9102 ‘0 Lienuep

Litenoyp "X°'g

C#f Soj0ou S,1030NI}ISUT

A little bit of Lisp

Introduction to Artificial Intelligence

CSCE 476-876, Spring 2016
www.cse.unl.edu/ choueiry/S16-476-876

Read LWH: Chapters 1, 2, 3, and 4.
Every recitation (Monday): ask your questions on Lisp/xemacs.

Berthe Y. Choueiry (Shu-we-ri)
(402)472-5444

N

9102 ‘0 Lienuep

Litenoyp "X°'g

C#f Soj0ou S,1030NI}ISUT

/Features of Lisp

1. Interactive: interpreted and compiled
2. Symbolic
3. Functional

4. Second oldest language but still ‘widely’ used
(Emacs, AutoCad, MacSyma, Yahoo Store, Orbitz, etc.)

Software /Hardware

LeLisp, CMU CL, SBCL, ECL, OpenMCL, CLISP, etc.)

e There have also been Lisp machines (Symbolics, Connection

\ Machine, IT Explorer, others?)

e We have Allegro Common Lisp (by Franc Inc.): alisp and mlisp

e There are many old and new dialects (CormanLisp, Kyoto CL,

/

9102 ‘0 Lienuep

Litenoyp "X°'g

C#f Soj0ou S,1030NI}ISUT

-

Lisp as a functional language

(function-name argl arg2 etc)
1. Evaluate arguments
2. evaluate function with arguments

3. return the result

Functions as arguments to other functions:

(name2 (namel argl arg2 etc) arg3 arg2 etc)

N

9102 ‘0 Lienuep

Litenoyp "X°'g

C#f Soj0ou S,1030NI}ISUT

/Symbolic language

e Atoms: numeric atoms (numbers), symbolic atoms (symbols)
Each symbol has: print-name, plist, package, symbol-value,
symbol-function

e Lists:
(ABC)
| %’l%i%m
A B C
(A (B C) D)
| B %¢ —=NIL
D

A MLHIL

C

\Symbolic expressions: symbols and lists

9102 ‘0 Lienuep

Litenoyp "X°'g

C#f Soj0ou S,1030NI}ISUT

-

More constructs

e Data types:
atoms and lists, packages, strings, structures, vectors,
bit-vectors, arrays, streams, hash-tables, classes (CLOS), etc.

NIL, T, numbers, strings: special symbols, evaluate to self

e Basic functions:
first (car), rest (cdr), second, tenth
setf: does not evaluate first argument

cons, append, equal, operations on sets, etc.

e Basic macros:
defun, defmacro, defstruct, defclass, defmethod,

defvar, defparameter

9102 ‘0 Lienuep

Litenoyp "X°'g

C#f Soj0ou S,1030NI}ISUT

N

e Special forms:
let, let*, flet, labels, progn,

e Predicates:
listp, endp, atom, numberp, symbolp, evenp, oddp, etc.

e Conditionals:
1f <test> <then form> <else form>,
when <test> <then form>,
unless <test> <else form>,
cond,

case

e Looping constructs:

dolist, dotimes, do, mapcar, loop,

e [Lambda functions

9102 ‘0 Lienuep

Litenoyp "X°'g

C#f Soj0ou S,1030NI}ISUT

-

N

A really functional language

(defun <function-name> <argl> <arg2> <arg3> ...
(flet ((local-function-name <arg a> <arg b>

(CTT # (lambda (X))|..)

<some-value>))

function :
Regular functio Anonymous function

Local function

defun, flet/labels, lambda

9102 ‘0 Lienuep

Litenoyp "X°'g

C#f Soj0ou S,1030NI}ISUT

4 N

What makes Lisp different?

Paradigms of AI Programmaing, Noruvig
e Built-in support for lists
e Dynamic storage management (garbage collection!)
e Dynamic typing
e First-class functions (dynamically created, anonymous)
e Uniform syntax
e Interactive environment

e LExtensibility

9102 ‘0 Lienuep

Litenoyp "X°'g

C#f Soj0ou S,1030NI}ISUT

-

N

Allegro Common Lisp

Free download: www.franz.com/downloads/
Available on SunOS (csce.unl.edu), and Linux.

Great integration with emacs
Check www.franz.com/emacs/ Check commands distributed

by instructor

Great development environment
Composer: debugger, inspector, time/space profiler, etc.

(require ’composer)
q p

9102 ‘0 Lienuep

Lirenoyp "X'd

0T

C#f Soj0ou S,1030NI}ISUT

4 N

;53 —-*- Package: USER; Mode: LISP; Base: 10; Syntax: Common-Lisp

(in-package "USER")

5555 | Source code for the farmer, wolf, goat, cabbage problem |
5555 | from Luger’s "Artificial Intelligence, 4th Ed." |
;353 | In order to execute, run the function CROSS-THE-RIVER |

9102 ‘0 Lienuep

Litenoyp "X°'g

IT

C#f Soj0ou S,1030NI}ISUT

;55 | State definitions and associated predicates |
(defun make-state (f w g c)
(list £ w g c))

(defun farmer-side (state)
(nth 0 state))

(defun wolf-side (state)
(nth 1 state))

(defun goat-side (state)
(nth 2 state))

(defun cabbage-side (state)

\\\‘(nth 3 state))

9102 ‘0 Lienuep

Litenoyp "X°'g

Gl

C#f Soj0ou S,1030NI}ISUT

(defun farmer-takes-self (state)
(make-state (opposite (farmer-side state))
(wolf-side state)
(goat-side state)
(cabbage-side state)))

(defun farmer-takes-wolf (state)
(cond ((equal (farmer-side state) (wolf-side state))
(safe (make-state (opposite (farmer-side state))
(opposite (wolf-side state))
(goat-side state)
(cabbage-side state))))
(t nil)))

N

9102 ‘0 Lienuep

Litenoyp "X°'g

el

C#f Soj0ou S,1030NI}ISUT

-

(defun farmer-takes-goat (state)
(cond ((equal (farmer-side state) (goat-side state))
(safe (make-state (opposite (farmer-side state))
(wolf-side state)
(opposite (goat-side state))
(cabbage-side state))))
(t nil)))

(defun farmer-takes-cabbage (state)
(cond ((equal (farmer-side state) (cabbage-side state))
(safe (make-state (opposite (farmer-side state))
(wolf-side state)
(goat-side state)
(opposite (cabbage-side state)))))
(t nil)))

N

/

9102 ‘0 Lienuep

Litenoyp "X°'g

!

C#f Soj0ou S,1030NI}ISUT

N

(defun opposite (side)

(cond ((equal side ’e) ’w)
((equal side ’w) ’e)))

(defun safe (state)

(cond ((and (equal (goat-side state) (wolf-side state))
(not (equal (farmer-side state) (wolf-side state)))
nil)
((and (equal (goat-side state) (cabbage-side state))
(not (equal (farmer-side state) (goat-side state)))

/

nil)
(t state)))

9102 ‘0 Lienuep

Litenoyp "X°'g

GI

C#f Soj0ou S,1030NI}ISUT

;33 | Search |

(defun path (state goal &optional (been-list nil))
(cond

((null state) nil)

((equal state goal) (reverse (cons state been-list)))

((not (member state been-list :test #’equal))

(or (path (farmer-takes-self state) goal (cons state been-lis
(path (farmer-takes-wolf state) goal (cons state been-lis
(path (farmer-takes-goat state) goal (cons state been-lis

(path (farmer-takes-cabbage state) goal (cons state been-

)))

t))
t))
t))
list)

N /

9102 ‘0g LAxenuep

Lienoyp "X'g

91

C# s930U §,1030NI}SUT

;33 | Canned Execution

(defun cross-the-river ()
(let ((start (make-state ’e ’e ’e ’e))
(goal (make-state ’w ’w ’w ’w)))
(path start goal)))

