allowed is n'

...which is easily obtained by the product rule

e Theorem: There are

(??. +r— 1)
.

r-combinations from a set with n elements when
repetition of elements is allowed
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Generalized Combinations & Permutations:
Example

* There are 30 varieties of donuts from which we wish
to buy a dozen. How many possible ways to place
your order are there?

* Here, n=30 and we wish to choose r=12.

* Order does not matter and repetitions are possible
* We apply the previous theorem

* The number of possible orders is

n+r—1\ (30+12-1Y (17
r B 12 - \12
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Generalized Combinations & Permutations (2)

* Theorem: The number of different permutations of n objects
where there are n, indistinguishable objects of type 1, n, of
type 2, and n, of type k is

n!

nylne! -+ - ny!

An equivalent ways of interpreting this theorem is the
number of ways to

— distribute n distinguishable objects
— into k distinguishable boxes

— so that n, objects are place into box i for i=1,2,3,...,k
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Example

* How many permutations of the word Mississipi are
there?

* ‘Mississipi’ has
— 4 distinct letters: m,i,s,p

’

— with 1,4,4,2 occurrences respectively
— Therefore, the number of permutations is

11!
1141412

CSCE 235 Combinatorics
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Outline

e Algorithms
— Generating combinations (1), permutations (2)
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Algorithms

* In general, it is inefficient to solve a problem by
considering all permutation or combinations since
there are exponential (worst, factorial!) numbers of
such arrangements

* Nevertheless, for many problems, no better
approach is known.

 When exact solutions are needed, backtracking
algorithms are used to exhaustively enumerate all
arrangements

CSCE 235 Combinatorics
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Algorithms: Example

* Traveling Salesperson Problem (TSP)

Consider a salesman that must visit n different cities. He
wishes to visit them in an order such that his overall distance
travelled is minimized

* This problem is one of hundred of NP-complete problems for which no
known efficient algorithms exist. Indeed, it is believed that no efficient
algorithms exist. (Actually, Euclidean TSP is not even known to be in NP.)

* The only way of solving this problem exactly is to try all possible n! routes
 We give several algorithms for generating these combinatorial objects
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Generating Combinations (1)

* Recall that combinations are simply all possible subsets of size
r. For our purposes, we will consider generating subsets of

{1,2,3,...,n}
* The algorithm works as follows
— Start with {1,...,r}
— Assume that we have aja,...a,, we want the next combination
— Locate the last element ai such that a, = n-r-|
— Replace a; with a+1
— Replace a; with a;+j-I for j=i+1, i+2,...,r

CSCE 235 Combinatorics >8



Generating Combinations (2)

NEXT R-COMBINATIONS
Input: A set of n elements and an r-combination a,,a,,...,a,
Output: The next r-combination
1. i<

2. While a;=n-r+i Do

3. i<—i-1

4. End

5.0,<—q;+1

6. Forj<(i+1)torDo

7. a,<—a;+j-i

8. End

CSCE 235 Combinatorics
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Generating Combinations: Example

* Find the next 3-combination of the set {1,2,3,4,5} after {1,4,5}
* Herea;=1, a,=4, a;=5, n=5, r=3
* Thelastisuch that a, #5-3+iis 1
 Thus, we set
a;=a,;+1=2
a,=a;+2-1=3
a;=a;+3-1=4
Thus, the next r-combinations is {2,3,4}
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Generating Permutations

* The textbook gives an algorithm to generate
permutations in lexicographic order. Essentially, the
algorithm works as follows. Given a permutation
— Choose the left-most pair a,,a;,; where a<a,,

— Choose the least items to the right of a, greater than a
— Swap this item and g,
— Arrange the remaining (to the right) items in order
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NEXT PERMUTATION (lexicographic order)

INPUT - A set of n elements and an r-permutation, ay - - - a,.
OurpuT : The next r-permutation.
1 j=n-1
2 WHILE a; > aj4+1 DO
3 j=7—1
4 END
//j is the largest subscript with a; < aj41
5 k=n
6 WHILE a; > aj DO
7 k=k—1
8 END

//aj is the smallest integer greater than a; to the right of a;
9 swap(a;,ay)

10 »r=n

11 s=j5+1

12 WHILE r > s DO
13 swap(ar,as)
14 r=r—1
15 s=s-L1

16 END
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Generating Permutations (2)

* Often there is no reason to generate permutations in
lexicographic order. Moreover even though generating
permutations is inefficient in itself, lexicographic order
induces even more work

* An alternate method is to fix an element, then recursively
permute the n-1 remaining elements

 The Johnson-Trotter algorithm has the following attractive
properties. Not in your textbook, not on the exam, just for
your reference/culture
— It is bottom up (non-recursive)
— It induces a minimal-change between each permutation
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Johnson-Trotter Algorithm

 We associate a direction to each element, for
example

WA
A component is mobile if its direction points

to an adjacent component that is smaller than
itself.

e Here 3 and 4 are mobile, 1 and 2 are not
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Algorithm: Johnson Trotter

INPUT : An integer n.
OuTpuT : All possible permutations of (1,2,..
=12 ... n

WHILE There exists a mobile integer k € © DO
k = largest mobile integer

swap k and the adjacent integer k points to
reverse direction of all integers > k

Output

- O O £ WN =

END

CSCE 235 Combinatorics
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Outline

* More Examples
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Example A

* How many bit strings of length 4 are there such that
11 never appear as a substring

 We can represent the set of strings graphically using
a diagram tree (see textbook pages 395)

1010

1001

0010

0101

0100

1000

0001

0000
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Example: Counting Functions (1)

e LetS,T be sets such that |S|=n, |T|=m.
— How many function are there mapping f:S—T?
— How many of these functions are one-to-one (injective)?

* A function simply maps each s; to one t, thus for each n we
can choose to send it to any of the elements in T

 Each of these is an independent event, so we apply the
multiplication rule:

* If we wish f to be injective, we must have n=m, otherwise the
answer is obviously O
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Example: Counting Functions (2)

* Now each s, must be mapped to a unique elementin T.

— Fors,;, we have m choices

— However, once we have made a mapping, say s;, we cannot map subsequent
elements to t; again

— In particular, for the second element, s,, we now have m-1 choices, for s;, m-2
choices, etc.
m-(m—1)-(m—=2)-...(m—-(n—-2))-(m—(n—1))

* An alternative way of thinking is using the choose operator: we need to
choose n element from a set of size m for our mapping

m m!
1 (rm — n)in!

* Once we have chosen this set, we now consider all permutations of the
mapping, that is n! different mappings for this set. Thus, the number of

. . 1 I
such mapping is m. L

(m —n)in! (m —n)!
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Another Example: Counting Functions

 LetS={1,2,3}, T={a,b}.
— How many onto (surjective) mappings are there from S—T?
— How many onto-to-one injective functionsare there from T—S?

 See Theorem 1, page 561
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Example: Sets

e How many k integers 1<k<100 are divisible by 2 or 37

* Let
— A={nEZ| (1=n=<100)A (2|n)}
— B={nEZ | (1=n=100)x (3|n)}
« Clearly, |A| =|100/2] =50, |B| =|100/3] =33
e Do we have |AUB| =83? No!
* We have over counted the integers divisible by 6
— LetC={nEZ | (1 =n=100)a (6|n)}, |C| =]|100/6] =16
 So |AUB| =(50+33) —16 =67
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Summary

Introduction
Counting:

— Product rule, sum rule, Principal of Inclusion Exclusion (PIE)
— Application of PIE: Number of onto functions

Pigeonhole principle

— Generalized, probabilistic forms
Permutations, Derangements
Combinations
Binomial Coefficients

Generalizations
— Combinations with repetitions, permutations with indistinguishable objects

Algorithms

— Generating combinations (1), permutations (2)

More Examples
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