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Mo7va7on	
•  Combinatorics	is	the	study	of	collec7ons	of	objects.		

Specifically,	coun7ng	objects,	arrangement,	derangement,	
etc.	along	with	their	mathema7cal	proper7es	

•  Coun7ng	objects	is	important	in	order	to	analyze	algorithms	
and	compute	discrete	probabili7es	

•  Originally,	combinatorics	was	mo7vated	by	gambling:	
coun7ng	configura7ons	is	essen7al	to	elementary	probability	
–  A	simple	example:	How	many	arrangements	are	there	of	a	deck	of	52	

cards?	

•  In	addi7on,	combinatorics	can	be	used	as	a	proof	technique	
–  A	combinatorial	proof	is	a	proof	method	that	uses	coun7ng	arguments	

to	prove	a	statement	
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Outline	
•  Introduc/on		
•  Coun/ng:		

–  Product	rule,	sum	rule,	Principal	of	Inclusion	Exclusion	(PIE)	
–  Applica/on	of	PIE:	Number	of	onto	func/ons	

•  Pigeonhole	principle	
–  Generalized,	probabilis7c	forms	

•  Permuta7ons	
•  Combina7ons	
•  Binomial	Coefficients	
•  Generaliza7ons	

–  Combina7ons	with	repe77ons,	permuta7ons	with	indis7nguishable	objects	

•  Algorithms	
–  Genera7ng	combina7ons	(1),	permuta7ons	(2)	

•  More	Examples	
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Product	Rule	

•  If	two	events	are	not	mutually	exclusive	(that	is	we	
do	them	separately),	then	we	apply	the	product	rule	

•  Theorem:	Product	Rule	
	Suppose	a	procedure	can	be	accomplished	with	two	disjoint	
subtasks.		If	there	are	
–  n1	ways	of	doing	the	first	task	and		
–  n2	ways	of	doing	the	second	task,		
then	there	are	n1.n2	ways	of	doing	the	overall	procedure	
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Sum	Rule	(1)	

•  If	two	events	are	mutually	exclusive,	that	is,	they	
cannot	be	done	at	the	same	7me,	then	we	must	
apply	the	sum	rule	

•  Theorem:	Sum	Rule.	If		
–  an	event	e1	can	be	done	in	n1	ways,		
–  an	event	e2	can	be	done	in	n2	ways,	and	
–  e1	and	e2	are	mutually	exclusive	
then	the	number	of	ways	of	both	events	occurring	is	n1+	n2	
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Sum	Rule	(2)	

•  There	is	a	natural	generaliza7on	to	any	sequence	of	
m	tasks;	namely	the	number	of	ways	m	mutually	
exclusive	events	can	occur	

n1	+	n2	+	…	+	nm-1	+	nm	
•  We	can	give	another	formula7on	in	terms	of	sets.		
Let	A1,	A2,	…,	Am	be	pairwise	disjoint	sets.	Then	
|A1	∪	A2	∪	…	∪	Am	|	=	|A1|	∪	|A2|	∪	…	∪	|Am|	
	
(In	fact,	this	is	a	special	case	of	the	general	Principal	of	
Inclusion-Exclusion	(PIE))	
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Principle	of	Inclusion-Exclusion	(PIE)	

•  Say	there	are	two	events,	e1	and	e2,		
–  For	which	there	are	n1	and	n2	possible	outcomes	respec7vely.		
–  But,	some	outcome	ni	could	result	from	e1	and	also	from	e2		

•  Now,	say	that	only	one	event	can	occur,	not	both	
•  In	this	situa7on,	we	cannot	apply	the	sum	rule.	Why?	

	…	because	we	would	be	over	coun7ng	the	number	of	possible	outcomes.	
•  Instead	we	have	to	count	the	number	of	possible	outcomes	of	e1	and	e2	

minus	the	number	of	possible	outcomes	in	common	to	both;	i.e.,	the	
number	of	ways	to	do	both	tasks	

•  If	again	we	think	of	them	as	sets,	we	have	
|A1 ∪ A2| =|A1|	+	|A2| - |A1∩ A2|	
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PIE	(2)	

•  More	generally,	we	have	the	following	
•  Lemma:	Let	A,	B,	be	subsets	of	a	finite	set	U.		Then	

1.  |A∪B|	=	|A|	+	|B|	-	|A∩B|	
2.  |A	∩	B|	≤	min	{|A|,	|B|}	
3.  |A\B|	=	|A|	-	|A∩B|	≥	|A|-|B|	
4.  |A|	=	|U|	-	|A|	
5.  |A⊕B|	=	|A∪B|-|A∩B|	

	=	|A|+|B|-2|A∩B|=	|A\B|+	|B\A|		
6.  |A	×	B|	=	|A|×|B|	
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PIE:	Theorem	

•  Theorem:		Let	A1,A2,	…,An	be	finite	sets,	then	
	|A1∪	A2	∪...∪An|=	Σi|Ai|	

																																							-	Σi<j|Ai	∩	Aj|	
																																							+	Σi<j<k|Ai	∩	Aj	∩	Ak|	
																																							-	…	
																																							+(-1)n+1	|A1∩A2∩...∩An|	

Each	summa7on	is	over		
•  all	i,		
•  pairs	i,j	with	i<j,		
•  triples	with	i<j<k,	etc.	
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PIE	Theorem:	Example	1	

•  To	illustrate,	when	n=3,	we	have	
|A1∪	A2	∪A3|=	|A1|+	|A2|	+|A3|	
																													-	(|A1∩A2|+|A1∩A3|+|A2∩A3|)	
																													+|A1	∩	A2	∩	A3|	
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PIE	Theorem:	Example	2	

•  To	illustrate,	when	n=4,	we	have	
|A1∪A2∪A3∪A4|=	|A1|+|A2|+|A3|+|A4|	
																																-	(|A1∩A2|+|A1∩A3|+|A1∩A4|	
																																				+|A2∩A3|+|A2∩A4|+|A3∩A4|)	
																																+	(|A1∩A2∩A3|+|A1∩A2∩A4|	
																																				+|A1∩A3∩A4|+|A2∩A3∩A4|)	
																																-	|A1	∩A2	∩A3	∩A4|	
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Applica7on	of	PIE:	Example	A	(1)	
•  How	many	integers	between	1	and	300	(inclusive)	are	

–  Divisible	by	at	least	one	of	3,5,7?		
–  Divisible	by	3	and	by	5	but	not	by	7?	
–  Divisible	by	5	but	by	neither	3	or	7?	

•  Let	
						A	=	{n∈Z	|	(1	≤	n	≤	300)∧	(3|n)}	
						B	=	{n∈Z	|	(1	≤	n	≤	300)∧	(5|n)}	
						C	=	{n∈Z	|	(1	≤	n	≤	300)∧	(7|n)}	

•  How	big	are	these	sets?		We	use	the	floor	func7on	
						|A|	=	⎣300/3⎦		=	100	
						|B|	=	⎣300/5⎦		=	60	
						|C|	=	⎣300/7⎦		=	42	
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Applica7on	of	PIE:	Example	A	(2)	
•  How	many	integers	between	1	and	300	(inclusive)	are	divisible	by	at	least	

one	of	3,5,7?			
	Answer:	|A∪B	∪C|		

•  By	the	principle	of	inclusion-exclusion	
|A∪B	∪C|=	|A|+|B|+|C|-[|A∩B|+|A∩C|+|B∩C|]+|A∩B∩C|	

•  How	big	are	these	sets?		We	use	the	floor	func7on	
						|A|	=	⎣300/3⎦		=	100											|A∩B|	=	⎣300/15⎦		=	20		

	 						|B|	=	⎣300/5⎦		=	60														|A∩C|	=	⎣300/21⎦		=	100	
						|C|	=	⎣300/7⎦		=	42														|B∩C|	=	⎣300/35⎦		=	8	

																																																											|A∩B∩C|	=	⎣300/105⎦		=	2	
•  Therefore:	

|A∪B	∪C|	=	100	+	60	+	42	-	(20+14+8)	+	2	=	162	
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Applica7on	of	PIE:	Example	A	(3)	
•  How	many	integers	between	1	and	300	(inclusive)	are	divisible	by	3	and	by	

5	but	not	by	7?	
	Answer:	|(A	∩	B)\C|		

•  By	the	defini7on	of	set-minus	
|(A	∩	B)\C|	=	|A	∩	B|	-	|A	∩	B	∩	C|	=	20	–	2	=	18	

•  Knowing	that	
						|A|	=	⎣300/3⎦		=	100											|A∩B|	=	⎣300/15⎦		=	20		

	 						|B|	=	⎣300/5⎦		=	60														|A∩C|	=	⎣300/21⎦		=	100	
						|C|	=	⎣300/7⎦		=	42														|B∩C|	=	⎣300/35⎦		=	8	

																																																													|A∩B∩C|	=	⎣300/105⎦		=	2	
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Applica7on	of	PIE:	Example	A	(4)	
•  How	many	integers	between	1	and	300	(inclusive)	are	divisible	by	5	but	by	

neither	3	or	7?	
	Answer:	|B\(A	∪C)|	=	|B|	-	|B	∩	(A	∪C)|		

•  Distribu7ng	B	over	the	intersec7on	
	|B	∩	(A	∪	C)|	=	|(B	∩	A)	∪	(B	∩	C)|	

																																=	|B	∩	A|	+	|B	∩	C|	-	|	(B	∩	A)	∩	(B	∩	C)	|	
																																=	|B	∩	A|	+	|B	∩	C|	-	|	B	∩	A	∩	C	|	
																																=	20	+	8	–	2	=	26	

•  Knowing	that	
						|A|	=	⎣300/3⎦		=	100											|A∩B|	=	⎣300/15⎦		=	20		

	 						|B|	=	⎣300/5⎦		=	60														|A∩C|	=	⎣300/21⎦		=	14	
						|C|	=	⎣300/7⎦		=	42														|B∩C|	=	⎣300/35⎦		=	8	

																																																													|A∩B∩C|	=	⎣300/105⎦		=	2	
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Applica7on	of	PIE:	#Surjec7ons	
(Sec7on	8.6)	

•  The	principle	of	inclusion-exclusion	can	be	used	to	
count	the	number	of	onto	(surjec7ve)	func7ons	

•  Theorem:		Let	A,	B	be	non-empty	sets	of	cardinality	
m,n	with	m≥n.	Then	there	are	

																																																																																																															${n	\choose	i}$	
See	textbook,	Sec+on	8.6	page	561	
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#Surjec7ons:	Example	
•  How	many	ways	of	giving	out	6	pieces	of	candy	to	3	children	if	

each	child	must	receive	at	least	one	piece?	
•  This	problem	can	be	modeled	as	follows:	

–  Let	A	be	the	set	of	candies,	|A|=6	
–  Let	B	be	the	set	of	children,	|B|=3	
–  The	problem	becomes	“find	the	number	of	surjec7ve	mappings	from	

A	to	B”	(because	each	child	must	receive	at	least	one	candy)	

•  Thus	the	number	of	ways	is	thus	(m=6,	n=3)	
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Outline	
•  Introduc7on		
•  Coun7ng:		

–  Product	rule,	sum	rule,	Principal	of	Inclusion	Exclusion	(PIE)	
–  Applica7on	of	PIE:	Number	of	onto	func7ons	

•  Pigeonhole	principle	
–  Generalized,	probabilis/c	forms	

•  Permuta7ons	
•  Combina7ons	
•  Binomial	Coefficients	
•  Generaliza7ons	

–  Combina7ons	with	repe77ons,	permuta7ons	with	indis7nguishable	objects	

•  Algorithms	
–  Genera7ng	combina7ons	(1),	permuta7ons	(2)	

•  More	Examples	
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Pigeonhole	Principle	(1)	

•  If	there	are	more	pigeons	than	there	are	roots	
(pigeonholes),	for	at	least	one	pigeonhole,	more	
than	one	pigeon	must	be	in	it	

•  Theorem:	If	k+1	or	more	objects	are	placed	in	k	
boxes,	then	there	is	at	least	one	box	containing	two	
or	more	objects	

•  This	principal	is	a	fundamental	tool	of	elementary	
discrete	mathema7cs.			

•  It	is	also	known	as	the	Dirichlet	Drawer	Principle	or	
Dirichlet	Box	Pinciple	
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Pigeonhole	Principle	(2)	

•  It	is	seemingly	simple	but	very	powerful	
•  The	difficulty	comes	in	where	and	how	to	apply	it	
•  Some	simple	applica7ons	in	Computer	Science	

–  Calcula7ng	the	probability	of	hash	func7ons	having	a	
collision	

–  Proving	that	there	can	be	no	lossless	compression	
algorithm	compressing	all	files	to	within	a	certain	ra7on	

•  Lemma:	For	two	finite	sets	A,B	there	exists	a	
bijec7on	f:A→B	if	and	only	if	|A|=|B|	
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Generalized	Pigeonhole	Principle	(1)	

•  Theorem:	If	N	objects	are	placed	into	k	boxes	then	
there	is	at	least	one	box	containing	at	least	

•  Example:		In	any	group	of	367	or	more	people,	at	
least	two	of	them	must	have	been	born	on	the	same	
date.	
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Generalized	Pigeonhole	Principle	(2)	

•  A	probabilis7c	generaliza7on	states	that		
–  if	n	objects	are	randomly	put	into	m	boxes		
–  with	uniform	probability	
–  (i.e.,	each	object	is	place	in	a	given	box	with	probability	1/
m)	

–  then	at	least	one	box	will	hold	more	than	one	object	with	
probability	
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Generalized	Pigeonhole	Principle:	Example	

•  Among	10	people,	what	is	the	probability	that	
two	or	more	will	have	the	same	birthday?	
– Here	n=10	and	m=365	(ignoring	leap	years)	
– Thus,	the	probability	that	two	will	have	the	same	
birthday	is		

	So,	less	than	12%	probability	
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Pigeonhole	Principle:	Example	A	(1)	
•  Show	that		

–  in	a	room	of	n	people	with	certain	acquaintances,		
–  some	pair	must	have	the	same	number	of	acquaintances	

•  Note	that	this	is	equivalent	to	showing	that	any	symmetric,	irreflexive	
rela7on	on	n	elements	must	have	two	elements	with	the	same	number	of	
rela7ons	

•  Proof:	by	contradic7on	using	the	pigeonhole	principle	
•  Assume,	to	the	contrary,	that	every	person	has	a	different	number	of	

acquaintances:	0,	1,	2,	…,	n-1		
•  Note:	no	one	can	have	n	acquaintances	because	the	rela7on	is	irreflexive).			
•  There	are	n	possibili7es,	we	have	n	people,	we	are	not	done		L	
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Pigeonhole	Principle:	Example	A	(2)	
•  There	are	n	possibili7es,	we	have	n	people,	we	are	not	done		L	
•  Remember:	acquaintanceship	is	a	symmetric,	irreflexive	rela7on	
•  In	par7cular	

–  Some	person	knows	0	people		
–  While	another	knows	n-1	people,	meaning	knows	the	person	who	knows	

0	people	

•  This	situa7on	is	impossible.		Contradic7on!	J		
•  So	we	do	not	have	n	(10)	possibili7es,	but	less	
•  Thus	by	the	pigeonhole	principle	(10	people	and	9	possibili7es)	

at	least	two	people	have	to	the	same	number	of	acquaintances	
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Pigeonhole	Principle:	Example	B	
•  Example:	Say,	30	buses	are	to	transport	2000	Cornhusker	fans	to	

Colorado.		Each	bus	has	80	seats.			
•  Show	that	

–  One	of	the	buses	will	have	14	empty	seats	
–  One	of	the	buses	will	carry	at	least	67	passengers	

•  One	of	the	buses	will	have	14	empty	seats	
–  Total	number	of	seats	is	80.30=2400	
–  Total	number	of	empty	seats	is	2400-2000=400	
–  By	the	pigeonhole	principle:	400	empty	seats	in	30	buses,	one	must	have	

⎡400/30	⎤	=	14	empty	seats	
•  One	of	the	buses	will	carry	at	least	67	passengers	

–  By	the	pigeonhole	principle:	2000	passengers	in	30	buses,	one	must	have	
⎡2000/30	⎤	=	67	passengers	
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Outline	
•  Introduc7on		
•  Coun7ng:		

–  Product	rule,	sum	rule,	Principal	of	Inclusion	Exclusion	(PIE)	
–  Applica7on	of	PIE:	Number	of	onto	func7ons	

•  Pigeonhole	principle	
–  Generalized,	probabilis7c	forms	

•  Permuta/ons	
•  Combina7ons	
•  Binomial	Coefficients	
•  Generaliza7ons	

–  Combina7ons	with	repe77ons,	permuta7ons	with	indis7nguishable	objects	

•  Algorithms	
–  Genera7ng	combina7ons	(1),	permuta7ons	(2)	

•  More	Examples	



Combinatorics	CSCE	235	 28	

Permuta7ons	
•  A	permuta7on	of	a	set	of	dis7nct	objects	is	an	ordered	arrangement	of	

these	objects.			
•  An	ordered	arrangement	of	r	elements	of	a	set	of	n	elements	is	called	an	

r-permuta7on	
•  Theorem:	The	number	of	r	permuta7ons	of	a	set	of	n	dis7nct	elements	is	

•  It	follows	that		

•  In	par7cular		

•  Note	here	that	the	order	is	important.		It	is	necessary	to	dis7nguish	when	
the	order	maxers	and	it	does	not	
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Applica7on	of	PIE	and	Permuta7ons:	Derangements	(I)	
(Sec7on	8.6)	

•  Consider	the	hat-check	problem	
– Given	

•  An	employee	checks	hats	from	n	customers	
•  However,	s/he	forgets	to	tag	them	
• When	customers	check	out	their	hats,	they	are	given	
one	at	random	

– Ques7on	
• What	is	the	probability	that	no	one	will	get	their	hat	
back?	
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Applica7on	of	PIE	and	Permuta7ons:	
Derangements	(II)	

•  The	hat-check	problem	can	be	modeled	using	derangements:	
permuta7ons	of	objects	such	that	no	element	is	in	its	original	posi7on	
	-	Example:	21453	is	a	derangement	of	12345	but	21543	is	not	

•  The	number	of	derangements	of	a	set	with	n	elements	is		

•  Thus,	the	answer	to	the	hatcheck	problem	is	
•  Note	that		

•  Thus,	the	probability	of	the	hatcheck	problem	converges	

	
	
See	textbook,	Sec+on	8.6		page	562	
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Permuta7ons:	Example	A	

–  The	first	woman	can	partner	with	any	of	the	20	men,	the	
second	with	any	of	the	remaining	19,	etc.	

•  How	many	pairs	of	dance	partners	can	be	
selected	from	a	group	of	12	women	and	20	
men?	

–  To	partner	all	12	women,	we	have	
P(20,12)	=	20!/8!	=	9.10.11…20	
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•  In	how	many	ways	can	the	English	lexers	be	
arranged	so	that	there	are	exactly	10	lexers	
between	a	and	z?	

Permuta7ons:	Example	B	

–  The	number	of	ways	is	P(24,10)	
–  Since	we	can	choose	either	a	or	z	to	come	first,	then	there	
are	2P(24,10)	arrangements	of	the	12-lexer	block	

–  For	the	remaining	14	lexers,	there	are	P(15,15)=15!	
possible	arrangements	

–  In	all	there	are	2P(24,10).15!	arrangements	
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Permuta7ons:	Example	C	(1)	
•  How	many	permuta7ons	of	the	lexers	a,	b,	c,	d,	e,	f,	g	contain	

neither	the	paxern	bge	nor	eaf?	
–  The	total	number	of	permuta7ons	is	P(7,7)=7!	

–  If	we	fix	the	paxern	bge,	then	we	consider	it	as	a	single	block.		Thus,	
the	number	of	permuta7ons	with	this	paxern	is	P(5,5)=5!	

–  Fixing	the	paxer	eaf,	we	have	the	same	number:	5!	

–  Thus,	we	have	(7!	–	2.5!).			Is	this	correct?	

–  No!	we	have	subtracted	too	many	permuta7ons:	ones	containing	both	
eaf	and	bfe.	
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Permuta7ons:	Example	C	(2)	
–  There	are	two	cases:	(1)	eaf	comes	first,	(2)	bge	comes	first	

–  Are	there	any	cases	where	eaf	comes	before	bge?	

–  No!		The	lexer	e	cannot	be	used	twice	

–  If	bge	comes	first,	then	the	paxern	must	be	bgeaf,	so	we	have	3	blocks	
or	3!	arrangements	

–  Altogether,	we	have	
7!	–	2.(5!)		+	3!	=	4806	
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Outline	
•  Introduc7on		
•  Coun7ng:		

–  Product	rule,	sum	rule,	Principal	of	Inclusion	Exclusion	(PIE)	
–  Applica7on	of	PIE:	Number	of	onto	func7ons	

•  Pigeonhole	principle	
–  Generalized,	probabilis7c	forms	

•  Permuta7ons	
•  Combina/ons	
•  Binomial	Coefficients	
•  Generaliza7ons	

–  Combina7ons	with	repe77ons,	permuta7ons	with	indis7nguishable	objects	

•  Algorithms	
–  Genera7ng	combina7ons	(1),	permuta7ons	(2)	

•  More	Examples	
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Combina7ons	(1)	

•  Whereas	permuta7ons	consider	order,	
combina7ons	are	used	when	order	does	not	
maxer	

•  Defini/on:		A	k-combina7on	of	elements	of	a	
set	is	an	unordered	selec7on	of	k	elements	
from	the	set.			
(A	combina7on	is	imply	a	subset	of	cardinality	k)	
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Combina7ons	(2)	

•  Theorem:	The	number	of	k-combina7ons	of	a	
set	of	cardinality	n	with	0	≤	k	≤	n	is	

	
	
					
												is	read	‘n	choose	k’.																					${n	\choose	k}$	
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Combina7ons	(3)	

•  A	useful	fact	about	combina7ons	is	that	they	
are	symmetric	

•  Corollary:		Let	n,	k	be	nonnega7ve	integers	
with	k	≤	n,	then	
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•  Here	order	does	not	maxer	
–  The	number	of	ways	of	choosing	5	numbers	is		

Combina7ons:	Example	A	

•  In	the	Powerball	loxery,	you	pick		
–  Five	numbers	between	1	and	55	and		
–  A	single	‘powerball’	number	between	1	and	42	
How	many	possible	plays	are	there?	

–  There	are	42	possible	ways	to	choose	the	powerball	
–  The	two	events	are	not	mutually	exclusive:		

–  The	odds	of	winning	are		
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Combina7ons:	Example	B	

•  In	a	sequence	of	10	coin	tosses,	how	many	
ways	can	3	heads	and	7	tails	come	up?	
–  The	number	of	ways	of	choosing	3	heads	out	of	
10	coin	tosses	is			

–  It	is	the	same	as	choosing	7	tails	out	of	10	coin	
tosses	

–  …	which	illustrates	the	corollary	
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Combina7ons:	Example	C	
•  How	many	commixees	of	5	people	can	be	chosen	from	20	men	and	12	

women	
–  If	exactly	3	men	must	be	on	each	commixee?	
–  If	at	least	4	women	must	be	on	each	commixee?	

•  If	exactly	three	men	must	be	on	each	commiEee?	
–  We	must	choose	3	men	and	2	women.		The	choices	are	not	mutually	exclusive,	

we	use	the	product	rule	

•  If	at	least	4	women	must	be	on	each	commiEee?	
–  We	consider	2	cases:	4	women	are	chosen	and	5	women	are	chosen.	Theses	

choices	are	mutually	exclusive,	we	use	the	addi7on	rule:	
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Outline	
•  Introduc7on		
•  Coun7ng:		

–  Product	rule,	sum	rule,	Principal	of	Inclusion	Exclusion	(PIE)	
–  Applica7on	of	PIE:	Number	of	onto	func7ons	

•  Pigeonhole	principle	
–  Generalized,	probabilis7c	forms	

•  Permuta7ons	
•  Combina7ons	
•  Binomial	Coefficients	
•  Generaliza7ons	

–  Combina7ons	with	repe77ons,	permuta7ons	with	indis7nguishable	objects	

•  Algorithms	
–  Genera7ng	combina7ons	(1),	permuta7ons	(2)	

•  More	Examples	
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Binomial	Coefficients		(1)	

•  The	number	of	r-combina7ons											is	also	called	the	
binomial	coefficient	

•  The	binomial	coefficients	are	the	coefficients	in	the	
expansion	of	the	expression,	(mul7variate	
polynomial),	

(x+y)n	

•  A	binomial	is	a	sum	of	two	terms	
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Binomial	Coefficients	(2)	

•  Theorem:	Binomial	Theorem	
	Let	x,	y,	be	variables	and	let	n	be	a	nonnega7ve	integer.		Then	

	
	
	Expanding	the	summa7on	we	have	

	
		
	Example	

	



Combinatorics	CSCE	235	 45	

Binomial	Coefficients:	Example	

•  What	is	the	coefficient	of	the	term	x8y12	in	the	
expansion	of	(3x+4y)20?	
– By	the	binomial	theorem,	we	have	

– When	j=12,	we	have	

– The	coefficient	is		
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Binomial	Coefficients	(3)	

•  Many	useful	iden77es	and	facts	come	from	the	
Binomial	Theorem	

•  Corollary:	
	
	
	
	
	
Equali+es	are	based	on	(1+1)n=2n,	((-1)+1)n=0n,	(1+2)n=3n	
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Binomial	Coefficients	(4)	
•  Theorem:		Vandermonde’s	Iden7ty	
	Let	m,n,r	be	nonnega7ve	integers	with	r	not	exceeding	either	
m	or	n.		Then	

	

•  Corollary:	If	n	is	a	nonnega7ve	integer	then	

	
•  Corollary:	Let	n,r	be	nonnega7ve	integers,	r≤n,	then	
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Binomial	Coefficients:	Pascal’s	Iden7ty	&	Triangle	

•  The	following	is	known	as	Pascal’s	iden7ty	which	gives	a	
useful	iden7ty	for	efficiently	compu7ng	binomial	coefficients	

•  Theorem:	Pascal’s	Iden7ty	
	Let	n,k	∈Z+	with	n≥k,	then	

	
	
		
	Pascal’s	Iden7ty	forms	the	basis	of	a	geometric	object	known	
as	Pascal’s	Triangle	
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Pascal’s	Triangle	
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Outline	
•  Introduc7on		
•  Coun7ng:		

–  Product	rule,	sum	rule,	Principal	of	Inclusion	Exclusion	(PIE)	
–  Applica7on	of	PIE:	Number	of	onto	func7ons		

•  Pigeonhole	principle	
–  Generalized,	probabilis7c	forms	

•  Permuta7ons	
•  Combina7ons	
•  Binomial	Coefficients	
•  Generaliza/ons	

–  Combina/ons	with	repe//ons,	permuta/ons	with	indis/nguishable	objects	

•  Algorithms	
–  Genera7ng	combina7ons	(1),	permuta7ons	(2)	

•  More	Examples	
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Generalized	Combina7ons	&	Permuta7ons	(1)	

•  Some7mes,	we	are	interested	in	permuta7ons	and	
combina7ons	in	which	repe77ons	are	allowed	

•  Theorem:		The	number	of	r-permuta7ons	of	a	set	of	
n	objects	with	repe77on	allowed	is	nr	

…which	is	easily	obtained	by	the	product	rule	

•  Theorem:		There	are		

	r-combina7ons	from	a	set	with	n	elements	when	
repe77on	of	elements	is	allowed	
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Generalized	Combina7ons	&	Permuta7ons:	
Example	

•  There	are	30	varie7es	of	donuts	from	which	we	wish	
to	buy	a	dozen.	How	many	possible	ways	to	place	
your	order	are	there?	

•  Here,	n=30	and	we	wish	to	choose	r=12.	
•  Order	does	not	maxer	and	repe77ons	are	possible	
•  We	apply	the	previous	theorem	
•  The	number	of	possible	orders	is	
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Generalized	Combina7ons	&	Permuta7ons	(2)	

•  Theorem:		The	number	of	different	permuta7ons	of	n	objects	
where	there	are	n1	indis7nguishable	objects	of	type	1,	n2	of	
type	2,	and	nk	of	type	k	is	

	
		

	
		An	equivalent	ways	of	interpre7ng	this	theorem	is	the	
number	of	ways	to		
–  distribute	n	dis7nguishable	objects		
–  into	k	dis7nguishable	boxes		
–  so	that	ni	objects	are	place	into	box	i	for	i=1,2,3,…,k	
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Example	

•  How	many	permuta7ons	of	the	word	Mississipi	are	
there?	

•  ‘Mississipi’		has		
–  4	dis7nct	lexers:	m,i,s,p	
–  with	1,4,4,2	occurrences	respec7vely	
–  Therefore,	the	number	of	permuta7ons	is	
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Outline	
•  Introduc7on		
•  Coun7ng:		

–  Product	rule,	sum	rule,	Principal	of	Inclusion	Exclusion	(PIE)	
–  Applica7on	of	PIE:	Number	of	onto	func7ons	

•  Pigeonhole	principle	
–  Generalized,	probabilis7c	forms	

•  Permuta7ons	
•  Combina7ons	
•  Binomial	Coefficients	
•  Generaliza7ons	

–  Combina7ons	with	repe77ons,	permuta7ons	with	indis7nguishable	objects	

•  Algorithms	
–  Genera/ng	combina/ons	(1),	permuta/ons	(2)	

•  More	Examples	
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Algorithms	

•  In	general,	it	is	inefficient	to	solve	a	problem	by	
considering	all	permuta7on	or	combina7ons	since	
there	are	exponen7al	(worst,	factorial!)	numbers	of	
such	arrangements	

•  Nevertheless,	for	many	problems,	no	bexer	
approach	is	known.	

•  When	exact	solu7ons	are	needed,	backtracking	
algorithms	are	used	to	exhaus7vely	enumerate	all	
arrangements	
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Algorithms:	Example	
•  Traveling	Salesperson	Problem	(TSP)	
	Consider	a	salesman	that	must	visit	n	different	ci7es.		He	
wishes	to	visit	them	in	an	order	such	that	his	overall	distance	
travelled	is	minimized	

•  This	problem	is	one	of	hundred	of	NP-complete	problems	for	which	no	
known	efficient	algorithms	exist.		Indeed,	it	is	believed	that	no	efficient	
algorithms	exist.		(Actually,	Euclidean	TSP	is	not	even	known	to	be	in	NP.)	

•  The	only	way	of	solving	this	problem	exactly	is	to	try	all	possible	n!	routes	
•  We	give	several	algorithms	for	genera7ng	these	combinatorial	objects	
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Genera7ng	Combina7ons	(1)	
•  Recall	that	combina7ons	are	simply	all	possible	subsets	of	size	

r.		For	our	purposes,	we	will	consider	genera7ng	subsets	of		
	{1,2,3,…,n}	

•  The	algorithm	works	as	follows	
–  Start	with	{1,…,r}	
–  Assume	that	we	have	a1a2…ar,	we	want	the	next	combina7on	
–  Locate	the	last	element	ai	such	that	ai	≠	n-r-I	
–  Replace	ai	with	ai+1	
–  Replace	aj	with	ai+j-I	for	j=i+1,	i+2,…,r	
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Genera7ng	Combina7ons	(2)	
Next r-Combinations 

Input:							A	set	of	n	elements	and	an	r-combina7on	a1,a2,…,ar	
Output:				The	next	r-combina7on	
1. 	i	←	r	
2.  	While		ai	=n-r+i	Do		
3. 								i	←	i-1	
4.  	End		
5. ai	←	ai	+1	
6.  	For	j	←	(i+1)	to	r	Do												
7.  								aj	←	ai	+	j	-	i	
8.  	End	
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Genera7ng	Combina7ons:	Example	
•  Find	the	next	3-combina7on	of	the	set	{1,2,3,4,5}	a}er	{1,4,5}	
•  Here	a1=1,	a2=4,	a3=5,	n=5,	r=3	
•  The	last	i	such	that	ai	≠5-3+i	is	1	
•  Thus,	we	set		
	a1	=	a1	+	1	=	2	
	a2	=	a1	+	2	-1	=	3	
	a3	=	a1	+	3	-1	=	4	
	Thus,	the	next	r-combina7ons	is	{2,3,4}	
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Genera7ng	Permuta7ons	

•  The	textbook	gives	an	algorithm	to	generate	
permuta7ons	in	lexicographic	order.		Essen7ally,	the	
algorithm	works	as	follows.		Given	a	permuta7on	
–  Choose	the	le}-most	pair	aj,aj+1	where	aj<aj+1	
–  Choose	the	least	items	to	the	right	of	aj	greater	than	aj	
–  Swap	this	item	and	aj	
–  Arrange	the	remaining	(to	the	right)	items	in	order	
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Next Permutation (lexicographic	order)	
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Genera7ng	Permuta7ons	(2)	
•  O}en	there	is	no	reason	to	generate	permuta7ons	in	

lexicographic	order.		Moreover	even	though	genera7ng	
permuta7ons	is	inefficient	in	itself,	lexicographic	order	
induces	even	more	work	

•  An	alternate	method	is	to	fix	an	element,	then	recursively	
permute	the	n-1	remaining	elements	

•  The	Johnson-Troxer	algorithm	has	the	following	axrac7ve	
proper7es.		Not	in	your	textbook,	not	on	the	exam,	just	for	
your	reference/culture	
–  It	is	boxom	up	(non-recursive)	
–  It	induces	a	minimal-change	between	each	permuta7on	
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Johnson-Troxer	Algorithm	

•  We	associate	a	direc7on	to	each	element,	for	
example	

•  A	component	is	mobile	if	its	direc7on	points	
to	an	adjacent	component	that	is	smaller	than	
itself.	

•  Here	3	and	4	are	mobile,	1	and	2	are	not	
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Algorithm:	Johnson	Troxer	
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Outline	
•  Introduc7on		
•  Coun7ng:		

–  Product	rule,	sum	rule,	Principal	of	Inclusion	Exclusion	(PIE)	
–  Applica7on	of	PIE:	Number	of	onto	func7ons	

•  Pigeonhole	principle	
–  Generalized,	probabilis7c	forms	

•  Permuta7ons	
•  Combina7ons	
•  Binomial	Coefficients	
•  Generaliza7ons	

–  Combina7ons	with	repe77ons,	permuta7ons	with	indis7nguishable	objects	

•  Algorithms	
–  Genera7ng	combina7ons	(1),	permuta7ons	(2)	

•  More	Examples	
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Example	A	

•  How	many	bit	strings	of	length	4	are	there	such	that	
11	never	appear	as	a	substring	

•  We	can	represent	the	set	of	strings	graphically	using	
a	diagram	tree	(see	textbook	pages	395)	

1010	

1001	

0101	

0010	

0001	

1000	

0100	

0000	

1	

1	

1	

1	

1	

1	

1	

0	
0	

0	
0	

0	

0	

0	

0	

0	

0	
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Example:	Coun7ng	Func7ons	(1)	
•  Let	S,T	be	sets	such	that	|S|=n,	|T|=m.			

–  How	many	func7on	are	there	mapping	f:S→T?		
–  How	many	of	these	func7ons	are	one-to-one	(injec7ve)?	

•  A	func7on	simply	maps	each	si	to	one	tj,	thus	for	each	n	we	
can	choose	to	send	it	to	any	of	the	elements	in	T	

•  Each	of	these	is	an	independent	event,	so	we	apply	the	
mul7plica7on	rule:		

•  If	we	wish	f	to	be	injec7ve,	we	must	have	n≤m,	otherwise	the	
answer	is	obviously	0	
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Example:	Coun7ng	Func7ons	(2)	
•  Now	each	si	must	be	mapped	to	a	unique	element	in	T.		

–  For	s1,	we	have	m	choices	
–  However,	once	we	have	made	a	mapping,	say	sj,	we	cannot	map	subsequent	

elements	to	tj	again	
–  In	par7cular,	for	the	second	element,	s2,	we	now	have	m-1	choices,	for	s3,	m-2	

choices,	etc.	

•  An	alterna7ve	way	of	thinking	is	using	the	choose	operator:	we	need	to	
choose	n	element	from	a	set	of	size	m	for	our	mapping	

•  Once	we	have	chosen	this	set,	we	now	consider	all	permuta7ons	of	the	
mapping,	that	is	n!	different	mappings	for	this	set.		Thus,	the	number	of	
such	mapping	is	
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Another	Example:	Coun7ng	Func7ons	

•  Let	S={1,2,3},	T={a,b}.			
–  How	many	onto	(surjec7ve)	mappings	are	there	from	S→T?		
–  How	many	onto-to-one	injec7ve	func7onsare	there	from	T→S?	

•  See	Theorem	1,	page	561	
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Example:	Sets	
•  How	many	k	integers	1≤k≤100	are	divisible	by	2	or	3?	
•  Let		

–  A	=	{n∈Z	|	(1	≤	n	≤	100)∧	(2|n)}	
–  B	=	{n∈Z	|	(1	≤	n	≤	100)∧	(3|n)}	

•  Clearly,	|A|	=	⎣100/2⎦		=	50,	|B|	=	⎣100/3⎦		=	33	
•  Do	we	have	|A∪B|	=	83?		No!	
•  We	have	over	counted	the	integers	divisible	by	6	

–  Let	C	=	{n∈Z	|	(1	≤	n	≤	100)∧	(6|n)},	|C|	=	⎣100/6⎦		=	16	
•  So	|A∪B|	=	(50+33)		–	16	=	67	



Combinatorics	CSCE	235	 72	

Summary	
•  Introduc7on		
•  Coun7ng:		

–  Product	rule,	sum	rule,	Principal	of	Inclusion	Exclusion	(PIE)	
–  Applica7on	of	PIE:	Number	of	onto	func7ons	

•  Pigeonhole	principle	
–  Generalized,	probabilis7c	forms	

•  Permuta7ons,	Derangements	
•  Combina7ons	
•  Binomial	Coefficients	
•  Generaliza7ons	

–  Combina7ons	with	repe77ons,	permuta7ons	with	indis7nguishable	objects	

•  Algorithms	
–  Genera7ng	combina7ons	(1),	permuta7ons	(2)	

•  More	Examples	


