
CSCE476/876 Spring 2016

Homework 5

Assigned on: Friday, March 11, 2016.

Due: Monday, March 28, 2016.

Programming assignment should be submitted with handin. The report can either be submitted with handin

as a PDF, or pritned and submitted during class.
Do not hesitate to seek help during recitation and office hours.

This homework has two parts:

1. A regular ‘exercise’ on AI games.

2. A programming assignment. The goal of the programming assignment is to implement search, unin-
formed and heuristic, in Common Lisp.

(a) Romanian Holidays is mandatory for all students. The implementation is explained in great
details.

(b) Eight-sliding puzzle is a bonus assignment for curious students. Rough explanations about the
implementation are provided.

Contents

1 AIMA, Exercise 5.8, Page 197 (Total 10 points) 1

2 Romanian Holidays (Total 100 points) 1
2.1 Data structures in Common Lisp (50 points) . 2

2.1.1 Tasks . 3
2.2 Implementing Search in Common Lisp (50 points) . 3

2.2.1 Results to report . 4
2.2.2 Some indications . 4

3 Eight-Piece Sliding Puzzle (Bonus 80 points) 5
3.1 Requirements . 5
3.2 Indications . 6

1 AIMA, Exercise 5.8, Page 197 (Total 10 points)

2 Romanian Holidays (Total 100 points)

This exercise will guide you, step by step, to implement in Lisp the data structures representing Romania’s
map and the search algorithms for conducting search. It is mandatory to all students.

1

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86 Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Dobreta
Craiova

Fagaras

Iasi

 0

160

242

161

77

151

366

244

226

176

241

253

329

80

199

380

234

374

100

193

Figure 1: Map of Romania with road distances in kilometers and straight-line distances to Bucharest.

Name

Neighbors

h

Name

h

Neighbors

Name
h

Neighbors

Name

h

Neighbors

((d1) (d2)...)

((d1) (d3)...)

((d4) (d2) ...)

((d3) (di) ...)

Figure 2: Data structures.

2.1 Data structures in Common Lisp (50 points)

Using defstruct (see LWH, Chapter 13), create data structures in Common Lisp to represent the map of
Romania. Include the information about the distances between two cities linked by a road as well as the
distance from any given city to Bucharest as indicated in Figure 1.

Indications (follow illustration in Figure 2):

• Create a data structure for a city using defstruct.

• Include an attribute name to store the name of the city.

• Include an attribute neighbors to store the neighboring cities.

• Include an attribute h that provides the value of the straight-line distance to Bucharest.

• Create a global variable that stores all the cities. Use defvar to declare the global variables. Implement

2

it this in two different ways: a list *all-cities-list* and a hash-table *all-cities-htable* 1.
Use the name of a city as key and the structure as value. For sake of clarity, you are not asked to
implement a hash-table (which you probably did in CSCE310) but to use a hash-table in Lisp.

• After creating structures for all the cities, loop through them again in order to include, in the relevant
attribute of a city, a reference its neighboring cities. Store these neighbors as an association list of the
structure of a neighbor and the distance between the two (see LWH, page 31).

2.1.1 Tasks

1. (10 points) Design, implement and test your map.

2. (5 points) Write a function all-cities-from-list that takes a global variable,
all-cities-list, and returns a list of all names of cities on the map.

3. (5 points) Write a and all-cities-from-htable that takes a global variable,
all-cities-htable and returns a list of all the structures of cities on the map.

4. (5 point) Write two functions get-city-from-list and get-city-from-htable that take the name of
a city as input and return the corresponding structure (by accessing a global variable, *all-cities-list*
and *all-cities-htable*, respectively).

5. (5 points) Write two functions neighbors-using-list and neighbors-using-htable that take the
name of a city as input and return the list of structures of its direct neighbors. neighbors-using-list
and neighbors-using-htable should use get-city-from-list and get-city-from-htable, respec-
tively.

6. (10 points) Using *all-cities-htable*, write a function neighbors-within-d that takes the name
of a city my-city and a number distance, then returns, for all direct neighbors within distance from
my-city (≤), an association list of the structures of the neighbors of my-city and their distance to
my-city.

7. (10 points) Using *all-cities-htable*, write a function neighbors-p that takes the name of two
cities city-1 and city-2, and returns the distance between them if they are directly connected or nil
if they are not.

Note that the global variables should always be passed as arguments to these functions (becoz it is cleaner).

2.2 Implementing Search in Common Lisp (50 points)

You are asked to implement search the following search strategies, first as a Tree-Search then as a Graph-
Search:

• Any uninformed search strategy of your choice, 10 points

• A Greedy search strategy, and 10 points

• An A∗ search strategy. 10 points

for the ‘Romanian Holiday’ problem. Needless to say, you should first get Section 1 to work. Write Search

that take as input the name of any city on the map, the name of a search strategy, and returns:

1. The path to Bucharest,

2. The number of nodes generated/visited by the search process,

3. The cost of the path found (even when the function g(n) is not used to choose the node to expand),

1Check documentation on hash-tables in http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/cltl2.html

and http://www.lisp.org/HyperSpec/Body/fun make-hash-table.html.

3

4. The running time spent by Lisp on the search. You can use2 the function time and report the value
of cpu time (non-gc) as printed on the *standard-output* (i.e., the emacs buffer).

Hints:

• You may want to use the Lisp function values and multiple-value-bind.

• You may choose to write one search function and give it the strategy as an argument.

2.2.1 Results to report

In addition to your code, report the results of your two functions applied to each city in Romania as indicated
in the table below. Report two tables:

1. One result table for Tree-Search. 10 points

2. One result table for Graph-Search. 10 points

Uninformed search of your choice

City name #nodes visited Path to Bucharest Total cost of path CPU time

Arad
Bucharest

...
Vaslui
Zerind

Greedy Search

City name #nodes visited Path to Bucharest Total cost of path CPU time

Arad
Bucharest

...
Vaslui
Zerind

A∗ Search

City name #nodes visited Path to Bucharest Total cost of path CPU time

Arad
Bucharest

...
Vaslui
Zerind

2.2.2 Some indications

Follow the requirements below:

1. For Graph-Search, modify the data structure of a city that you implemented in Section 2.1 to add
one more field visited, initialized to Nil. Use this attribute for loop control during search: when a
city is visited, set this field to T.

2. Create a new data structure (e.g., defstruct) to represent a node in the search tree. The structure
should have attributes that point to the structures of its parent (when applicable), its children (list),
the city it represents. Other attributes may be necessary, such as path value at the node.

2To retrieve the time in Lisp, one can use the function get-internal-run-time and get-internal-real-time. Check them
out.

4

3. Implement a function expand-node that takes a node in the search tree and generates its children,
which, for Graph-Search, should correspond to cities not yet visited. It needs to generate one node
data-structure per child.

4. Implement a function evaluate-node that takes a node and a search strategy and returns the value
of the node (e.g., g(n), h(n) or f(n)).

5. Implement a function that takes a fringe (i.e., a list of nodes to be expanded) and returns the node
to expand. As a refinement, you can provide the name of the search strategy as an optional second
argument (check :key in the list of arguments of a function).

6. If you separate the implementation search strategy from the evaluation functions cleverly enough, you
may be able to use the same search function for all search strategies you implement.

7. Implement the search strategies iteratively, not recursively.

8. Declare a global variable *nnv* for storing the number of nodes visited . The search function should set
up its value and the function expand-node should increment this value at every expansion (technically,
every instantiation of a search-node structure).

9. Load the information about the cities from the file all-cities.lisp which is on the course website.

3 Eight-Piece Sliding Puzzle (Bonus 80 points)

The goal is to implement A∗ search for solving the Eight-Piece Sliding Puzzle Problem with the two admissible
heuristics: the displaced tile and the Manhattan distance heuristics.

3.1 Requirements

Below is the list of basic requirements:

1. Implement a generator of random states, to be used to generate an initial and a goal state.

2. Implement A∗ that

• takes as arguments an initial state, a goal state, and the name of a heuristic function and

• returns the list of moves of the empty tile from the initial state to the goal state, the cost of the
path found, and the CPU time.

3. Count the movement of each tile as unity cost.

4. Generate 100 combinations of random initial and goal states (more if possible).

5. Run A∗ with each heuristic on each combination initial and goal states, reporting the following:

Displaced tile Manhattan Distance

Instance #NV Path Cost CPU time #NV Path Cost CPU time

Combination 1
Combination 2

...
Combination 99
Combination 100

5

3.2 Indications

In contrast to the previous problem, you do not need to generate a state space. Use to the extent possible
the explanations provided above for the Romanian Holidays and the mechanisms

1. Implement a state as a 2 dimensional array (Chapter 17 in ClTl).

2. Implement a generator of random states, to be used to generate an initial and a goal state.

3. Implement a function that takes as input a state and computes the value of the heuristic function
(there are two of them).

4. Implement functions that correspond to the actions of moving the empty tile north, south, east and
west (similar to the Farmer’s dilemma).

5. Implement functions that determine whether a move is legal or not (similar to the Farmer’s dilemma).
A move north is not legal when the empty tile is in the first row.

6

