
	
	Algorithms	Analysis	

Sec2on	3.3	of	Rosen	
Spring	2017	

CSCE	235H	Introduc7on	to	Discrete	Structures	(Honors)	
Course	web-page:	cse.unl.edu/~cse235h	

Ques2ons:	Piazza	

Algorithm	Analysis	CSCE	235	 2	

Outline	

•  Introduc7on	
•  Input	Size	
•  Order	of	Growth	
•  Intractability	
•  Worst,	Best,	and	Average	Cases	
•  Mathema7cal	Analysis	of		Algorithms	
– 3	Examples	

•  Summa7on	tools	

Algorithm	Analysis	CSCE	235	 3	

Introduc7on	
•  How	can	we	say	that	one	algorithm	performs	beUer	than	another	one?	
•  Quan7fy	the	resources	needed	to	run	it:	

–  Time	
–  Memory	
–  I/O,	disk	access	
–  Circuit,	power,	etc.	

•  We	want	to	study	algorithms	independent	of		
–  Implementa7ons	
–  PlaZorms	
–  Hardwar	

•  We	need	an	objec7ve	point	of	reference	
–  For	that	we	measure	7me	by	the	number	of	opera7ons	as	a	func7on	of	the	

size	of	the	input	to	the	algorithm	
–  Time	is	not	merely	CPU	clock	cycle	

Algorithm	Analysis	CSCE	235	 4	

Input	Size	
•  For	a	given	problem,	we	characterize	the	input	size	n	

appropriately	
–  Sor7ng:	The	number	of	items	to	be	sorted	
–  Graphs:	The	number	of	ver7ces	and/or	edges	
–  Matrix	manipula7on:	The	number	of	rows	and	colums	
–  Numerical	opera7ons:	the	number	of	bits	needed	to	represent	a	number	

•  The	choice	of	an	input	size	greatly	depends	on	the	elementary	
opera7on:	the	most	relevant	or	important	opera7on	of	an	
algorithm	
–  Comparisons	
–  Addi7ons	
–  Mul7plica7ons	

Algorithm	Analysis	CSCE	235	 5	

Outline	

•  Introduc7on	
•  Input	Size	
•  Order	of	Growth	
•  Intractability	
•  Worst,	Best,	and	Average	Cases	
•  Mathema7cal	Analysis	of		Algorithms	
– 3	Examples	

•  Summa7on	tools	

Algorithm	Analysis	CSCE	235	 6	

Order	of	Growth	

•  Small	input	sizes	can	usually	be	computed	
instantaneously,	thus	we	are	most	interested	in	how	
an	algorithms	performs	as	n→∞		

•  Indeed,	for	small	values	of	n,	most	such	func7ons	
will	be	very	similar	in	running	7me.	

•  Only	for	sufficiently	large	n	do	differences	in	running	
7me	become	apparent:	

As	n→∞	the	differences	become	more	and	more	stark	

Algorithm	Analysis	CSCE	235	 7	

Intractability	
•  Problems	that	we	can	solve	(today)	only	with	exponen7al	or	super-

exponen7al	7me	algorithms	are	said	to	be	(likely)	intractable.		That	is,	
though	they	may	be	solved	in	a	reasonable	amount	of	7me	for	small	n,	for	
large	n,	there	is	(likely)	no	hope	for	efficient	execu7on.		It	may	take	
millions	or	billions	of	years.	

•  Tractable	problems	are	problems	that	have	efficient	(read:	polynomial)	
algorithms	to	solve	them.	

•  Polynomial	order	of	magnitude	usually	means	that	there	exists	a	
polynomial	p(n)=nk	for	some	constant	k	that	always	bounds	the	order	of	
growth.		More	on	asympto7cs	in	the	next	lecture	

•  (Likely)	Intractable	problems	(may)	need	to	be	solved	using	approxima7on	
or	randomized	algorithms	(except	for	small	size	of	input)	

Algorithm	Analysis	CSCE	235	 8	

Worst,	Best,	and	Average	Case	
•  Some	algorithms	perform	differently	on	various	input	of	

similar	size.		It	is	some7mes	helpful	to	consider	
–  The	worst-case	
–  The	best-case	
–  The	average-case	
Performance	of	the	algorithm.	

•  For	example,	say	we	want	to	search	an	array	A	of	size	n	for	a	
given	value	k
–  Worst-case:	k ∈ A,	then	we	must	check	every	item.	Cost	=	n	

comparisons	
–  Best-case:	k	is	the	first	item	in	the	array.	Cost	=	1	comparison	
–  Average-case:	Probabilis7c	analysis	

Algorithm	Analysis	CSCE	235	 9	

Average-Case:	Example	
•  Since	any	worthwhile	algorithm	will	be	used	quite	extensively,	the	average	

running	7me	is	arguably	the	best	measure	of	the	performance	of	the	
algorithm	(if	the	worst	case	is	not	frequently	encountered).	

•  For	searching	an	array	and	assuming	that	p	is	the	probability	of	a	
successful	search	we	have	
Average	cost	of	success:	(1	+	2	+	…	+	n)/n	opera7ons	
Cost	of	failure:	n	opera7ons	
Caverage(n)	=	Cost(success).Prob(success)	+	Cost(failure).Prob(failure)	
															=	(1	+	2	+	…	+	i +	n)	p/n	+	n(1-p)	
															=	(n(n+1)/2)	p/n	+	n (1-p)	=	p(n+1)/2	+	n (1-p)	
–  If	p =	0	(search	fails),	Caverage(n)	=	n	
–  If	p =	1	(search	succeeds),	Caverage(n)	=	(n+1)/2	≈	n/2	

	Intui7vely,	the	algorithm	must	examine	on	average	half	of	all	the	elements	in	
A

				

Algorithm	Analysis	CSCE	235	 10	

Average-Case:	Importance	

•  Average-case	analysis	of	algorithms	is	
important	in	a	prac7cal	sense	

•  Oken	Cavg	and	Cworst	have	the	same	order	of	
magnitude	and	thus	from	a	theore7cal	point	
of	view,	are	no	different	from	each	other	

•  Prac7cal	implementa7ons,	however,	require	a	
real-world	examina7on	and	empirical	analysis	

Algorithm	Analysis	CSCE	235	 11	

Outline	

•  Introduc7on	
•  Input	Size	
•  Order	of	Growth	
•  Intractability	
•  Worst,	Best,	and	Average	Cases	
•  Mathema2cal	Analysis	of		Algorithms	
– 3	Examples	

•  Summa7on	tools	

Algorithm	Analysis	CSCE	235	 12	

Mathema7cal	Analysis	of	Algorithms	

•  Aker	developing	a	pseudo-code	for	an	algorithm,	we	wish	to	
analyze	its	performance		
–  as	a	func7on	of	the	size	of	the	input,	n,		
–  in	terms	of	how	many	7mes	the	elementary	opera7on	is	performed.	

•  Here	is	a	general	strategy	
1.  Decide	on	a	parameter(s)	for	the	input,	n	
2.  Iden7fy	the	basic	opera7on	
3.  Evaluate	if	the	elementary	opera7on	depends	only	on	n	
4.  Set	up	a	summa7on	corresponding	to	the	number	of	elementary	

opera7ons	
5.  Simplify	the	equa7on	to	get	as	simple	of	a	func7on	f(n)	as	possible	

Algorithm	Analysis	CSCE	235	 13	

Algorithm	Analysis:	Example	1	(1)	
UniqueElements

Input:							Integer	array	A	of	size	n	
Output:				True	if	all	elements	a	∈	A	are	dis7nct	
1.  	For	i=1,…,	(n-1)	Do	
2.  							For	j=i+1,…,n	Do	
3.  													If	ai=aj			
4.  																	Then	Return	false	
5.  													End	
6.  							End	
7.  		End	
8.  		Return	true	

	

Algorithm	Analysis	CSCE	235	 14	

Algorithm	Analysis:	Example	1	(2)	

•  For	this	algorithm,	what	is	
– The	elementary	opera7on?	
–  Input	size?	
– Does	the	elementary	opera7on	depend	only	on	n?	
	•  The	outer	for-loop	runs	n-1	7mes.		More	

formally	it	contributes:	Σi=1
n-1	

•  The	inner	for-loop	depends	on	the	outer	for-loop	
and	contributes:	Σj=i+1

n	

–  	Comparing	ai	and	aj	
– n,	size	of	A	

Algorithm	Analysis	CSCE	235	 15	

Algorithm	Analysis:	Example	1	(3)	

•  We	observe	that	the	elementary	opera7on	is	
executes	once	in	each	itera7on,	thus	we	have	

	
Cworst(n)	=	Σi=1

n-1	Σj=i+1
n	1	

					=	n(n-1)/2	

Algorithm	Analysis	CSCE	235	 16	

Compu7ng	Σi=1
n-1	Σj=i+1

n	1	

•  Σj=i+1
n	1	=	1+1+1+…+1	=	n-(i+1)+1=n-i	

•  Σi=1
n-1	(n-i)=Σi=1

n-1	n-	Σi=1
n-1	i	

																						=	n(n-1)	-	Σi=1
n-1	i	

•  Compu7ng	Σi=1
n-1	i	

– Check	Table	2,	page	157:	Σk=1
n	k=n(n+1)/2	

– Rewrite	Σi=1
n-1	i	=	Σi=1

n	i	-	n	=	n(n+1)/2	–n		
																															=	n(n+1-2)/2=n(n-1)/2	

•  	Σi=1
n-1	Σj=i+1

n	1	=	n(n-1)-n(n-1)/2	=	n(n-1)/2	

Algorithm	Analysis	CSCE	235	 17	

Algorithm	Analysis:	Example	2	(1)	

•  The	parity	of	a	bit	string	determines	whether	
or	not	the	number	of	1s	in	it	is	even	or	odd.		

•  It	is	used	as	a	simple	form	of	error	correc7on	
over	communica7on	networks	

Algorithm	Analysis	CSCE	235	 18	

Algorithm	Analysis:	ParityChecking

ParityChecking

Input:							An	integer	n	in	binary	(as	an	array	b[])	
Output:				0	if	parity	is	even,	1	otherwise	
1.  parity←0	
2.  	While	n>0	Do	
3.  				If	b[0]=1	Then	
4.  											parity	←	parity	+1	mod	2	
5.   				End	
6.  			LeftShift(n)		
7.   End	
8.  	Return	parity	

Algorithm	Analysis	CSCE	235	 19	

Algorithm	Analysis:	Example	2	(2)	

•  For	this	algorithm,	what	is	
– The	elementary	opera7on?	
–  Input	size,	n?	
– Does	the	elementary	opera7on	depend	only	on	n?	

•  The	number	of	bits	required	to	represent	an	integer	n	is	⎡log	n⎤	
•  The	while-loop	will	be	executed	as	many	7mes	as	there	are	1-bits	

in	the	binary	representa7on.	
•  In	the	worst	case	we	have	a	bit	string	of	all	1s	
•  So	the	running	7me	is	simply	log	n	

Algorithm	Analysis	CSCE	235	 20	

Algorithm	Analysis:	Example	3	(1)	
MyFunction

Input:							Integers	n,m,p	such	that	n>m>p	
Output:				Some	func7on	f(n,m,p)	
1.  x←1	
2.  	For	i	=	0,…,10	Do		
3.  				For	j	=	0,…,	n	Do	
4.  										For		k=	m/2,	…,	m	Do	
5.  																		x	←	x	×	p		
6.  											End	
7.  				End		
8.  		End	
9.  	Return	x	

Algorithm	Analysis	CSCE	235	 21	

Algorithm	Analysis:	Example	3	(2)	

•  Outer	for-loop:	executes	11	7mes,	but	does	
not	depend	on	input	size	

•  2nd	for-loop:	executes	n+1	7mes	
•  3rd	for-loop:	executes	m/2+1	7mes	
•  Thus,	the	cost	is	C(n,m,p)=11(n+1)(m/2+1)	

•  And	we	do	NOT	need	to	consider	p	

Algorithm	Analysis	CSCE	235	 22	

Outline	

•  Introduc7on	
•  Input	Size	
•  Order	of	Growth	
•  Intractability	
•  Worst,	Best,	and	Average	Cases	
•  Mathema7cal	Analysis	of		Algorithms	
– 3	Examples	

•  Summa2on	tools	

Algorithm	Analysis	CSCE	235	 23	

Summa7on	Tools	
•  Table	2,	Sec7on	2.4	(page	166)	has	more	summa7on	rules,	

which	will	be		
•  You	can	always	use	Maple	to	evaluate	and	simplify	complex	

expressions		
–  But	you	should	know	how	to	do	them	by	hand!	

•  To	use	Maple	on	cse	you	can	use	the	command-line	interface	
by	typing	maple

•  Under	Unix	(gnome	of	KDE)	or	via	xwindows	interface,	you	
can	use	the	graphical	version	via	xmaple

•  Will	try	to	demonstrate	during	the	recita7on.

Algorithm	Analysis	CSCE	235	 24	

Summa7on	Tools:	Maple	

> simplify(sum(i,i=0..n));
 ½ n2+ ½ n

> Sum(Sum(j,j=i..n),i=0..n);

Σi=0
n	(Σj=i

n	j)

Algorithm	Analysis	CSCE	235	 25	

Summary	

•  Introduc7on	
•  Input	Size	
•  Order	of	Growth	
•  Intractability	
•  Worst,	Best,	and	Average	Cases	
•  Mathema7cal	Analysis	of		Algorithms	
– 3	Examples	

•  Summa7on	tools	

