Introduction to Artificial Intelligence

CSCE 476-876, Spring 2016

URL: www.cse.unl.edu/~cse476
URL: www.cse.unl.edu/~choueiry/S16-476-876

Berthe Y. Choueiry (Shu-we-ri)
Avery Hall, Room 360
Tel: (402)472-5444
When do we meet..

- **Lecture:**
 Mon/Wed/Fri, from 3:30 to 4:20 p.m.
 Room 106, Avery Hall
 I come 5 (10?) minutes earlier to answer questions
 and review material from *previous* lectures
 We must leave on time if another class needs to the room.

- **Make-up class/recitation:**
 Mon, from 5:00 p.m. to 6:00 p.m.
 Avery Hall, Room 21
Communications

- Always refer to the syllabus, our contract
- Frequently check the class schedule (web)
 https://www.cse.unl.edu/~choueiry/S16-476-876
- All communications via Piazza, please do not use email
- Broadcast to class, private with instructors
- Open or anonymous
Office hours:

- Instructor:
 Wed/Fri 4:30–5:30 p.m. or by appointment

- GTA: Robert Woodward
 Office hours: Thursday, 10:00 A.M.-12:00 P.M.

- Professional attitude: respect schedule of TA
Books

- AIMA: Third edition.

- Common Lisp the Language (the Steele) Second edition.
Topics

1. **Lisp**: fundamental for the course, no way around it
2. Intelligent agents
3. Search
4. Constraint satisfaction
5. Games
6. Logical systems

If time allows:

- Planning systems
- Uncertainty: probability and decision theory
Important warnings

- **Common Lisp is the official programming language.** Mandatory.

- **CSCE 310 is a pre-requisite.**
 If you don’t have it, you need to contact the instructor immediately.

- I will come to class 5 minutes ahead of schedule, can answer questions.

- Beyond office hours, communicate with us by email as much as possible.

- Class time is limited. **Do your required reading.**
Related courses at CSE

- Artificial Intelligence (976)
- Constraint Processing (421/821 & 990)
- Data Mining (474/874, 990)
- Machine Learning (478/878)
- Multiagent Systems (475/875)
- Logic in the Philosophy Department
- Database (413/813, 913, 914)
- (Neural Networks & Genetic Algorithms (479/879, 974)?)
Course load

- Required and recommended reading: AIMA & LWH
- Homework: Programming (CL), theoretical, library-search
 To be submitted before class, late-return policy, indicate effort
- (Surprise) Quizzes: frequent, cover class discussions & required reading, cannot be made up
- Tests: Pretest (Jan 13), midterm (Mar 9), and final (May 3)
 Fixed schedule: cannot be taken in advance or made up
 General policy: closed books, cheat-sheet policy
Student’s responsibility

- Account on cse (or csnt), using xemacs and lisp
- No plagiarism, heavily sanctioned. Review policy of CSE
- Always acknowledge sources, help, individuals, url, etc.
- Attendance not mandatory, however students are responsible for material covered and quizzes taken
- Professional behavior: don’t miss classes, don’t come late to classes, don’t expect help beyond office hours without an appointment

Our commitment

- We will try our very best to help you learn the material
- We will be as available as possible
- We will always listen to your feedback to improve the course
Grading policy

- Homework 30%
- Pretest 5%
- Quizzes 15%
- Midterm 25%
- Final 25%
Secure a good grade

- Bonus for full attendance
- Glossary: Weekly, tested during quizzes. (Up to 8%)
- Bonus for solving occasional riddles
- Bonus for finding errors of the instructor
How well you are doing: feedback mechanisms

- Quizzes are corrected in class.
- Homework and glossaries are promptly corrected.
- Grades are listed on Blackboard.
- You have 7 calendar days to claim grade adjustment. Strictly reinforced.
- Students who are not performing are contacted directly. Grades are monitored, but I cannot force you to work.
- Your suggestions for improving the course and our feedback mechanisms are *most welcome*, carefully considered, and implemented as quickly as possible.
- Please let us know what other feedback you expect.
Other resources

- Books on reserve at the Math Library (Avery)
- LL collection, dictionaries, and reference books
- On-line pointers to AI, Lisp, etc. (course and schedule pages)
- Student’s catch from the web
Pretest

- Scheduled for Wednesday, Jan 13, 2016
- One part to be completed in the class: crib sheet policy
- One part to be completed at home: collaboration, discussion strictly forbidden
- Content: basic knowledge of mathematics, logic, algorithm, data structure, complexity
Goal of AI

- Understand intelligent entities (reasoning mechanisms)
- Build intelligent entities (systems)
 contrast with cognitive science and philosophy

→ Build computers with human-level intelligence.. or better
(human reasoning exhibits systematic errors)

Using: slow, tiny brain, biological or electronic

In order to: perceive, understand, predict and manipulate a far
more complex world

Proof of feasibility: human beings
 just look in the mirror :-)
New discipline, old topic

AI is a new discipline (vs. physics):
- term coined in 1956 by John McCarthy
- task is enormous, opportunities are wide, easy to make a difference
- Einstein is (probably) yet to come

Study of Intelligence is an old topic. Philosophy: learned but speculative

Advent of computers introduced a new experimental and theoretical discipline: theories can now be tested
→ out of the armchair, into the fire

Early Systems were naive (rule-based, etc.)
Paradigms are getting more difficult, elaborate, richer, more subtle
Focus and fields

General:
- perception
- logical reasoning

Specific: (task oriented)
- chess
- proving mathematical theorems
- pun writing
- diagnosing diseases
- planning/scheduling tasks of building construction
A truly universal field

Often scientists/engineers become AI researchers: want to formalize, systematize, automate the intellectual tasks they are trained to carry out (electrical engineers, civil engineers, medical doctors)

Sometimes, AI researchers delve into specific fields to apply their methods (biology, power systems)
“The exciting new effort to make computers think … machines with minds, in the full and literal sense” (Haugeland, 1985)

“[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning …” (Bellman, 1978)

“The study of mental faculties through the use of computational models” (Charniak and McDermott, 1985)

“The study of the computations that make it possible to perceive, reason, and act” (Winston, 1992)

“The art of creating machines that perform functions that require intelligence when performed by people” (Kurzweil, 1990)

“The study of how to make computers do things at which, at the moment, people are better” (Rich and Knight, 1991)

“A field of study that seeks to explain and emulate intelligent behavior in terms of computational processes” (Schalkoff, 1990)

“The branch of computer science that is concerned with the automation of intelligent behavior” (Luger and Stubblefield, 1993)

Views of AI fall into four categories:

<table>
<thead>
<tr>
<th>Thinking humanly</th>
<th>Thinking rationally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acting humanly</td>
<td>Acting rationally</td>
</tr>
<tr>
<td>Thinking humanly</td>
<td>Thinking rationally</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Acting humanly</td>
<td>Acting rationally</td>
</tr>
</tbody>
</table>

Dimensions for classification:

Vertical: concern, focus of efforts
- → thought process and reasoning
- → behavior and action

Horizontal: evaluation of success
- → against human performance
- → against ideal concepts of intelligence

Rationality = do the right thing
<table>
<thead>
<tr>
<th>Thinking humanly</th>
<th>Thinking rationally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acting humanly</td>
<td>Acting rationally</td>
</tr>
</tbody>
</table>

Classification contrast human & rationality:
- Human: empirical science, hypothesis and experimental
- Rationality: mathematics + engineering

No right/wrong, all four approaches are valuable